
Early Estimation of the Size of VHDL Projects

William Fornaciari, Fabio Salice, Daniele Paolo Scarpazza,
Politecnico di Milano - DEI

Piazza Leonardo da Vinci, 32, Milano, Italy

{fornacia, salice, scarpazz}@elet.polimi.it

ABSTRACT
The analysis of the amount of human resources required to com-
plete a project is felt as a critical issue in any company of the elec-
tronics industry. In particular, early estimating the effort involved
in a development process is a key requirement for any cost-driven
system-level design decision.

In this paper, we present a methodology to predict the final size
of a VHDL project on the basis of a high-level description, ob-
taining a significant indication about the development effort. The
methodology is the composition of a number of specialized models,
tailored to estimate the size of specific component types. Models
were trained and tested on two disjoint and large sets of real VHDL
projects. Quality-of-result indicators show that the methodology is
both accurate and robust.

Categories and Subject Descriptors
B.6.3 [Hardware]: Design Aids—Hardware description languages;
D.2.8 [Software Engineering]: Metrics—complexity measures

General Terms
Management, Design, Languages

Keywords
VHDL analysis, embedded systems, design metrics, cost estima-
tion, system-level design

1. INTRODUCTION
In the last years we assisted to the growth of design reuse initia-

tives, such as the VSIA [1], and to the spread of third-party sup-
pliers of intellectual property cells. There is a consistent number
of cost models, which pay particular attention both to the advanced
concept study phase (like in [5] for the automotive market) and to
the management of the design cycle (like in [3]).

Technical managers face new scenarios, where the driving forces
are time to marketand flexibility, together with the capability of
controlling costs. The success of a strategy often depends strongly
on coarse-grained decisions taken during the early phases. For ex-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’03,October 1–3, 2003, Newport Beach, California, USA.
Copyright 2003 ACM 1-58113-742-7/03/0010 ...$5.00.

ample, solving themake or buyproblem requires such an accurate
estimate of resource consumption and reuse cost-effectiveness.

There exist accurate estimation techniques and flows for perfor-
mance, area and power consumption, some working at high level
of abstraction too, but when it comes to human time (currently the
most valuable and scarcest resource), a well-assessed theory to de-
velopment effort estimation is still a long way to come.

In this paper we present a method for estimating the number of
lines of VHDL code in which an embedded system design project
will evolve, given its specification, which is recognized to be one of
the factors affecting its development effort, e.g. through CoCoMo-
style models [2] likeE = a · Sb, whereE is the effort,S is the
code size anda andb are parameters accounting for multiplicative
and scale phenomena (see [7] for more details). In our method-
ology, without loss of generality, specifications are not provided
in a distinct language but in VHDL itself: in fact any incomplete
VHDL project can be considered as an intermediate step towards
the final product. Our methodology can be applied at any stage of
a development-by-refinement design process, and as the draft ap-
proaches the completed project, size estimates will converge to the
actual final value.

The paper structure is as follows: section 2 provides the concep-
tual framework of the methodology, while section 3 introduces a
convenient formal representation of VHDL designs on which the
entire methodology is based. The core of the methodology is pre-
sented in section 4, where models for each of the basic elements
composing the designs are presented, together with a constructive
strategy to provide estimates for the entire design.

To apply our methodology, we implemented a complete evalua-
tion flow (including a VHDL-93 compliant parser), able to perform
model training, test and application. Details are described in sec-
tion 5. Section 6 discusses the achievements of the methodology
and possible improvements.

2. GENERAL APPROACH
Designing systems in VHDL consists in designing an appropri-

ate set of interconnected entities, each accompanied by one or more
implementations (called architectures) and their respective inter-
nals (processes, signals, variables, functions and procedures; see
[8] and [4]). Usually, these entities are not developed concurrently
at the same time, instead the whole project is first defined as a top-
level entity with no internal details, then decomposed in more sub-
systems, developed as independent entities, and so on, in a top-
down fashion.

