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Abstract

variance of relationships is small.

for f families of size n and variance of relationships og.

Background: Traditionally, heritability and other genetic parameters are estimated from between-family variation.
With the advent of dense genotyping, it is now possible to compute the proportion of the genome that is shared
by pairs of sibs and thus undertake the estimation within families, thereby avoiding environmental covariances of
family members. Formulae for the sampling variance of estimates have been derived previously for families with
two sibs, which are relevant for humans, but sampling errors are large. In livestock and plants much larger families
can be obtained, and simulation has shown sampling variances are then much smaller.

Methods: Based on the assumptions that realised relationship of sibs can be obtained from genomic data and that

data are analyzed by restricted maximum likelihood, formulae were derived for the sampling variance of the
estimates of genetic variance for arbitrary family sizes. The analysis used statistical differentiation, assuming the

Results: The variance of the estimate of the additive genetic variance was approximately proportional to 1/ (fn2o§),

Conclusions: Because the standard error of the estimate of heritability decreased in proportion to family size, the
use of within-family information becomes increasingly efficient as the family size increases. There are however,
limitations, such as near complete confounding of additive and dominance variances in full sib families.

Background

Quantitative genetic parameters such as heritability have
traditionally been estimated from the variation among
full- or half-sib families, or from the parent-offspring co-
variance [1,2]. The covariance among sibs is assumed to be
proportional to the pedigree relationship, but relatives may
be further correlated because they share a common envir-
onment. This problem arises particularly in humans and,
although sire families can be used in livestock to minimise
the environmental covariance of sibs, these and weaker
relationships come at the cost of higher sampling errors of
heritability estimates because the correlation between sibs
has to be multiplied by the inverse of the relationship to
obtain an estimate of heritability. Estimates of heritability
from non-pedigreed populations also rely heavily on getting
good estimates of pedigree relationship [3], which is diffi-
cult unless relationships are very close, and environmental
confounding can still a source of bias.
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Although pairs of full-sibs, for example, share half
their genome on average, individual pairs do not because
of Mendelian sampling of large chromosome segments.
Such a discrepancy at pairs of loci is the basis of QTL
(quantitative trait locus) mapping using, for example,
the method of Haseman and Elston [4], to associate
the phenotypic divergence between sibs to differences
in marker frequency. Dense marker genomes are now
available, and Visscher et al. [5] proposed that the actual
or realised relationships between sibs can be estimated
from genomic data and the association between the actual
relationship and phenotypic similarity used to estimate
the genetic covariance within families, thereby eliminating
correlations due to shared environment. Visscher and col-
leagues used data on human dizygotic twins and full-sibs,
first from microsatellites [5] and subsequently from SNPs
(single nucleotide polymorphisms) [6] to estimate the level
of genome sharing and thus trait heritability. In a later
paper, Visscher [7] discussed the theory further. However,
the sampling error of the estimates of genetic variance
was high because the variation in actual relationship was
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small (typical standard deviation (SD) of 3.9% of the mean
of 50% for human full-sibs, as expected from theory
[5,7-10]). Since family sizes in humans are also very small,
many are needed for precise estimation.

Odegard and Meuwissen [11] pointed out that the
method of Visscher et al. [5] could be used in very large
families, such as for fish species, and for which it is not
always practical to avoid rearing full-sibs together. They
showed by simulation that sampling errors of the resulting
estimates of heritability are substantially reduced as family
size increases and are smaller with a few large families
than with many small families. These results raise the
following basic question: for a family of # sibs, is the
information content, i.e. the inverse of the sampling
variance of the estimate of heritability, approximately
proportional to family size # (or e.g. to # -1) or to the num-
ber of pairs in the family, %n(n -1)? The simulation results
of Odegird and Meuwissen [11] indicated the latter. Fur-
thermore, PM Visscher (personal communication) showed
that, using genomic relationships estimated from a sample
of N individuals from the population, the sampling variance
is a function of N°. The difference between methods with
sampling variances that depend on approximately squares
of numbers rather than numbers of individuals is not trivial
and clearly has an important impact on their design and
potential utility.

