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ABSTRACT: 

 

This paper presents an original approach to identify oil depots from single high resolution aerial/satellite images in an automated 

manner. The new approach considers the symmetric nature of circular oil depots, and it computes the radial symmetry in a unique 

way. An automated thresholding method to focus on circular regions and a new measure to verify circles are proposed. Experiments 

are performed on six GeoEye-1 test images. Besides, we perform tests on 16 Google Earth images of an industrial test site acquired 

in a time series manner (between the years 1995 and 2012). The results reveal that our approach is capable of detecting circle objects 

in very different/difficult images. We computed an overall performance of 95.8% for the GeoEye-1 dataset. The time series 

investigation reveals that our approach is robust enough to locate oil depots in industrial environments under varying illumination 

and environmental conditions. The overall performance is computed as 89.4% for the Google Earth dataset, and this result secures 

the success of our approach compared to a state-of-the-art approach.   

 

1. INTRODUCTION 

Industrial facilities to store oil and/or petrochemical products 

are described as oil depots. The primary structure of an oil depot 

is the tankage, either above ground or underground, wherein 

such valuable products are stored. One of the key imperatives is 

the safety of industrial facilities. The recent experiences expose 

that these regions are highly vulnerable, especially to natural 

disasters. The latest devastating instance occurred in Sendai, 

Japan caused massive damages to the region once the oil depots 

of the largest refinery in Japan were set ablaze by the 

earthquake. Therefore, risk evaluation of such regions prior to 

natural disasters is crucial, and could be performed with the 

help of remotely sensed images. Aerial/satellite images could be 

useful for locating individual oil tanks, providing information 

about their content (to some extent), virtual modelling the 

environment nearby, etc. This may eventually help services 

responsible for the emergency planning, rescuing operations, 

and protecting individuals in the nearby residential areas. 

 

This paper is devoted to the automated detection of individual 

oil depots visible in a single near-nadir high resolution 

aerial/satellite image. The motivation to use near-nadir image is 

that the projection of the boundary of the top of a vertical 

cylindrical shape formed by an oil depot is close to a circle in 

the image. Therefore, we focus on detecting circles in images 

acquired from industrial facilities containing oil depots. 

 

Many previous studies in this context assume that oil depots are 

bright features, whose foreground is clearly separable from the 

neighbouring background, which eventually simplifies the 

problem. However, these studies do not evaluate their 

approaches for difficult conditions (e.g. complex foreground 

and/or background, occlusion, varying seasonal effects such as 

illumination, shadow, smoke, and snow cover). However, such 

cases are quite common for aerial/satellite images; thus, reduces 

the applicability and generalization of the previously developed 

approaches. 

 

In this paper, we propose a new approach to automatically 

detect circular objects from high resolution satellite images. The 

approach considers the symmetric nature of the circular oil 

depots and allows us to detect them even in difficult conditions. 

The proposed approach alleviates the weaknesses of the fast 

radial symmetry transform (Loy and Zelinski, 2003) with a new 

framework, and involves an automated thresholding method to 

focus on circular regions as well as a new measure to validate 

circles. To show the feasibility of our approach, we use six 

GeoEye-1 (0.5 m GSD) test images. Besides, our dataset consist 

of 16 Google Earth images (0.5 m GSD) of an industrial test site 

acquired in a time series manner (between the years 1995 and 

2012). These Google Earth images are taken from both aerial 

and spaceborne platforms and provide an excellent test domain 

for circle detection in different/difficult environmental and 

illumination settings (Fig. 1).  

 

The remainder of this paper is organized as follows. The 

previous studies are summarized in Section 2. The fast radial 

symmetry transform is summarized in Section 3, and the details 

of the proposed approach are presented in Section 4. Our test 

dataset and evaluation strategy are given in Section 5. The 

results are reported and discussed in Section 6. The concluding 

remarks and future directions are provided in Section 7. 

 

 

 
(a) 

 
(b) 

 
(c) 

Figure 1. Three test images from Google Earth time series 

images of an industrial facility. (a) Panchromatic aerial image 

acquired on 3.29.1995, (b) and (c) satellite images (RGB) 

acquired on 2.1.2004 and 11.3.2012, respectively. 
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2. PREVIOUS STUDIES 