When a project is complete, all of its components and relation-
ships can be hierarchically represented with a graph, on which the
calculation of the total project size from each part’s size is trivial.

In incomplete projects (that is, projects considered at an arbitrary

207

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/193591623?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

intermediate development stage), parts are not all known equally:
some parts are finished (completely known), for some only their ex-
ternal interface is known, typically because they were identified in a
top-down decomposition but not yet decomposed in further subsys-
tems (externally known), some arecompletely unknown, typically
because they will be identified in the next decomposition steps of
externally known parts.

For incomplete projects, we also found a formal and convenient
way to represent the information available on completed parts, their
completion status and the remaining of the project, still in the
form of a graph. We will provide a set of models and application
rules, that allow to estimate the overall resulting size of the finished
project (expressed in lines of code, LOC) on the basis of the above
graph.

Since a specification is nothing more than an incomplete project,
considered at an arbitrary (usually early) stage of a top-down,
development-by-refinement design process, it is correct to say that
our method is capable of estimating the final size of a VHDL
project on the basis of its specifications. Then, the development
effort cost from the project size can be estimated, by following the
strategy proposed in (as shown in [7]).

3. FORMAL ASPECTS
In this section we introduce some definitions required to describe

the method in a formal and concise way. Intuitive explanations
are reported in place of formalisms whenever the second would be
unnecessarily tedious; for all the formalities, see [10].

3.1 Syntax objects and graphs
A syntax object(SO, for short) is any of the following: a project,

an entity, an architecture, a process, a subprogram, a component
declaration or instantiation. As anticipated, all the SOs of a com-
plete project can be hierarchically arranged in a graph, calledsyntax
object graph(SOGfor short), which depicts their relationships. A
SOG is a graph containing nodes of 7 types (one for each SO type)
and edges of 2 types:contains-type andreferences-type edges.
Given a project, building its SOG means:

• creating a node for each SO appearing in the project;

• connecting nodeA to nodeB with a contains-type edge
(A ⊃ B) whenever the SO namedA contains the SO named
B (that is,B is defined inside theA, like a process can be
defined inside an architecture);

• connecting nodeA to nodeB with a references-type edge
(A → B) when SOA references SOB (informally, inside
A there is a call or an instantiation toB).

A sample SOG, generated by our tools and depicting the struc-
ture of a Xilinx ADS7870 8-channel voltmeter Springboard mod-
ule, implemented on a CoolRunner XPLA3 CPLD, is reported in
fig. 1. Dashed lines represent⊃-type edges and solid lines repre-
sent→-type edges.

In incomplete projects, SO are usually known partially. To han-
dle these cases, we introduce the KSOG, which is a decorated SOG,
where a tag is added to each node, indicating its knowledge condi-
tion; in detail, a SO is marked with:

• (C) completely known, if it is complete and finished in all its
constituents;

• (E) externally known, if its external interface is known (ports
for an architecture, signature for a function, etc.); no internals
need to be provided;

Figure 1: The SOG for a real VHDL project.

• (I) internally known, if it is externally known and all its di-
rectly contained element are at least externally known;

• (V) virtually completely known, when its cost is already
known (e.g. it was reused, or bought externally), even though
its details are not provided; dealing with these SO’s is trivial,
since they are treated as an additive cost constant;

• (U) completely unknown, when it is not declared at all: size
estimates cannot be generated; instead, estimates for con-
tainer objects must take into account the possible existence
of unknown objects.

Figure 2: A sample KSOG.

Figure 2 shows a sample KSOG and illustrates some of the pos-
sible combinations of nodes and edges.

If we regard a project specification as an incomplete project (thus
a KSOG), we can reduce the estimation of its development cost
starting from its specifications to the evaluation of the cost of its
KSOG.

3.2 Bunches
Most KSOGs have much higher complexity than samples in fig-

ures 1 and 2, possibly containing thousands of nodes and edges.
Therefore, designing an appropriate evaluation algorithm running
on KSOGs could be impractical. Instead, we introduce an object
of intermediate granularity, the bunch, that simplifies the task of
KSOG evaluation.