The model used by @degard and Meuwissen [11] was
based on a finite number (80) of genomic blocks that were
individually marked, and with trait effects that were identi-
cally normally distributed for each block. In this note, we
quantify these estimates and show how they depend on
the design and variation in realised relationships. We
adopt a model in which the realised relationship is
continuous over the genome and with trait effects that
are uniformly distributed across the genome. To calculate
sampling errors, Visscher et al. [5] used regression of
the squared phenotypic difference of sibs on the esti-
mated actual relationship from tracking genome segments,
whereas @degird and Meuwissen [11] used a REML
(restricted maximum likelihood) analysis within and
between families with estimated realised relationships for
a finite number of genome segments. In the present
analysis the data were assumed to be analysed by REML.
Implications for design of experiments are discussed.

Analysis

Let us assume that the data are from matings of unre-
lated individuals and comprise f (> 1) families each of
size n (> 2). The extension to variable # is straightforward
and deferred meanwhile. The mean (i.e. pedigree) numer-
ator relationship within families is A (e.g. 0.25 for half-sibs
or 0.5 for full-sibs) and the within-family variance of actual
relationships is 0%. We also assume that all sibs share the
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same environment and, for simplicity, as in the work of
Visscher et al. [5,6], that additive genetic variance is es-
timated using only within-family differences; in essence,
family effects are regarded as fixed. Therefore information
is accumulated independently across families and no bias
or sampling error arises due to common environment,
albeit at the cost of losing potential between-family genetic
information.

Additive model
Initially, we assumed that gene effects were additive but
subsequently extended the results to include dominance.
The additive genetic variance is ai, the residual environ-
mental variance is 0%, and so the within-family variance
is 0%, = (1 - A)o% + o%. The phenotypic variance is given
by 03 = Ao3 + 0% + 0%, where 0% is the variance due to
common environment. In the analysis, it is convenient
to parameterise the actual relationship between family
members i and j in terms of deviations from mean
pedigree-based relationships: r;;=A; - A. The nxn co-
variance matrix V of observations y within a family of »
sibs is then var(y) =V =1Io% + Ro%, where I is the
identity matrix and elements of R are ry;, i # j, and r; = 0.
The sampling variance of the parameter estimates can
be approximated by using a Taylor series expansion in r;;
because these deviations are small, and then taking ex-
pectations so as to obtain Fisher’s information matrix S
(the inverse of the variance covariance matrix) for the
REML estimates of variance components 63 and 6%,
respectively. The derivation is rather complicated, so
details are given in Appendix 1. For a family of size # it
is shown that:

2.2 /.2
-2mog03 /0

mog (1)
1+ 3moia} /oy,

B n-1
~ 204, \ -2ma3ad /o

where m = n(1 — 2/n + 2/n%). Since between-family relation-
ships are not used, information Sy from family k is merely
summed over families, with corresponding elements for
family size ny and my, k=1, ..., f. The overall variance-
covariance matrix of the estimates is:

var(63) %

C= <cov(&f\,5’%x/) CO\Y;:}([:},%;}%)) - (stk)il

With f families of equal size, from (1):

c— 20%
f(n-1)mo} (1-moka} /o) @)
1+ 3moiol /oy, 2moros /0%
2mo%a} /0% moy

The estimate of the environmental variance is o3 =

~2 1 =2 =2\ _ 1
0w—3 04 and hence Var(aE) = cyp—c12 +4c11 and cov
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(63,6%) = =3

just 0% and o¢% into account, 63 = 63 + %, and the
sampling error of the corresponding heritability esti-

c11, where ¢; are elements of C. Taking

mate, h2 = 6% /2, can be approximated using standard
formulae for ratios (see e.g. page 818 in [2]). Between-
family information, not included in the data used above,
has to be incorporated to estimate the phenotypic variance
and heritability if common family environment or allow-
ance for non-additive effects is to be included.