Automated extraction of circular objects from images is an open 

research area of computer vision and remote sensing (Ok, 

2014). Pioneering method in computer vision for detecting 

circular shapes in images is the Standard Circular Hough 

Transform (SCHT) (Duda and Hart, 1972). As stated by their 

method, strong edges in an image space votes for the 

accumulation in parameter space. This accumulation process 

generates peaks in the parameter space, where each peak is 

expected to indicate a circle location. A major disadvantage of 

SCHT is the 3D parameter space (two parameters for the centre 

of the circle and one parameter for the radius) used during the 

accumulation. This is because 3D accumulation requires 

significant storage to handle large images, and also reduces the 

efficiency of the processing. Thus, a number of previous studies 

aimed at reducing the storage/time requirements of the SCHT 

(e.g. Chiu and Liaw, 2005; Guo et al., 2006; Chung et al., 2012; 

Huang et al., 2012). Convolution filters for SCHT and the 

invariance kernels were also proposed as alternative approaches 

for the search performed in the parameter space (e.g. Atherton 

and Kerbyson, 1999; Zelniker and Clarkson, 2006; Rhodes and 

Bai, 2011). Circle detection is not limited to Hough 

transformation. For instance, (Loy and Zelinski, 2003) 

incorporated local radial symmetry to detect circles, whereas 

(Qiao and Ong, 2004) extracted circles by searching meaningful 

arcs in image space. In a different work, (Chauris et al., 2011) 

proposed a circlet transform which is formulated in the Fourier 

domain with specific filters. Neural networks (e.g. D’Orazio et 

al., 2004), genetic algorithm (e.g. Ayala-Ramirez et al., 2006) 

and several other optimization routines (e.g. Cuevas et al., 

2012) were also tested for circle detection. 

 

There are only a small number of studies dealing with oil depot 

detection from high resolution aerial/satellite images. 

(Weisheng et al., 2005) detected storage tanks from SPOT-5 

pansharped images using an improved Hough Transform, and a 

correlation-based template matching. (Li, 2006) tested an 

approach based on segmentation and feature-based 

classification, while (Chen, 2009) employed a circle detection 

algorithm based on shape parameters and a region-growing-

based clustering. (Han et al., 2011) utilized Hough transform to 

detect circles in QuickBird images and a graph-based search is 

developed to eliminate false detections. Soon after, (Han and 

Fu, 2012) proposed a saliency model for the detection of 

circular storage tanks with well-defined boundaries. (Zhu et al., 

2012) developed a coarse-to-fine strategy in which the coarse 

level aimed at finding the image patches with oil tanks, and the 

fine level detected the circular regions. (Kushwaha et al., 2013) 

proposed a supervised strategy to detect bright oil tanks from 

satellite images, where the oil tanks were detected based on the 

analysis of their statistical and textural information. 

 

A major problem of those above approaches is that the test 

images involving the oil depots are mostly selected from well-

contrast areas where the roofs of the tanks are consistently 

bright and the background around the tanks is significantly 

darker. However, this might not be case for many industrial 

facilities, especially if the images are not taken under suitable 

imaging and environmental conditions (Figs. 1b and 1c). In very 

recent works, two studies have taken these issues into 

consideration. In the first study, (Ok, 2014) proposed an 

original approach for the detection of oil depots. In his work, 

shadow information was the key input to detect circular 

structures, and the representative boundaries of the shadow 

areas are used to infer circular regions. However, because the 

approach completely relies on shadow evidence, the proposed 

approach may lose its efficiency when this evidence is not 

visible or complete in image space. In the second study, 

(Zerman et al., 2014) proposed an algorithm to detect oil depots 

from high resolution satellite images. In their work, the circular 

targets were detected using the slightly modified version of the 

fast radial symmetry transform (FRST) (Loy and Zelinski, 

2003), where near-infrared information was used to eliminate 

the false alarms. However, their approach requires many ad-hoc 

thresholds, and Loy and Zelinski’s FRST may fail to detect 

circular structures in aerial/satellite images because of a number 

of reasons (cf. Section 3). 

 

3. FAST RADIAL SYMMETRY TRANSFORM 

For given one or more radii 𝑟 ∈ 𝑅, where R is the set of radii, 

(Loy and Zelinski, 2003) proposed a transform to detect radially 

symmetric features. In the first step, the transformation 

computes the gradient of an image (g), generates an 

accumulated orientation projection image Or(p) and a 

magnitude projection image Mr(p) for each pixel p. The method 

uses two labels (Fig. 2), positively-affected pixel 𝐩+ , and 

negatively-affected pixel 𝐩− , to compute the orientation and 

magnitude images. Thereafter, the orientation and magnitude 

images are combined into a single projection image 𝐹r(𝐩) using 

the following formula: 

𝐹r(𝐩) =
𝑀r(𝐩). |�̃�r(𝐩)|

𝛼

𝑛(𝛼+1)
                           (1) 

where 

�̃�r(𝐩) = {
𝑂r(𝐩)    𝑖𝑓 𝑂r(𝐩) < 𝑛 

𝑛       otherwise
   .               (2) 

 

In Eq. 1, α is the radial strictness parameter which determines 

the level of radial symmetry desired, n is a factor to normalize 

Mr(p) and Or(p) for different input radii. The radial symmetry 

(Sr) at radius r is computed as a convolution, and the final 

transform (S) is the average of the radial symmetry considering 

the set of radii R. 

