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Abstract
In this paper, we establish some important properties ofM-tensors. We derive upper
and lower bounds for the minimum eigenvalue ofM-tensors, bounds for eigenvalues
ofM-tensors except the minimum eigenvalue are also presented; finally, we give the
Ky Fan theorem forM-tensors.
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1 Introduction
Eigenvalue problems of higher-order tensors have become an important topic of study in
a new applied mathematics branch, numerical multilinear algebra, and they have a wide
range of practical applications [–].
If there are a complex number λ and a nonzero complex vector x that are solutions of

the following homogeneous polynomial equations:

Axm– = λx[m–],

then λ is called the eigenvalue of A and x the eigenvector of A associated with λ, where
Axm– and x[m–] are vectors, whose ith component is

Axm– :=

( n∑
i,...,im=

aii···imxi · · ·xin
)
≤i≤n

,

x[m–] :=
(
xm–
i

)
≤i≤n.

This definition was introduced by Qi and Lim [, ] where they supposed that A is an
orderm dimension n symmetric tensor andm is even. First, we introduce some results of
nonnegative tensors [–], which are generalized from nonnegative matrices.

Definition . The tensor A is called reducible if there exists a nonempty proper index
subset J ⊂ {, , . . . ,n} such that ai,i,...,im = , ∀i ∈ J, ∀i, . . . , im /∈ J. If A is not reducible,
then we call A to be irreducible.

Let ρ(A) = max{|λ| : λ is an eigenvalue ofA}, where |λ| denotes the modulus of λ. We
call ρ(A) the spectral radius of tensor A.
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Theorem . If A is irreducible and nonnegative, then there exists a number ρ(A) > 
and a vector x >  such that Axm–

 = ρ(A)x[m–]
 . Moreover, if λ is an eigenvalue with a

nonnegative eigenvector, then λ = ρ(A). If λ is an eigenvalue of A, then |λ| ≤ ρ(A).

The authors in [, ] extended the notion of M-matrices to higher-order tensors and
introduced the definition of anM-tensor.

Definition . Let A be an m-order and n-dimensional tensor. A is called an M-tensor
if there exist a nonnegative tensor B and a real number c > ρ(B), where B is the spectral
radius of B, such that

A = cI –B.

Theorem . LetA be anM-tensor and denote by τ (A) the minimal value of the real part
of all eigenvalues ofA. Then τ (A) >  is an eigenvalue ofA with a nonnegative eigenvector.
Moreover, there exist a nonnegative tensor B and a real number c > ρ(B) such that A =
cI –B. IfA is irreducible, then τ (A) is the unique eigenvalue with a positive eigenvector.

In this paper, let N = {, , . . . ,n}, we define the ith row sum of A as Ri(A) =∑n
i,...,im= aii···im , and denote the largest and the smallest row sums of A by

Rmax(A) = max
i=,...,n

Ri(A), Rmin(A) = min
i=,...,n

Ri(A).

Furthermore, a real tensor of order m dimension n is called the unit tensor, if its entries
are δi···im for i, . . . , im ∈N , where

δi···im =

{
, if i = · · · = im,
, otherwise.

And we define σ (A) as the set of all the eigenvalues ofA and

ri(A) =
∑

δii ···im=

|aii···im |, rji(A) =
∑

δii ···im=,
δji ···im=

|aii···im | = ri(A) – |aij···j|.

In this paper, we continue this research on the eigenvalue problems for tensors. In Sec-
tion , some bounds for the minimum eigenvalue of M-tensors are obtained, and proved
to be tighter than those in Theorem . in []. In Section , some bounds for eigenvalues
of M-tensors except the minimum eigenvalue are given. Moreover, the Ky Fan theorem
forM-tensors is presented in Section .

2 Bounds for theminimum eigenvalue ofM-tensors
Theorem . Let A be an irreducible M-tensor. Then

τ (A) ≤min{ai···i}, ()

Rmin(A) ≤ τ (A)≤ Rmax(A). ()
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Proof Let x >  be an eigenvector of A corresponding to τ (A), i.e., Axm– = τ (A)x[m–].
For each i ∈N , we can get

(
ai···i – τ (A)

)
xm–
i = –

∑
δii ···im=

aii···imxi · · ·xim ≥ ,

then

τ (A) ≤min{ai···i}.

Assume that xs is the smallest component of x,

(
as···s – τ (A)

)
xm–
s = –

∑
δsi ···im=

asi···imxi · · ·xim ≥ .

That is,

τ (A) ≤
∑

δsi ···im=

asi···im + as···s,

so

τ (A) ≤ Rmax(A).