If the quantity mo%o? /o3, is small, the determinant
of § is dominated by its diagonal elements and var (G3)
simplifies to:

var (63)~1/s11 = 203/ [f (n-1)mog] (3)

Hence for families of # = 2 individuals, m =1 and var
(6%)~20%,/(fo}) . This corresponds to the formula of
Visscher et al. [5] for the sampling error of the herit-
ability estimate: 2(1—t)2/(fa§), where ¢ is the intra-
class correlation of family members. As n increases,
mn - 1) =n(n — 3+2/n - 2/n*) — n(n — 3) - n>. If o3
is small and # large, then var(63) ~20%,/(fn*0%).

The variation in relationships within a family depends
on whether family members are full- or half-sibs, on the
total map length (L) of the chromosomes and, to a limited
extent, on their individual lengths [5,7,10]. To a good ap-
proximation, o3 ~ 1/(16 L) — 1/(3 L?) for full-sibs and one-
half of that for half-sibs [5,7]. For humans, the number of
autosomes is 22 and the total map length is 359 M, so 0%
is approximately 0.00153 for full-sibs and 0.00077 for half-
sibs (SD =0.039 and 0.028). Therefore, for full-sib families
of a species with a map length and chromosome number

similar to humans, SE(6%) ~36 0%, /[/fn(n-3), eg. 028
0%, for 50 families of size 20 and 0.17 ¢%; for 20 families of
size 50. Cattle, for example, have 29 autosomes and a map
length of 32.5 M [12], so o3 would be a little larger and
the sampling variance of estimates of heritability corres-
pondingly smaller.

Simulation check on approximations

In the analysis in Appendix 1, many simplifying assump-
tions were made in the Taylor series analysis. As a partial
check, simulation was undertaken for a model of 22 chro-
mosomes, each 1.632 M long, ie. the mean length of hu-
man chromosomes, and relationships were simulated with
the programme used previously to check formulae for vari-
ance in relationships [10]. (The distribution of relationships
would be little affected if map lengths varied [10]). The
information matrix S was then computed directly from
equation (A1) and from the approximation in Equation
(1). For simplicity, however, it was assumed that the
contrast matrix K (see below equation (A1)) was invariant
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(see examples in Table 1). In general, there was good agree-
ment between the observed and the approximate predicted
estimates of sampling variance (Table 1), but this deterio-
rated as family size increased, with the approximation
generally underestimating the sampling variance. This bias
would be greater if 0% were higher. Although, if only a
single chromosome was fitted o3 would be much greater,
the additive variance contributed by it would be only a
fraction of the total and, as the example in Table 1 shows,
the approximation remains good. Table 1 also gives pre-
dictions based solely on Equation (3), showing a good fit
with those obtained directly from Equation (2).

Dominance

In full-sib families, both additive and dominance vari-
ance can, in principle, be estimated. Derivation of the
extended information matrix is given in Appendix 2. It
depends on the variance oé in dominance relationships
(about its mean of %) and the covariance between domin-
ance and additive relationships, covr. However, as Visscher
et al. [5] pointed out, the additive and dominance relation-
ships within families are very highly correlated, since the
additive coefficient depends on the average number of
paternal and maternal genes that are shared identical by
descent at a locus and the dominance coefficient on
whether both are shared. The regression of dominance
on additive relationships (covrq / aﬁ) is equal to 1 and
their correlation is approximately 0.9. This implies that,
in practice, partitioning 03 and ¢% using within-family
information is probably not feasible and furthermore
that if only an additive model is used, the estimate of 012\
is biased upwards by 0%; indeed it essentially has expect-
ation 0% + o},

Discussion and conclusions

The analysis shows that the sampling variances of estimates
of heritability based on within-family realized relationships
fall roughly in proportion to #* as family size # increases,
i.e. based on the number of pairwise comparisons among
individuals in the family, and in proportion to the number
of families. Therefore, when undertaking such an ana-
lysis, it is more efficient to use few very large families,
although one might be reluctant to use just one or very
few families in case they are atypical [11]. Here, a model
of a continuous genome was used, rather than a finite
number of independent regions as by @degard and
Meuwissen [11], and the calculations assumed a fairly
even distribution of genetic variance along the genome.
If there is much heterogeneity, e.g. a few QTL of large
effect, the sampling errors of genetic variance estimates
would increase. In the present analysis, we make the as-
sumption that shared segments are identified accurately,
for example using Merlin [13].
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Table 1 Comparison of var(63) predicted from the information matrix directly and from the Taylor series approximation”