 

The transform performs well for close range scenes and quite 

efficient to compute. However, the direct implementation of the 

approach for aerial/satellite images considering our task (that is 

the detection of individual oil depots) may not produce 

satisfactory results because of the following reasons: 

 

 The boundary of the top of an oil depot may be composed 

of both positively-affected pixels and negatively-affected 

pixels, depending on the illumination and shadow region 

around the depot. Thus, if that happens, the affected pixels 

may cancel each other or at least reduce the impact of 

orientation and magnitude projection values. 

 It is not easy to set the parameters of the transform for 

different images. The maximum observable radius is large 

(≈ 50 m) for oil depots in high resolution images and 

 

 

Figure 2. Positively-affected pixel 𝐩+, and negatively-affected 

pixel 𝐩−, affected by the gradient element g(p) for a radius of r 

= 2. The circle shows all the pixels that can be affected by the 

gradient at p for a radius r (Loy and Zelinski, 2003). 
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therefore, setting a small subset of radii might not represent 

the whole possible set R of oil depots. The normalization 

factor n must be learned from very large training sets, 

which still might not yield an appropriate single value to 

represent the whole image set. 

 It is not easy to achieve a valid threshold for S to locate the 

centre locations of circles, since an average of radial 

symmetries is computed from a set of Sr images 

considering the set of input radii R.  

 It is not directly possible to define circle radius from S. 

This is because each radial symmetry (Sr) is computed 

using a convolution kernel depending on the radius r, and 

the final symmetry map is produced after combining all Sr. 

Thus, different radii information is also accumulated in S. 

 It is not possible to evaluate the number of pixels at certain 

locations and specific radii which contribute to the 

projection matrices. This is because of the accumulation, 

and such information, if evaluated, could be helpful to 

eliminate false alarms, e.g. a false alarm object with clear 

boundary (large gradient) that contains an arc in a small 

part of its boundary could be identified.  

  

Because of above-stated reasons, the direct implementation of 

the fast radial transform might not produce the desired results 

for aerial/spaceborne datasets. Our approach intends to alleviate 

the weaknesses of FRST defined in this section. In this respect, 

we propose a new strategy (cf. Algorithm 1). 

 

4. PROPOSED APPROACH  

Our approach starts with the computation of the gradient image. 

We utilize the 5-tap coefficients introduced by (Farid and 

Simoncelli, 2004) for better estimation of the magnitude and 

orientation components of the gradient. Next, we normalize the 

orientation component to achieve unit direction vectors, �⃗� . We 

define the range of minimum and maximum radii (rmin ,rmax) 

after taking into account all values of radii of a single oil depot 

can retain, R = {rmin, rmin+1, … , rmax}. At each radius r, first, 

we compute positively-affected pixel 𝐩+ , and negatively-

affected pixel 𝐩−: 

 

𝐩+(𝐩) = 𝐩 + ⌊�⃗� . 𝑟 + 𝐜⌋ 
     (3) 

      𝐩−(𝐩) = 𝐩 − ⌊�⃗� . 𝑟 + 𝐜⌋     , 
 

This will allow us to compute positively- and negatively-

affected orientation and magnitude images: 

  

𝑂r
+(𝐩+(𝐩))

𝑛𝑒𝑤
=  𝑂r

+(𝐩+(𝐩))
𝑜𝑙𝑑

+ 1 

𝑂r
−(𝐩−(𝐩))

𝑛𝑒𝑤
=  𝑂r

−(𝐩−(𝐩))
𝑜𝑙𝑑

− 1 

(4) 

𝑀r
+(𝐩+(𝐩))

𝑛𝑒𝑤
=  𝑀r

+(𝐩+(𝐩))
𝑜𝑙𝑑

+ ‖𝐠(𝐩)‖ 

               𝑀r
−(𝐩−(𝐩))

𝑛𝑒𝑤
= 𝑀r

−(𝐩−(𝐩))
𝑜𝑙𝑑

− ‖𝐠(𝐩)‖     . 