Similarly, if we assume that xt = {maxxi, i ∈N}, then we can get

τ (A) ≥
∑

δti ···im=

ati···im + at···t ≥ Rmin(A).

Thus, we complete the proof. �

Theorem . Let A be an irreducible M-tensor. Then

min
i,j∈N ,j �=i



{
ai···i + aj···j – rji(A) –�



i,j(A)

}
≤ τ (A)≤ max

i,j∈N ,j �=i


{
ai···i + aj···j – rji(A) –�



i,j(A)

}
, ()

where

�i,j(A) =
(
ai···i – aj···j + rji(A)

) – aij···jrj(A).

Proof Because τ (A) is an eigenvalue ofA, fromTheorem . in [], there are i, j ∈N , j �= i,
such that

(∣∣τ (A) – ai···i
∣∣ – rji(A)

)∣∣τ (A) – aj···j
∣∣ ≤ |aij···j|rj(A).

From Theorem ., we can get

(
ai···i – τ (A) – rji(A)

)(
aj···j – τ (A)

) ≤ –aij···jrj(A),
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equivalently,

τ (A) –
(
ai···i + aj···j – rji(A)

)
τ (A) + aj···j

(
ai···i – rji(A)

)
+ aij···jrj(A)≤ .

Then, solving for τ (A),

τ (A) ≥ 

{
ai···i + aj···j – rji(A) –�



i,j(A)

} ≥ min
i,j∈N ,j �=i



{
ai···i + aj···j – rji(A) –�



i,j(A)

}
.

Let x >  be an eigenvector of A corresponding to τ (A), i.e., Axm– = τ (A)x[m–], xs is
the smallest component of x. For each s, t ∈N , s �= t, we can get

(
at···t – τ (A)

)
xm–
t = –

∑
δti ···im=

ati···imxi · · ·xim ≥ rt(A)xm–
s , ()

(
as···s – τ (A)

)
xm–
s = –

∑
δti ···im=,
δsi ···im=

ati···imxi · · ·xim – ast···txm–
t ≥ rst (A)xm–

s – ast···txm–
t ,

(
as···s – τ (A) – rst (A)

)
xm–
s ≥ –ast···txm–

t . ()

Multiplying equations () and (), we get

(
at···t – τ (A)

)(
as···s – τ (A) – rst (A)

) ≥ –ast···trt(A).

Then, solving for τ (A),

τ (A) ≤ 

{
at···t + as···s – rst (A) –�



t,s(A)

} ≤ max
i,j∈N ,j �=i



{
ai···i + aj···j – rji(A) –�



i,j(A)

}
.

Thus, we complete the proof. �

We now show that the bounds in Theorem . are tight and sharper than those in The-
orem . in [] by the following example. Consider the M-tensor A = (aijkl) of order 
dimension  with entries defined as follows:

a = , a = –,

a = –, a = ,

other aijkl = . By Theorem . in [], we have

– ≤ τ (A)≤ .

By Theorem ., we have

 ≤ τ (A)≤ .

By Theorem ., we have



( –

√
) ≤ τ (A)≤ 


( –

√
).
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In fact, τ (A) = . Hence, the bounds in Theorem . are tight and sharper than those in
Theorem . in [].

3 Bounds for eigenvalues ofM-tensors except theminimum eigenvalue
In this section, we introduce the stochasticM-tensor, which is a generalization of the non-
negative stochastic tensor.

Definition . AnM-tensor A of orderm dimension n is called stochastic provided

Ri(A) =
n∑

i,...,im=

aii···im ≡ , i = , . . . ,n.

Obviously, when A is a stochastic M-tensor,  is the minimum eigenvalue of A and e is
an eigenvector corresponding to , where e is an all-ones vector.

Theorem . Let A be an order m dimension n irreducible M-tensor. Then there exists a
diagonal matrix D with positive main diagonal entries such that

τ (A) ·B =A ·D(–m) ·
m–︷ ︸︸ ︷

D · . . . ·D,

where B is a stochastic irreducible M-tensor. Furthermore, B is unique, and the diagonal
entries of D are exactly the components of the unique positive eigenvector corresponding to
τ (A).

Proof Let x be the unique positive eigenvector corresponding to τ (A), i.e.,

Axm– = τ (A)x[m–].

Let D be the diagonal matrix such that its diagonal entries are components of x, let us
check the tensor C =A ·D(–m) ·D · . . . ·D. It is clear that for i = , , . . . ,n,

n∑
i,...,im=

Cii···im =
(
Cem–)

i =
(
A ·D(–m) ·

m–︷ ︸︸ ︷
D · . . . ·Dem–)

i = τ (A).