Roughly speaking, a bunch is a structure composed by a VHDL
entity and whatever belongs to it. More formally, a bunch is a tree
rooted at an entityE, containing all those nodes reached by the

208

Figure 3: Bunch decomposition of the sample SOG from fig-
ure 1.

transitive closure of⊃ starting from nodeE. Bunches exhibit the
following useful properties:

1. all the information required to evaluate the size of a bunch
is associated to its nodes, therefore each bunch size can be
evaluated independently;

2. any SOG and KSOG can be exactly partitioned into one or
more bunches1, as in figure 3, therefore the size of a SOG is
given by the sum of its bunches’ size. For KSOGs things are
more complicated, since some bunches could be completely
unknown and their size will be estimated (details in the next
section).

3.3 Levels
It is convenient to arrange bunches in levels, thus obtaining a

structure that matches the top-down decomposition process; the
usefulness of this operation will become clear in the next section.
To do that, we observe→-type edges that cross bunch boundaries.
Starting with all the bunches at the top level, and moving bunchR
one level beneathQ’s level whenever aQ → R cross-bunch edge
is found, the desired arrangement is obtained.

As we did for partially known SOs, we introduce the additional
hypothesis that specifications are not unbalanced, in the sense that
either all bunches in a level are at least externally known, or all
are completely unknown. Our methodology is not able to deal ef-
fectively with promiscuous levels, containing known and unknown
bunches at the same time. Good sense suggests that incomplete
projects can be unbalanced in the above sense, but specifications
(a strict subset of incomplete projects) cannot, therefore the above
condition is not really restrictive.

4. THE CORE OF THE METHODOLOGY
The application of our methodology consists of the following

steps:

1. a KSOG is built starting from specifications;

2. the KSOG is decomposed into bunches;

3. bunches are split among levels according to their mutual
structural→-type edges;

1with negligible exceptions, shown in [10].

4. for each bunch, its size is calculated by applying the most
appropriate model aggregate;

5. for each known level, its size is calculated as the sum of sizes
of all bunches belonging to that level;

6. the estimated cost of the KSOG (comprising unknown parts)
is obtained from the sum of the size of the firstnth levels by
applying an appropriate SOG model.

Our methodology works at different granularities, obtaining the
size of a KSOG as a sum of the sizes of its levels, the size of each
level as the sum of the sizes of its bunches, the size of each bunch as
the sum of the sizes of its syntax objects. Since, at each granularity,
one or more constituents can be incompletely known, the above
summations would be impossible without a number of specialized
models that allow to estimate the size of unknown parts from their
available information.

4.1 Models
Accordingly with the methodology so far defined, we introduce

three categories of models: SOG models, Bunch models and SO
models.

SO models estimate the final size of a SO given the set of avail-
able information on it, not counting contained objects (which are
subject to respective SO models, if at least externally known). For
completely unknown SOs, their number and size are estimated at
bunch level, thanks to bunch models. Through bunch models, an
estimate of the final size of each at-least-externally-known bunch
is obtained; then, SOG models are applied to obtain the size of the
whole project as a function of the size of the at-least-externally-
known levels.

Figure 4: All the models used in this methodology.

The whole set of models used in our methodology is illustrated
in figure 4; it is possible to classify them in a tree view.

4.1.1 Syntax object models
SO models return an estimate of the core size of a object for

which some information is given; they are specialized on the ba-
sis of object type (entity, architecture, process, ...), objectmode
(behavioral, structural, data-flow) if applicable, and amount of in-
formation required. A list containing the most interesting variables
and quantities subject to estimation is reported in table 1.

Similar models were developed for the other SO types; their full
details and statistical performance evaluation can be found in [10].