 

In Eq. 4, 𝑂r
+  and 𝑂r

−  denote the positively- and negatively-

affected orientation images, respectively, and 𝑀r
+  and 𝑀r

− 

denote the positively- and negatively-affected magnitude 

images, respectively. Thus, the orientation Or(p) and magnitude 

Mr(p) images (Fig. 3) can be computed as  

 

𝑂r(𝐩) =  𝑂r
+(𝐩) − 𝑂r

−(𝐩) 

(5) 

                              𝑀r(𝐩) =  𝑀r
+(𝐩) − 𝑀r

−(𝐩)    . 

 

Note  that,  subtractions  in  Eq. 5 intensify  the  orientation  and 

Algorithm 1 

Input: A grayscale image 

Output: Set of circles in image space C = 𝐩j = [𝐩𝑐
j
 rj] = [xj yj rj] 

1: compute gradient and direction vectors  

2: for each 𝑟 ∈ 𝑅 do 

3:      find  𝐩+(𝐩) and 𝐩−(𝐩) 

4:      compute 𝑂r
+(𝐩+(𝐩)) and 𝑂r

−(𝐩+(𝐩))  

5:      compute 𝑀r
+(𝐩+(𝐩)) and 𝑀r

−(𝐩+(𝐩)) 

6:      subtract 𝑂r
− from 𝑂r

+to find 𝑂r 

7:      subtract 𝑀r
− from 𝑀r

+to find 𝑀r 

8:      find 𝑂r
𝑚𝑎𝑥 and 𝑀r

𝑚𝑎𝑥 

9:      compute 𝑈r(𝐩) and 𝐹r(𝐩) 
10:    find 𝑆r using a fixed kernel A 

11:    compute 𝜏𝑆𝑟
 

12:    find connected regions bj after thresholding Sr with 𝜏𝑆𝑟
 

13:    for each bj do 

14:        get maximum of 𝑈r(𝐩
j) and store as 𝑈𝑟

𝑚𝑎𝑥(𝐩j) 

15:        find circle centre 𝐩𝑐
j
 of bj 

16:        search for 𝐩+(𝐩) and 𝐩−(𝐩) of 𝐩𝑐
j
 and its 8 neighbours 

17:        compute support ratio ρj of 𝐩j 

18:        if ρj ≥ ρmin then 

19:             get previous candidates 𝐩k found for 𝐩j     

20:             if 𝑈𝑟
𝑚𝑎𝑥(𝐩j) > 𝑈𝑟

𝑚𝑎𝑥(𝐩k) then 

21:                   𝐩j ∈ 𝐂 

22.                   𝐩k ∉ 𝐂 
23:             end if 

24:        end if 

25:    end for 
26: end for 

 

   
(a) (b) (c) 

Figure 3. (a) GeoEye-1 test image, (b) orientation Or and (c) 

magnitude Mr images (r = 45 pixels). Note that the images are 

enhanced for better visualization. 

 

magnitude images. Thereafter, we compute the projection image 

𝑈r(𝐩) and its normalized form 𝐹r(𝐩) using 

 

𝑈r(𝐩) = 𝑀r(𝐩). 𝑂r(𝐩)𝛼 

(6) 

𝐹r(𝐩) =
𝑈r(𝐩)

𝑀r
𝑚𝑎𝑥. (𝑂r

𝑚𝑎𝑥)𝛼
 

 

where 𝑀r
𝑚𝑎𝑥  and 𝑂r

𝑚𝑎𝑥  denote the maximum values in the 

magnitude and orientation projection images, respectively. 

Finally we compute 𝑆r (Fig. 4) using a convolution (*) 

 

𝑆r = 𝐹r ∗ 𝐴  ,                  (7) 

 

where A is a Gaussian kernel with a fixed σ. Once we compute 

the radial symmetry image Sr at a certain radius r, we expect to 

achieve higher pixel values around certain locations which 

probably indicate circle centres (Fig. 4b and 4c). Thus, to focus 

on these high valued regions, we propose to use an automated 

thresholding of Sr with the following rule: 

  

𝜏𝑆𝑟
= 10(𝛼−2).𝓂(𝑆𝑟)    ,                        (8) 

 

where 𝜏𝑆𝑟
is the computed threshold value, 𝓂(. )  denotes the 

median operator, and α ≥ 2. In this way, we compute the interest 

regions after thresholding the radial symmetry image (Sr > 𝜏𝑆𝑟
) 

and finding the connected regions (bj) in the resulting binary  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4. (a) GeoEye-1 test image, 𝑆r image for (b) r = 45 

pixels and (c) r = 90 pixels. Interest regions of (b) and (c) are 

shown in (d) and (e), respectively and (f) final result of the 

approach. Note that the Sr images are enhanced for better 

visualization. 

 

image using a connectivity of 8 neighbouring pixels (Fig. 4d 

and 4e).  