Family  HS FS FS FS FS

W 05 0.25 05 0.75 004

chr 22 2 by 2 1

n 5 15 25 5 15 25 5 15 25 5 15 25 5 15 25
Eq(A) 174 122 415 94 667 226 826 594 204 714 520 181 480 0354 0127
Eq (1) 182 118 38 101 656 218 86 58 197 771 523 182 526 0331 0110
Eq (3) 182 117 38 101 653 216 8.1 569 188 760 490 162 526 0330 0110

*Predictions were obtained directly by inverting the realised information matrix (eq A1) obtained from sampling relationships, and from the Taylor series
approximation eq. (1) using the variance of relationships directly; variances were computed by averaging information over samples of 100 families, but are
expressed for a single family, so for f families var(63) should be divided by f; predictions using the simplification eq. (3) are shown similarly; results are for half
(HS) and full (FS) sib families; h? is the proportion of variance contributed by the fitted chromosomes; chr is the number of chromosomes; chr = 22 denotes the

whole genome; chr =1 denotes a single chromosome.

Odegard and Meuwissen [11] investigated the effect of
selectively genotyping only the individuals with high and
low phenotypes within a family, when all phenotypes are
included in the REML analysis. The efficiency of this ap-
proach was good in terms of sampling errors but estimates
of heritability were biased downwards when sample sizes
were small. This may reflect insufficient marker coverage
of the genes of interest because of lack of linkage disequi-
librium, in which case this bias may be hard to avoid, but
possibly also bias caused by selection.

They also estimated actual relationships from a finite
number of markers and, occasionally, obtained a singular
matrix in their simulated replicates [11]. To check the
causes, simulated relationships were sampled from a
continuous chromosome model [10] and the exact al-
lele sharing was computed. Pairs of individuals can
inherit identical non-recombinant short chromosomes,
thereby yielding a positive semi-definite relationship matrix
(ie. including zero but not negative eigenvalues). In the
unlikely event that this occurs at all chromosomes, the data
can still be analysed by REML. Negative eigenvalues were
not obtained in our simulations and indeed seem infeasible,
because the relationships were jointly sampled. Negative
eigenvalues are a consequence of the estimation of weak
relationships from marker data and might arise in practice.

A different approach to estimating the genetic variance
free of common environment was suggested by Yang et al.
[14]. They fitted by regression all the SNPs to data from
individuals sampled from the population that are not
known to be related and from which any pairs with a rela-
tionship above a low threshold have been removed, so as
to minimise the chance of shared environment. Such an
analysis is expected to give a lower estimate of heritability
than the within-family analysis discussed here, however,
because marker-associated effects in the population can be
missed through incomplete linkage disequilibrium, espe-
cially when traits genes have low minor allele frequencies,
as indeed seems to be the case [14].

A ‘back of the envelope’ calculation allows a simple
comparison of the sampling errors of estimates of additive

genetic variance from within families utilising variation
in relationship, &/Z\W, and from between families using
ANOVA, 0%, (Appendix 3). Provided the families are
not small, var (3%, ) /var(62,)~(A%/0%)/[1 + nAd% /o%]".
With use of half-sib families (A = 1/4) to eliminate maternal
effects in the between-family estimate, for a genome of
‘human’ length, (A%/0%) = (0.25/0.028)* ~ 80. Assuming
the heritability is 1/3, such that A% = lo%,, the ratio of
variances is approximately 80/(1 + 7/5)°, equalling 1.0 when
n ~40. This implies that, with half-sib families of size 40, a
similar amount of information would be obtained from
within- and between-family data. With fewer larger fam-
ilies, the estimate from within-family information would
have the lower standard error. Furthermore, because the
within- and between-family estimates use the data in a dif-
ferent way they are, presumably, uncorrelated and so they
can be simply combined. However, estimates from both
sources may be biased to different extents by common en-
vironment, dominance, epistasis, etc., so specific applica-
tions require specific consideration.