Hence B = C/τ (A) is the desired stochastic M-tensor. Since the positive eigenvector is
unique, then B is unique, and the diagonal entries of D are exactly the components of the
unique positive eigenvector corresponding to τ (A). �

Theorem . LetA be an order m dimension n stochastic irreducible nonnegative tensor,
ω =minai···i, λ ∈ σ (A). Then

|λ –ω| ≤  –ω.

Proof Let λ be an eigenvalue of the stochastic irreducible nonnegative tensor A, x is the
eigenvector corresponding to λ, i.e.,

Axm– = λx[m–].

http://www.journalofinequalitiesandapplications.com/content/2014/1/114
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Assume that  < |xs| =maxi |xi|, then we can get

(λ – as···s)xm–
s =

∑
δsi ···im=

asi···imxi · · ·xim .

Then

|λ – as···s| ≤
∑

δsi ···im=

asi···im = rs(A) =  – as···s,

and therefore,

|λ –ω| ≤ |λ – as···s + as···s –ω|
≤ |λ – as···s| + |as···s –ω|
≤ ( – as···s) + (as···s –ω)

=  –ω. ()

Thus, we complete the proof. �

Theorem . Let A be an order m dimension n irreducible M-tensor, 	 = maxai···i, λ ∈
σ (A). Then

|	 – λ| ≤ 	 – τ (A).

Proof From Theorem ., we may evidently take τ (A) = , and after performing a similar-
ity transformation with a positive diagonal matrix, we may assume that A is stochastic.
Then, for θ ∈ (, ), the matrixA(θ ) = ( + θ )I – θA is irreducible nonnegative stochastic,
by Theorem ., if λ(θ ) ∈ σ (A(θ )), ω(θ ) =minai···i(θ ), we can get

∣∣λ(θ ) –ω(θ )
∣∣ ≤  –ω(θ ).

That is,

∣∣ + θ – θλ – ( + θ – θ maxai···i)
∣∣ ≤  – ( + θ – θ maxai···i).

Then

|	 – λ| ≤ 	 – .

Transforming back to A, we get

|	 – λ| ≤ 	 – τ (A).

Thus, we complete the proof. �
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4 Ky Fan theorem forM-tensors
In this section we give the Ky Fan theorem forM-tensors. Denote by Z the set ofm-order
and n-dimensional real tensors whose off-diagonal entries are nonpositive.

Theorem . Let A,B ∈ Z, assume that A is an M-tensor and B ≥ A. Then B is an M-
tensor, and

τ (A) ≤ τ (B).

Proof If x > , from assume that A is anM-tensor and condition (D) in [], we know

Axm– > .

Because B ≥A, we can get

Bxm– ≥Axm– > ,

then B is anM-tensor.
Let a =max≤i≤nBi···i, from Theorem . and Corollary . in [], assume that

B = aI – CB , A = aI – CA,

where CA, CB are nonnegative tensors.
BecauseA,B ∈ Z and B ≥A, then we can get

CA ≥ CB .

From Lemma . in [], we can get

ρ(CA)≥ ρ(CB).

Therefore,

τ (A) ≤ τ (B).

Thus, we complete the proof. �

Theorem . Let A, B be of order m dimension n, suppose that B is an M-tensor and
|bi···im | ≥ |ai···im | for all i �= · · · �= im.Then, for any eigenvalue λ ofA, there exists i ∈ , . . . ,n
such that |λ – ai···i| ≤ bi···i – τ (B).

Proof We first suppose that B is an M-tensor, τ (B) is an eigenvalue of B with a positive
corresponding eigenvector v. Denote

W = diag(v, . . . , vn),

http://www.journalofinequalitiesandapplications.com/content/2014/1/114
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where vi is the ith component of v. Let

C =A ·W –m

[m–]︷ ︸︸ ︷
W · . . . ·W

and let λ be an eigenvalue of A with x, a corresponding eigenvector, i.e., Axm– = λx[m–].
Then, as in the proof of Theorem . in [], we have

C
(
W–x

)m– = λ
(
W–x

)m–.

By the definition of C , we have ci···i = ai···i, i = , . . . ,n. Applying the first conclusion of
Theorem  of [], we can get

|λ – ci···i| ≤
∑

δii ···im=

|cii···im |

= v–mi

∑
|aii···im |vi · · · vim

≤ v–mi

∑
|bii···im |vi · · · vim

= v–mi

(
bi···ivm– –

∑
i,...,im=

bii···imvi · · · vim
)

= bi···i – τ (B). ()

Thus, we complete the proof. �
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