 

The pixels belonging to a connected component (𝐩j) involve a 

notable accumulation of symmetry which might correspond to 

centre location (𝐩𝑐
j

) of a candidate circular object in image 

space. The maximum affected pixel of each connected 

component must denote the corresponding centre location of the 

circle. Thus, we search for the maximum of 𝑈r(𝐩
j) and label 

that pixel as centre of a candidate circle (𝐩𝑐
j
: 𝑈𝑟

𝑚𝑎𝑥(𝐩j)). To 

understand whether the accumulation arises from a certain 

amount of pixels around the radius r of the circle centre 𝐩𝑐
j
, we 

compute the reverse of positively- and negatively-affected 

orientation images. To do that, we check and label all pixels 

which indicate pixel 𝐩𝑐
j
 and its 8 neighbouring pixels to form 

the orientation image. Thus, we are able to trace all pixels 

supporting the candidate circle. As expected, these supporting 

pixels (𝐩𝑠
j
) must be around the boundary of the candidate circle; 

thus, a new measure, support ratio (ρj), can be computed. First 

we find the ideal boundary pixels (𝐩𝑖𝑏
j

) of the candidate circle 

estimated from [𝐩𝑐
j
, 𝑟], and include its 8-neighbours to form a 

search region 𝓈(𝐩𝑖𝑏
j

) . Thus, the support ratio (ρj) can be 

computed as 

 

𝜌𝑗 =
|𝓈(𝐩𝑆

j
)|

|𝓈(𝐩𝑖𝑏
j

)|
   ,          (9) 

 

where |𝓈(𝐩𝑆
j
)|  and |𝓈(𝐩𝑖𝑏

j
)|  denote the number of supporting 

pixels in the search region and cardinality of the search region, 

respectively. If the candidate circle belongs to a circular object 

in image, we expect to have relatively large support ratio (ρj ≥ 

ρmin). Otherwise, the candidate circle is not verified. 

 

As a final step, a very important issue is to check whether a 

circle belonging to an oil depot is previously detected in any 

part of the pixels of the candidate circle. This test is not trivial, 

because some roofs of the oil depots may contain concentric 

evidences, and a number of radii may point to a single centre 

location. For that purpose, we collect all previous candidates 

(𝐩k) (if exist) and check whether the current candidate (𝐩j) has 

the highest projection value 𝑈r(𝐩) (Eq. 6). Note that this check 

must be performed without any normalization because 

normalized projection image (𝐹r(𝐩) ) takes into account the 

maximum values (𝑀r
𝑚𝑎𝑥 and 𝑂r

𝑚𝑎𝑥) considering the projection 

images; thus, it does not allow us a direct comparison between 

𝐩j  and 𝐩k . Therefore, we use the projection image 𝑈r(𝐩) and 

apply the test 𝑈𝑟
𝑚𝑎𝑥(𝐩j) > 𝑈𝑟

𝑚𝑎𝑥(𝐩k). If this test is passed, we 

verify 𝐩j  as a candidate circle in image space (𝐩j ∈ 𝐂 ) and 

remove the other candidate circles (𝐩k ∉ 𝐂) belonging to that 

region, where C indicates the set of circles in image space. The 

processing loop continues until the last radius (rmax) is 

processed in R. Thus, after that step, all circle candidates 

remaining in set C are accepted as circular objects (Fig. 4f). 

 

5. DATASET, EVALUATION, AND PARAMETERS 

We selected 6 GeoEye-1 test images (0.5 m GSD) to assess the 

performance of our approach (Fig. 5). Besides, our dataset 

further involve 16 Google Earth images (RGB) of a part of an 

industrial facility (Latitude: 40.632811°, Longitude: -

74.228924°) collected in a time series manner (between the 

years 1995 and 2012) (Fig. 6). These Google Earth images are 

taken from both aerial and spaceborne platforms with varying 

ground sampling distance (GSD). In this study, GSD of all 16 

images is compiled as 0.5 m for numerical assessment, 

regardless of their original GSD. Besides, Google Earth images 

compiled with different GSD were also evaluated to investigate 

the robustness of our approach for scale variations. 