209

Quantity Symbol

Total number of ports np

Number ofin , out , inout , other ports nip, nop, niop, nxp

Total number of generics ng

Total number of internal signals ns, hs

Number of component declarations, instantiations ncd, nci

Number of processes in an architecture npr

Number of sensitivity signals in the i-th process npsi
Number of variables in the i-th process npvi

Length of entity declaration in LOC Le

Length of architecture core in LOC Lac

Length of the i-th component declaration in LOC Lcdi
Length of the i-th component instantiation in LOC Lcii
Length of the i-th process in lines of code Lpri

Table 1: Variables and estimates used in models.

Last known-size level

n L1 L2 L3 L4 L5 L6 L7 L8

1 1 · · · · · · ·
2 0.486 1 · · · · · ·
3 0.128 0.505 1 · · · · ·
4 0.141 0.294 0.721 1 · · · ·
5 0.083 0.149 0.425 0.658 1 · · ·
6 0.053 0.214 0.808 0.972 0.985 1 · ·
7 0.023 0.070 0.308 0.415 0.505 0.925 1 ·
8 0.113 0.167 0.408 0.706 0.860 0.921 0.979 1

Table 2: Size of the first i levels as a fraction of the whole
project.

4.1.2 Bunch models
Bunch models estimate the cardinality of a set of SOs, directly

contained in a given SO, all of which are completely unknown and
of the same type. For example, there are models to estimate the
number of processes inside a given architecture, or the number of
subprograms directly declared inside a process, and so on. Bunch
models are classified on the basis of the type of nodes involved in
the⊃-type edge.

In [10], we conducted an extensive study in order to identify all
the possible combinations of node types involved in a⊃ relation-
ship, then we counted the number occurrence for each type in our
project base, realizing that only a small amount of them were statis-
tically significant, and developed an appropriate set of models for
each of them.

4.1.3 SOG models
Once the size of the not-completely-unknown bunch levels has

been estimated, the last task to perform is to estimate the size of all
the KSOG, on the basis of the above result. This is the purpose of
SOG models. The creation of appropriate SOG models was a diffi-
cult task, since it was not clear which ones, among all the properties
of the KSOG representing the incomplete project and other possi-
ble available data, were significant in order to estimate the full final
KSOG size. In order to understand that, we designed a rich set of
different hypotheses and tested them against our project base. The
hypothesis with the highest predictive power turned out to be the
following: given a KSOG of depthn, where the size of all levels
from 1 tok is known, it should be possible to find an appropriate
value, representing the following ratio:

L∑
i6k Li

=

∑
i6n Li∑
i6k Li

This ratio expresses how many times the whole project is larger
than levels1..k. In each cell (rowi, columnj) of table 2 we re-
ported the average values of such ratios collected on our project
base. For example in projects with exactly 6 levels (row 6), the
number of lines of code belonging to levels 3 and above (column

K1 K2 K3 K4

Entity interface X X X X
Entity mode X X X X
Number of declared components X X X ·
Declared component interface X X · ·
Number of instanced components X X X ·
Instanced component interface X X · ·
Number of architecture signals X · · ·
Number of processes X X · ·
Process variables X · · ·

Table 3: Required known information for each model aggre-
gate.

L3) represents the 80.8% of all the lines of code of the project.

4.2 Model Aggregates
As said before, in order to estimate the size of a bunch, a strict

cooperation between SO and bunch models is required. Given a
bunch populated with a reasonable number of nodes (one architec-
ture, several processes and components, several signals and vari-
ables), the number of possible different knowledge conditions that
could occur is remarkable. It is therefore impractical (and of du-
bious usefulness) to validate models in any possible condition; In-
stead, we established four discrete conditions, associated with re-
spective model sets, ready to be applied to assess whether a bunch
in a given refinement state qualifies or not for a given knowledge
state. Such states, called K1, K2, K3 and K4, and the associated
rules are illustrated in table 3. For each cell, the presence of a tick
mark (X) means that variables indicated in that row must be known
in order to qualify for the knowledge state indicated in that column.

The corresponding model aggregate for condition K2 is reported
below as an example.