There are other aspects that could be examined. For
example, additive and within-family genetic covariances
and correlations among traits can be estimated from a
multi-trait analysis with the same data structure. Clearly
the magnitude of their sampling errors is structured simi-
larly to those of the corresponding variances of the individ-
ual traits. Estimation of variation due to any individual
autosome can be achieved by fitting just the relationship on
this chromosome, and similarly for the sex chromosome
[6]. The variance of the corresponding relationships is then
much higher and depends on the length of the chromo-
some, decreasing roughly in proportion to its length. Al-
though var (6%) per chromosome is then much smaller,
the coefficient of variation of its estimate may be similar to
that for the whole genome under the simplest assumption
that the contribution by any chromosome to ¢% is roughly
proportional to its length.

A problem specific to the within-family approach is
the high degree of confounding between additive and
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dominance effects in full-sib families (albeit there is also
complete confounding in a between full-sib family analysis).
This is not resolved by estimating o3 separately from ma-
ternal and paternal sharing, since the dominance coefficient
is the correlated intersection of these. The point is that,
while maternal genomic similarity appears to include only
the additive component because only one sire is involved,
interactions between sire and dam effects, i.e. dominance,
are included. Half-sib families with multiple dams per sire
or a cross classified structure are needed, similar to when
between-family correlations are used for estimation.

If, for example, a number of males and females are put
together for mating in a single environment, then the
pedigree can be obtained from genetic markers. Hence,
paternal half-sibs, maternal half-sibs and full-sibs can be
distinguished and the between-family covariance can be
used. Additional information from within-family segrega-
tion could be identified via the markers, but this would
likely contribute little. For example, in a pen comprising
such a diallel structure, the variation in pedigree relation-
ships (A =0, % or %) is likely to be much larger than the
variation in realised relationships among pairs with the
same pedigree relationship.

Epistatic variance provides other associated difficulties of
potential confounding and estimation. On a whole-genome
basis, the relevant coefficient for the additive x additive
variance component is the square of the relationship, which
is highly correlated with the additive coefficient. Thus, simi-
lar to the analyses between families, obtaining a satisfactory
partition between additive and additive x additive or higher
order components is probably not feasible. A further prob-
lem is potential bias due to epistatic effects in the estima-
tion of additive (e.g. from additive x additive effects) and
dominance variance. Although the expected probability
that sibs share alleles at pairs of genomic sites is small for
the genome as a whole, it is much higher for nearby sites.
Thus, if epistatic effects are substantial and predominately
cis-acting, this bias could be important. To partially ad-
dress this, Visscher et al. [6] fitted the mean relationship
for each chromosome in a multiple regression model for
human height. The variance removed by fitting variation
in relationships for each chromosome was essentially the
same whether chromosomes were fitted independently or
in a joint analysis, indicating little or no interaction be-
tween regions on different chromosomes. Extending this
more generally needs genomic regions to be defined such
that joint identity by descent can be computed.

Within-family analysis, particularly when families are
large, has attractive features because. it avoids bias due to
common environment effects, but it introduces other po-
tential confounding effects, as noted above. It also requires
much genotyping and associated costs. Although in a
breeding context this type of information may be available
when collecting data to implement genomic prediction and
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subsequent selection, estimates of the variance components
may not in themselves have value beyond what is obtained
from the marker trait associations. But this is something to
think about.

Appendix 1: Derivation of the sampling variance
for the additive model

For the REML analysis, the information matrix S, which
in turn yields the sampling variances based on S™ for
the estimates of 0% and %, for each family, is defined by
Lynch and Walsh (see page 791 in [2]):

S

1 (tr(PRPR) (A1)

tr(PRP
2\ t(PRP) ’

tr(PP)

where tr denotes the trace operator. Matrix P = K'(KVK)™
K and K, _ 1) x » defines contrasts such that KX = 0, where
X is the design matrix and, since family members are con-
temporaneous in the same environment, X is a unit vector.
The Helmert contrasts are suitable for K: for i=1, ...,
no— 1 ky=[GG+ D72 j<i kogoy 1 =-16/G+ D]
and k; =0, j>i+1. Note that KK’=1, . 1)x(, - 1) and
KK=1I, « , -  Jux » where all elements of J equal 1,
and (K'’K)* = K’K.