 

The reference images of each image were prepared manually by 

a qualified human operator. In our case, a pixel-based 

assessment is not representative, because correct detection of 

relatively large oil depots in a scene always leads to superior 

pixel-based measures. Therefore, we prefer an object-based 

assessment which consists of two stages: (i) finding the one-to-

one matches between the reference circle objects and the circle 

objects in the output, and (ii) evaluating the performance of the 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 5. GeoEye-1 dataset, test images #1-#6 are shown in  

(a)-(d), respectively. 
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Test Image #1 - Date : 3.29.1995 - Aerial Platform 

   
Test Image #2 - Date : 01.01.2002 - Aerial Platform 

   
Test Image #3 - Date : 2.1.2004 - Satellite Platform 

   
Test Image #4 - Date : 4.21.2005 - Satellite Platform 

   
Test Image #5 - Date : 7.16.2006 - Aerial Platform 

   
Test Image #6 - Date : 11.3.2006 - Satellite Platform 

   
Test Image #7 - Date : 06.05.2006 - Aerial Platform 

   
Test Image #8 - Date : 5.29.2008 - Aerial Platform 

 

Figure 6. (first column) Google Earth test images (0.5 m GSD, 

#1-8), (second column) results of the approach presented in 

(Atherton and Kerbyson, 1999), and (third column) results of 

the proposed approach. Green, red and blue colours represent 

TP, FP and FN pixels, respectively. 

   
Test Image #9 - Date : 3.18.2009 - Satellite Platform 

   
Test Image #10 - Date : 5.4.2009 - Aerial Platform 

   
Test Image #11 - Date : 6.18.2010 - Unknown Platform 

   
Test Image #12 - Date : 01.01.2010 - Aerial Platform 

   
Test Image #13 - Date : 5.27.2011 - Aerial Platform 

   
Test Image #14 - Date : 11.2.2012 - Satellite Platform 

   
Test Image #15 - Date : 11.3.2012 - Satellite Platform 

   
Test Image #16 - Date : 11.6.2012 - Unknown Platform 

 

Figure 6. (Continued.) (first column) Google Earth test images 

(0.5 m GSD, #9-16), (second column) results of the approach 

presented in (Atherton and Kerbyson, 1999), and (third column) 

results of the proposed approach. Green, red and blue colours 

represent TP, FP and FN pixels, respectively. 
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approach using the matches established. We assign one-to-one 

matches in a way that the difference between the centre 

positions of the objects in the reference and the output is 

minimized. Once all one-to-one matches are established, we 

follow the well-known three measures (Precision, Recall, and 

𝐹1 -score) to evaluate the object-based performance of the 

proposed approach (Ok, 2014): 

 

  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|𝑇𝑃|

|𝑇𝑃|+|𝐹𝑃|
   (10) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
|𝑇𝑃|

|𝑇𝑃|+|𝐹𝑁|
                (11) 

 

𝐹1 =
2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 . (12) 

 

In Eqs. 10 - 12, TP denotes an output object that takes a part in 

the final matching list established through one-to-one mapping, 

FP indicates an object found by the proposed approach but does 

not participate in any matches, FN implies a reference object 

that does not involve in the matches, and the operator | . | is the 

set cardinality. In Eq. 12, the F1-score can be used to evaluate 

the overall object-based performance. 

 

One-to-one matches between the objects in the reference and 

the output can also be used to assess the quality of the detected 

circles in terms of their parameters. To do that, we compute the 

Euclidean distance between the centre pixels of each final 

match together with the Euclidean differences of their radii, and 

that information is used to compute the root mean square 

(RMS) distances between the reference and output circle 

objects. 

 

The implementation and processing was performed in 

MATLAB. All experiments were performed on a computer with 

an Intel i7 processor with 2.40 GHz and 16 GB RAM. Our 

approach contains four parameters (Table 1). The experiments 

show that a single parameter set is sufficient to properly handle 

very different datasets, and therefore, we fix each parameter to a 

constant. We set the minimum radius to a value where the 

accumulation starts producing reliable results for circle 

detection (that is rmin = 3 pixels), and the maximum radius to the 

largest observable radius for oil depots (that is rmax = 100 

pixels). We fix the radial strictness parameter α to 4 because we 

observed that setting provided the best balance between 

precision and recall. We preferred isotropic filtering presented 

by (Geusebroek et al., 2003) to efficiently compute the 

Gaussian smoothing, where we set σ = 4. Finally, we fixed the 

support ratio, ρmin = 0.4, by which we seek at least 40% 

supporting evidence around the circle boundary. 

 
Parameter Value 

range of radii set (rmin - rmax) 3 - 100 pixels 

radial strictness (α) 4 

standard deviation (σ) 4 

support ratio (ρ) 40% 
 

Table 1. Parameters of the proposed approach 

 

6. RESULTS AND DISCUSSION 

We visualize the detection results of GeoEye-1 test images in 

Fig. 7. These results demonstrate that our approach can provide 

remarkable results for the detection of oil depots. Our results are 

quite good and representative, and almost all oil depots are very 

well detected despite their complex characteristics, e.g. roof 

colour, texture, and size. The numerical results in Table 2 

favour these facts. We achieved overall precision and recall as 

97.3% and 94.4%, respectively. The computed F1-score for 

these six test images is around 96%. We computed RMS of 

circle centre differences of reference and output images between 

0.65 and 1.6 pixels with an overall centre RMS of 1.11 pixels 

(Table 2). Besides, the RMS of radius distances are almost 

better for each test image, leading to a total radius RMS value 

of ≈ 0.9 pixel. 