(K2) L̂ = L̂e(np, ng) (EM3)
+ L̂ac(hip, hop, hiop, hxp) (AM2H)
+

∑ncd
i=1 L̂cdi

(npi , ngi) (CDM2)
+

∑nci
i=1 L̂cii (CIM1)

+ npr · L̂pr (PM0)

5. EXPERIMENTAL RESULTS
To assess the accuracy of our statistical modeling, we performed

a number of experiments. First, to constitute a suitable database of
projects, we collected 60 publicly-available fully-developed VHDL
projects2. Their application scope covers general purpose proces-
sors, digital signal processors, basic building blocks like FFTs, mi-
crocontrollers, neural networks and so on. This base of project was
split in two sets: one used to tune the methodology and the other
used for validation purpose. Relevant statistical data characterizing
of such projects are summarized in the following table:

Tuning Validation

Number of projects: 41 19
Number of VHDL files: 573 469
Number of VHDL code lines: 388,790 222,188
Cumulative size: 16.5M 12.0M

Number of entities: 945 571
Number of architectures: 967 570
Number of component declarations: 952 634
Number of component instantiations: 46,653 35,478
Number of subprogram declarations: 587 298
Number of ports: 9,276 4,984
Number of signals: 58,836 39,017
Number of variables in processes: 1,747 2,449
Number of variables in subprograms: 387 299

2the full contents of this archive is available at our website [9]

210

To automatically collect and process project base data, and to
tune, validate and apply models, we developed a set of tools com-
prising a lexical filter to remove comments, a dedicated VHDL
parser to read source files, extract syntax-related information and
store it in a specifically-designed SQL database, a set of Tcl scripts
to apply all the models and a rich, Tcl/Tk-based, graphical front-
end to the above tools. The tool stack is represented in figure 5.

Figure 5: Automatic tools developed for this research.

An exhaustive evaluation of our methodology would consider
any possible subset of each project SOG of our project base, thus
obtaining a KSOG, then submitting it to the models and comparing
the result with the real size of the SOG. But since the number of
all possible partial knowledge conditions in a project is extremely
high, a test like the one described above is impractical.

Instead, for each of our projects, we set as unknown all infor-
mation apart those required by model aggregate K2. Then, for all
possiblek, we used as input the firstkth levels of the KSOG ob-
tained at the previous step. Results follow:

Internal validation (based on tuning projects):

L L̂ L̂ − L

Average value 2582.071 1826.582 427.492
Standard deviation 3868.919 2950.914 1400.412

Correlation coefficient betweenL andL̂ 0.8627

External validation (based on validation projects) :

L L̂ L̂ − L

Average value 4016.750 2029.705 -489.674
Standard deviation 5514.420 3121.928 3034.134

Correlation coefficient betweenL andL̂ 0.8713

Figure 6: Test set: actual vs. estimated lines of code

Figure 7: Test set: error density distribution.

Figure 8: Test set: error cumulative distribution.

6. CONCLUSIONS
After collecting a relevant amount of code (≥ 28 MB), belong-

ing to real industry projects, and implementing automatic analysis
and modeling tools, we delivered a methodology, able to estimate
the size of each project, with a degree of accuracy depending on
the amount of available knowledge. The methodology proves to be
both accurate and robust.

Accuracy is proved by a highρ between real and estimated data
(0.8627 and 0.8713 respectively, for internal and external valida-
tion) and by acceptableσe (1400.412 and 3034.134 lines of code
respectively; int more than 80% of the cases, estimation error falls
in ±σe; as represented in fig. 6, 7 and 8). Robustness is confirmed
by null degradation ofρ and a tolerable degradation ofσe when
validation is switched from training to test set.

Error compensation occurred whenever models were aggregated:
models resulting from composition of finer granularity sub-models
exhibit better performances than their constituents (e.g. when syn-
tax object models were integrated to form bunch models, and bunch
models coalesced to constitute SOG models).

Our project base contains the vast majority of the public VHDL
models on the Internet and is superabundant for SO model tuning,
sufficient for bunch models, but scarce when it comes to SOG mod-
els. The current effort is to achieve better results with SOG models,
by increasing the project base size, and to refine the back-end strat-
egy to derive development effort from project sizes (as anticipated
in [7]).