The expected information using the Taylor series ex-
pansion has terms of the following form:

E(PRPR) = PRPRg_o + Y  d(PRPR)/0ryr-oF (1)

i<j

+ % Z kXI: 82(PRPR)/Briiark”RzoE(r,-jrkl) + ...
isj k<

We note that E(ry) =0 and, assuming independent
Mendelian segregation to each offspring, E(r;ry) =0, i = k
and/or j # [ and E(r;)* = 0%, where 0% is the variance in
relationship. Differentiating

PRP P P
I(PRPR) _ P ppr+p R pr 1 PRV R
8ri,« 81’,‘/ arij arij
JR
4+ RPRZ, (A2)
E)rij

and when evaluated as R — 0, all terms in (A2) become
zero. Furthermore, differentiating (A2) to obtain the
second derivative, all remaining terms in R are also
zero; and as R is linear in ry, aZR/arl-,.ar,d = 0. Finally, as
E(r;r) = 0 unless i = k and j = /, E(PRPR) reduces to

1 oR_0JR OR_0dR 9
E(PRPR)=- P P —P P .
( ) 22( ar,-, arij+arij ari}- )UR
i<j
Let oR/r;; = X;;, with elements x;; = x; = 1 and 0 otherwise;
so taking R — 0,

E(PRPR)~; > (PX;PX; + X;PX;P)0}

i<j

(A3)
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AsR—0,V->P=K(KVK)'K—I- 1J)/o%;. Defining
further matrices, Y;; where y;; = ;=1 and 0 otherwise,
and W; where wy = w,k =1,k=1, ..., n, and 0 otherwise,
we have Xy Xi=Yy JX;=JY; W,,, W, Wi =2W;,
and tr(X;) = 0, tr(YU) = tr(Wi,') =2. As the trace oper-
ator is commutative, it follows that by summing over
the n(n — 1)/2 off diagonal elements in (A3), all having
the same expectation,

E[tr(PRPR)] ~bn(n-1)tr[(1- /)X, (1-]/m)Xy) 0 /o,

z%ﬂ(ﬂ—l)t[‘(Y,’j—2WZ‘//l’l + ZWij/nz)J%{/J‘\LV
~n(n-1)(1-2/n +2/n*)oy /oy, = (n-1)moy /oy,
(Ad)

where m = n(1 — 2/n + 2/n%).
We give less detail for other terms in the information
matrix.

9(PRP) a—PRP PB—RP + PRa—P
orjj orjj orjj oryj

Non-zero second derivatives must involve differentiation
once of P and once of R. Hence

1 aP 9R aR P\ ,
E(PRP)~- 2——P+2P
( R ) 2;( ar,-,ari/ + aruarl])aR

oP oV
;ij = -K'(KVK')" Kafrul(,(KVK,) K and, as R—0,
opP

ary —- <I-%]) X (I-%]) 0% /0%, so

e (1 (A )k

i<j

(A5)

As the trace is commutative and I — 1J is idempotent,
putting the last such matrix in (A5) first, we see that:

E[tr(PRP)|~~2n(n-1)(1-2/n + 2/n*)
= 2(n-1)m 050%/0%.

2 2, 6
010/ 0

When R=0, P=(1 - 1/n)/0%, and tr(PP) = (n — 1)/0%,.
Now considering the terms in ry,

P, P P
- ar?j or; ory; arg

?(PP)  3°P

2
or;

(A6)

with additional terms that become 0 as R — 0.
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n (A6) 2 — -K/(KVK') 'K 2L K/ (KVK') 'K

a21>

K (KVK') 'K

oV o, 0V
= 2K/ (KVK') 'K =~ K'(KVK') 'K
7 Tij Ty

And hence, using the commutative property,

9*(PP
tr (#) = 6tr (K’(I(VK’)
Bri/-

= 6tr((I-1) X;(1-

Y av
ZK(KVK) 'K 5

K'(KVK’)’H()
i T

PX(1-))o% /oy
Therefore, using previous results,
E[tr(PP)|~(n-1)/0% + 3nm o0 /0%

thus completing the derivation of the information matrix
in Equation (1) of the main text.