 

The results of Google Earth time series investigation are shown 

in Fig. 6, and all related numerical results are presented in Table 

3. The outcomes in Fig. 6 show how our approach can provide a 

useful output for the identification of oil depots even in very 

different/difficult illumination and acquisition conditions. The 

proposed approach has distinct capability to focus oil depots 

that are characterized by severe environmental conditions, e.g. 

snow cover (#3) and smoke (#14-15). In addition, note that our 

approach is not sensitive to the type of platform 

(aerial/spaceborne) used (as long as the images are collected 

from a near-nadir viewing angle). According to the numerical 

results in Table 3, we achieved overall precision and recall as 

94.7% and 84.6%, respectively. The computed F1-score for 

these 16 test images is 89.4%. However, we also state that some 

of the F1 quality measures are relatively low (≈ 80%, e.g. #1, 

#5, #7, #8, and #15). This is mainly because of small sized oil 

depots whose boundaries are missed by the proposed approach. 

Overall RMS of centre differences of reference and output 

circle objects is nearly 5 pixels (Table 3). Such poor result, of 

course, mostly due to three images, #12, #14 and #15 whose 

centre RMS values are computed above 7 pixels. If we 

investigate the results of these images from Fig. 6, the problem 

is apparent: for a number of oil depots (one depot in #12, five 

depots in #14, and one depot in #15), the exact positions of 

rooftops could not be found. For images #14-15, this is related 

 

  
(a) (b) 

  

(c) (d) 

  
(e) (f) 

Figure 7. The results of GeoEye-1 test dataset (#1 - #6) 

presented in Fig. 4. Green, red and blue colours represent TP, 

FP and FN pixels, respectively. 
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ID 
Object-based (%) RMS (pixels) 

Precision Recall F1-score Centre Radius 

#1 92.0 100 95.8 1.60 0.97 

#2 100 88.0 93.6 0.87 0.69 

#3 98.9 91.8 95.2 1.18 0.87 

#4 93.9 96.9 95.4 1.18 1.13 

#5 100 95.8 97.8 0.65 0.72 

#6 89.5 100 94.4 1.46 1.06 

All 97.3 94.4 95.8 1.11 0.88 
 

Table 2. Performance results of GeoEye-1 test images. 

 

ID 

Object-based (%) RMS (pixels) 

Precision - Recall - F1-score Centre - Radius 

(Atherton 

and 

Kerbyson, 

1999) 

Proposed 

Approach 

(Atherton 

and 

Kerbyson, 

1999) 

Proposed 

Approach 

#1 85.0 - 70.8 - 77.3 72.4 - 87.5 - 79.2 6.02-5.53 1.85-1.84 

#2 100 - 66.7 - 80.0 95.7 - 91.7 - 93.6 8.66-7.96 2.73-1.08 

#3 76.9 - 40.0 - 52.6 100 - 80.0 - 88.9 3.93-3.68 1.31-1.28 

#4 100 - 75.0 - 85.7 100 - 100 - 100 5.31-5.43 1.60-1.19 

#5 100 - 72.0 - 83.7 87.0 - 80.0 - 83.3 4.84-5.29 3.03-1.98 

#6 100 - 66.7 - 80.0 100 - 95.8 - 97.9 4.83-5.44 1.75-1.35 

#7 94.7 - 72.0 - 81.8 100 - 72.0 - 83.7 5.98-4.08 2.90-2.36 

#8 67.7 - 84.0 - 75.0 90.0 - 72.0 - 80.0 9.12-6.13 3.73-2.82 

#9 100 - 28.0 - 43.8 100 - 92.0 - 95.8 16.9-18.1 1.09-0.98 

#10 95.6 - 88.0 - 91.7 100 - 76.0 - 86.4 3.46-3.38 3.07-1.32 

#11 100 - 70.8 - 82.9 100 - 91.7 - 95.7 2.58-4.59 2.54-1.61 

#12 95.2 - 83.3 - 88.9 95.0 - 79.2 - 86.4 6.97-6.64 7.07-1.28 

#13 74.1 - 83.3 - 78.4 100 - 87.5 - 93.3 9.75-8.01 2.23-1.58 

#14 100 - 16.0 - 27.6 95.5 - 84.0 - 89.4 17.21-14.77 14.65-1.54 

#15 100 - 6.3 - 11.8 84.6 - 68.8 - 75.9 0.64-0.58 7.21-3.12 

#16 100 - 45.8 - 62.9 100 - 91.7 - 95.7 5.32-6.80 2.30-1.39 

All  90.1 - 61.6 - 73.2 94.7 - 84.6 - 89.4 7.38 - 6.87 4.84-1.68 
 

Table 3. Performance results of Google Earth test images. 