211

ρ(·, L) np nip nop niop nxp ng nps

Entities 0.7875 0.4277 0.5687 0.8740 0.1509 0.9059
(0.6536) (0.5544) (0.5670) (0.2495) (0.3066) (0.5737)

Architectures 0.4622 0.2535 0.3174 0.6192 0.0844 0.5640
(0.1625) (0.1090) (0.1615) (0.0932) (0.0923) (0.0127)

Processes 0.2291 0.2867 0.3239
(-0.0372) (0.0771) (0.0849)

Table 4: Impact of reformatting on ρ(·, L).

7. CURRENT DEVELOPMENTS
Our research group is currently committed to enhancing the

methodology in a number of ways: extending the number of
projects in the training and test sets, removing the influence of dif-
ferent coding styles, and moving towards more complex models
with higher contents in semantics.

7.1 Influence of coding-style
The next version of our estimation flow includes a VHDL re-

formatter (see [6]), which proved to be dramatically effective in
reducing the source code length variability due to different coding
styles. Preliminary studies show that the coefficients of correlation
between the length of a given syntax object and each of its available
variables exhibit significant increases after the code reformatting is
performed, as shown in table 4 (values before reformatting are in
related in paretheses).

7.2 Risks of overfitting

Figure 9: Training set: actual vs. estimated lines of code

Figure 10: Test set: actual vs. estimated lines of code

The vast majority of the models introduced in section 4.1.1 are
simple linear models, using only variables with high correlation

coefficients with the length. In several cases, the influence of a
given variable (e.g. number of ports) over an object’s length is
known to be linear, thus, a linear model is known to be correcta
priori . For all the other cases, we are currently evaluating the use
of higher-order models, using all the available variables.

In Figure 9 and 10 we report the results the internal and external
validation respectively of an estimation flow in which most linear
models have been replaced with second order models.

Internal validation:

L L̂ L̂ − L

Average value 1543.269 1843.131 299.861
Standard deviation 3096.056 3375.566 622.811

Correlation coefficient betweenL andL̂ 0.9852

External validation:

L L̂ L̂ − L

Average value 2376.034 8848.160 6472.126
Standard deviation 3659.174 30521.040 27922.626

Correlation coefficient betweenL andL̂ 0.7398

We believe that an improper use of high-order models using also
low-correlation variables could lead to overfitting, as above, with
very good accuracy in the internal validation and decreased accu-
racy in the external. These considerations deserve a deeper study
and are currently our work goals.

8. REFERENCES
[1] Virtual Socket Interface Alliance,www.vsia.org .
[2] COCOMO 2.0, Model definition manual, v.1.2. 1997.
[3] Numetrics,Measuring IC and ASIC design productivity,

white paper,www.numetrics.com , May 2002.
[4] P. J. Ashenden,The Designer’s Guide to VHDL. Morgan

Kauffmann Publishers, San Francisco, 1995.
[5] J. Axelsson, Cost model for electronic architecture trade

studies. InProc. 6th Intl. Conf. on Engineering of Complex
Computer Systems, 2000.

[6] P. S. Elliot and M. Gumm,MVP v1.1, Institute for Parallel
and Distributed Systems, Stuttgart, Germany, 1994.

[7] William Fornaciari et al., Development cost and size
estimation starting from high-level specifications. InProc.
9th Intl. Symposium on Hw/sw Codesign, pages 86–91, ACM
Press, 2001.

[8] IEEE Standards Board,ANSI/IEEE Std 1076-1993, IEEE
Standard VHDL Language Reference Manual.

[9] D. P. Scarpazza, VHDL effort estimation on-line resources at
CEFRIEL,www.cefriel.it/vhdl-estimate .

[10] D. P. Scarpazza, Development effort and size estimation for
partially specified VHDL projects. CEFRIEL Internal report,
2002.

212

	Main Page
	CODES+ISSS'03
	Front Matter
	Table of Contents
	Author Index