Appendix 2: Fitting additive and dominance
variances

Let V = Io2 + Ro% + Qo3 of dimension 7 x n, where, for
full sib families, 0%, = 0% + 103 + 20%. Additive and dom-
inance effects of the loci are assumed to be uncorrelated.
Let Q with elements g;; define the departure of the realised
dominance correlation of full sibs from the expected %, and
let aé denote var(g;) and similarly covrq denote cov(r;;, g;).
The information matrix is now [2]:

tr(PRPR) tr(PRPQ) tr(PRP
§=3| a(PRPQ) (PQPQ) tr(PQP)
tr(PRP)  tr(PQP)  tr(PP)

The term E[tr(PRPR)] ~ (1 -1)ma% /0%, is unchanged
from the additive case and, by symmetry,
E[tr(PQPQ)]z(n—l)maé/a%X, and
E[tr(PRPQ)]~(n-1)mcovrq/ay-

The derivative of the term PRP with respect to r; remains

o(PRP) a—PRP + Pa—RP + PR— or
orj or orj arl]

and the expectation of its second derivative with respect to
r; is unchanged. However, now taking the second derivative
with respect to g;;, we obtain additional terms with non zero

expectation,

d*(PRP) 9P IR 3R OP
0r;9q; aq,] ar,, or;dq;
Hence E[tr(PRP)|~-2(n-1)m(oxo3 + covrqop) /o3

and similarly
E[tr(PQP)] ~ —2(n—1)m(covRQ02A + 06021)) /o . The

term E[tr(PP)] is non-zero when differentiated twice



Hill Genetics Selection Evolution 2013, 45:32
http://www.gsejournal.org/content/45/1/32

with respect to r; and to g;; and once each with both
variables. Hence

E[tr(PP)}~(n-1) /0%,
+3(n—1)m(0§oj§ + 2covrqoiop + aéaf‘)) /oY
The information matrix for a single family is therefore

(5
205y

2

moy  mcovrq  —2m(0%03 + 0hcovrq) /0%
% mog  —2m (covRQtrﬁ + aéaé) /o%,
symm 1+ 3m (aﬁai + 2covrqodo? + Jéa‘*D) /ot

These equations apply to estimates of 55 , 63 and 6%
For full sib families, the estimate of the error variance
would be G3=6%-16% 355, and its sampling error com-
puted accordingly from S™.

As noted in the main text, covrq =aﬁ, so S simplifies to

moy  mok -2mo3 (o} + 03) /0%
S — ”_41 maog, -2m(ojoi + 0401 ) /0%
20 .
symm 1+ 3m {aﬁ (03 +203)0% + aéa‘*D] /o%

However, as o} and 07, have similar magnitude, S is al-
most singular and thus the genotypic variance cannot be
partitioned into additive and dominance components
unless the dataset is very large.

Appendix 3: Comparison of between and within
family estimators

Let us assume a balanced one-way ANOVA (which is also
REML if there are no unbalanced fixed effects) is used to
estimate 0%, ie. 63, = (MSB — MSW)/(nA) where MSB
and MSW are the mean squares and A is the pedigree
relationship (% or %). It is assumed that there is no en-
vironmental correlation among sibs. Hence, with f families
each of size n, var(MSB) = 2[o}, + (n—l)Aolz\]z/(f—l),
var(MSW) = 203, /[f(n-1)] and, as these are uncorrelated,

) 20
wr(e) = 2%

[1+ (n-1)(Ad%/o%)]? L1
f-1 f(n-1)
For the within-family estimates, var (&f\w) is given by (3).
Further simplification requires making some assumptions
about numbers and size of families. As a first approxima-
tion, assume neither is small, so

20% 1+ nAaf\/a%(,)]2

fn2A?
var(63,,) A?/o%
2

var(6%,) 1+ nAUf\/G%V]Z '

4
, var (6[2\w) ~ 20—W

var (&12\13) ~ ~ fn%ﬁ

and
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