 

to smoke over the depots during image acquisition, which 

significantly weakens the gradient magnitude around the roof 

boundary of the depot. For image #12, we observe blurred 

boundaries (probably because of relatively low GSD in original 

image), where the gradient magnitude of a shadow boundary 

around the depot produced a stronger radial symmetry than the 

rooftop boundary. This, of course, is also one of the main 

reasons of false positive objects shown in several images 

(upper-left of images #2, #8, and #12). Despite these problems, 

we believe that centre locations of rooftops are achieved close 

to their reference positions in most of the test images. The RMS 

results are much better for radius parameter, with an overall 

performance of ≈ 1.7 pixels. As one can easily predict, test 

image #15 is the worst case (3.12 pixels) yet again because of 

heavy smoke visible over the oil depots. 

 

Figs. 8 and 9 show the robustness of our approach to scale 

variations. As seen in those figures, our detection performance 

slightly drops when the images are compiled with relatively 

coarse GSD. This is because of two reasons: (i) it is not possible 

to detect small-sized depots with a coarser GSD (e.g. 2 m), and 

(ii) the orientation of the gradient computed from a coarse 

resolution image is not as accurate as the orientation component 

generated from a high resolution image. However, we believe 

that more tests on this topic are necessary to expose a strong 

conclusion. 

 

Our approach successfully alleviates the weaknesses of FRST 

summarized in Section 3. In the proposed approach, positively-

affected and negatively-affected pixels support each other to 

achieve improved orientation and magnitude images. Besides, 

all parameters of the approach can be fixed for different  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 8. Effect of different image scales: Google Earth test 

image #9 compiled at (a) 0.5 m, (b) 1 m, and (c) 2 m GSD, and 

the results are shown in images (d), (e), and (f), respectively. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 9. Effect of different image scales: Google Earth test 

image #13 compiled at (a) 0.5 m, (b) 1 m, and (c) 2 m GSD, and 

the results are shown in images (d), (e), and (f), respectively. 

 

datasets. In addition, the new approach offers an automated way 

to focus centre locations and radii of circular structures. Finally, 

a new efficient test is employed to remove false alarms. 

 

We compare our results with the approach presented in 

(Atherton and Kerbyson, 1999). Comparative assessments in 

Fig. 6 and Table 3 prove that the results provided by the 

proposed approach are more reliable and robust. The processing 

times required by the proposed approach are provided in Table 

4. According to the computational times computed, it is possible 

to detect circular depots from images with sizes 1500x1500 

pixels approximately in one minute with our approach. 

 
ID Image Size (pixels) Comp. time (sec.) 

#1 1484 x 1565 62.1 

#2 997 x 975 18.1 

#3 1675 x 1319 64.9 

#4 1528 x 963 38.2 

#5 1100 x 731 17.5 

#6 1385 x 1361 32.6 
 

Table 4. Computational time required by the proposed approach 

for GeoEye-1 test images. 

   

7. CONCLUSIONS AND FUTURE WORK 

In this paper, a new approach is presented to automatically 

detect circles belonging to oil depots in industrial environments 

from a single satellite image. Assessments performed on six 
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GeoEye-1 test images and 16 Google Earth time series images 

reveal that our approach is capable of detecting circles in very 

different/difficult images. The time series investigation reveals 

that our approach is robust enough to monitor oil depots in 

industrial environments under varying illumination and 

environmental conditions.  

 

In the future, we will focus more to develop an automated 

validation strategy for the detected circles to understand 

whether they belong to a depot rooftop or not. In this respect, it 

might be useful to integrate the shadow evidence (Ok, 2014) or 

the evidence of statistical and structural characteristics of oil 

depots to discover their compound structures (Akcay and 

Aksoy, 2011). Besides, a different interesting tasks is to 

separate oil depots based on their types (e.g. flat roof or sphere 

etc.) and try to understand (to some extent) whether the depot is 

full or not; therefore, we plan to expand our studies in these 

research directions. Finally, our approach can be extended to 

ellipses (Ni et al., 2012), and it might also be possible to process 

oblique images. 
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