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ABSTRACT: 
 
This paper proposes a method for extracting groups of straight lines that represent roof boundaries and roof ridgelines from high-
resolution aerial images using corresponding Airborne Laser Scanner (ALS) roof polyhedrons as initial approximations. The 
proposed method is based on two main steps. First, straight lines that are candidates to represent roof ridgelines and roof boundaries 
of a building are extracted from the aerial image. Second, a group of straight lines that represent roof boundaries and roof ridgelines 
of a selected building is obtained through the optimization of a Markov Random Field (MRF)-based energy function using the 
genetic algorithm optimization method. The formulation of this energy function considers several attributes, such as the proximity of 
the extracted straight lines to the corresponding projected ALS-derived roof polyhedron and the rectangularity (extracted straight 
lines that intersect at nearly 90o). Experimental results are presented and discussed in this paper. 
 
 
 

1. INTRODUCTION 

Building extraction methods are important in the context of 
capturing and updating spatial data for applications that involve 
urban areas. For example, accurate and reliable building roof 
boundaries are useful in applications that involve real estate, 
large-scale mapping, and risk management. However, 
automated building roof extraction has remained a challenging 
task, mainly due to the varying building roof configurations, the 
varying neighborhood contexts, and noise in the input data.  
 
Gilani et al. (2015) presented a commonly used criterion for 
classifying building extraction methods that is based on the 
input data, such as methods that use ALS data, image data, and 
combinations of ALS and image data. Image-based building 
extraction methods exploit two-dimensional information that is 
derived from a single image or three-dimensional information 
that is derived from stereoscopic images. Examples of these 
methods are found in Fua and Hanson (1987), Müller and Zaum 
(2005), Akçay and Aksoy (2008), Ferraioli (2010), and 
Sırmaçek and Ünsalan (2011).  
 
ALS-based methods usually exploit the advantage of directly 
using the height discontinuity to detect building points. Methods 
for building detection or extraction from ALS data can be 
grouped into the following categories: building detection 
(Matikainen et al., 2003; Tóvari and Vögtle, 2004; Tarsha-
Kurdi et al., 2006), building roof contour extraction (Sampath 
and Shan, 2007; Wei, 2008; Perera et. al 2012), building roof 
extraction (Rottensteiner et al., 2005; Sampath and Shan, 2010), 
and building model extraction (Henn et al., 2013).  
 
Methods that are based on the combination of photogrammetric 
and ALS data seek to take advantage of the synergy between 
both data sources. ALS data are superior in terms of height 
accuracy, and image data are superior in terms of boundary 
definition. Many methods of this category are found in the 
literature, as e.g. in Haala and Brenner (1999), Sohn and 

Dowman (2003), Jaw and Cheng et al. (2008), Kim and Habib 
(2009), Chen and Zhao (2012), Awrangjeb et al. (2013), and 
Gilani et al. (2015). 
 
This paper proposes a method for extracting groups of straight 
lines that represent roof boundaries and roof ridgelines from 
high-resolution aerial images using corresponding ALS-derived 
roof polyhedrons as initial approximations. The remainder of 
this paper is organized as follows. Section 2 describes the 
proposed method, the results are presented and discussed in 
Section 3, and Section 4 presents the main conclusions. 

2. PROPOSED METHOD FOR EXTRACTION OF 
STRAIGHT LINE GROUPS 

The proposed method is based on two main steps. First, straight 
lines that are candidates to represent roof ridgelines and roof 
boundaries of a building are extracted from the aerial image. A 
group of straight lines that represent roof boundaries and 
ridgelines of a selected building is then obtained through the 
optimization of a Markov Random Field (MRF)-based energy 
function using the genetic algorithm optimization method. 
 
2.1 Extraction of straight lines 

The input data include ALS-derived roof polyhedrons and an 
aerial image (along with orientation parameters). The first step 
consists of transforming the vertices of a roof polyhedron into 
the image space. Mathematically, this requires standard 
photogrammetric treatments using the camera model. Bounding 
boxes are then generated around the projected straight lines, 
which are defined by two adjacent projected roof polyhedron 
vertices. 
 
The next step consists of applying the Canny edge detector 
(Canny, 1986) and the Steger line detector (Steger, 1996) within 
each bounding box followed by an edge-linking algorithm (Jain 
et. al, 1995) and the Douglas-Peucker polygonization algorithm 
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(Douglas and Peucker, 1973). The application of the Canny and 
Steger detectors within the bounding boxes instead of applying 
them to the entire image is intended to avoid the extraction of 
straight lines that have no chance of representing a boundary or 
ridgeline of a roof. The rationality of combining both detectors 
is that roof boundaries and ridgelines in very-high-resolution 
aerial images exhibit different image profiles. Most roof 
boundaries have step-edge profiles, while most roof ridgelines 
have linear profiles. This means that the Canny edge detector 
usually detects only one edge per roof boundary and two near 
and parallel edges per roof ridgeline. Conversely, the Steger 
detector usually detects only one line per roof ridgeline. 
Moreover, ridgelines that are detected by the Steger detector 
approximately coincide with the axes of symmetry of the 
corresponding double edges that are detected by the Canny 
detector. 
 
As a result, the following basic algorithm for extracting straight 
lines that represent roof boundaries and ridgelines with a 
minimum number of false positives is proposed: 1) apply the 
Canny and Steger detectors within all of the bounding boxes; 2) 
organize the edge points into straight lines using the edge-
linking and Douglas-Peucker algorithms; and 3) check the pairs 
of Canny-derived straight lines for parallelism and proximity 
and eliminate the pairs that match this criterion and that have a 
Steger-derived straight line between them. 
 
This algorithm allows for the extraction of n sets of straight 
lines, each of which is a candidate to represent a roof boundary 
or ridgeline. 
 
2.2 Identification of roof lines using a MRF-based grouping 
method 

The MRF model has the advantage of characterizing the 
contextual knowledge by modeling the spatial relationships 
between the primitives (e.g., segments of lines, contours) that 
represent real world objects. 
 
Let X= {X1, X2, …, Xn} be a family of random variables that are 
defined over the set of n primitives R= {R1, R2, ..., Rn}, where 
each Xi corresponds to Ri. According to the Hammersley–
Clifford theorem (Kopparapu and Desai, 2001), an MRF can 
also be characterized by a Gibbs distribution, i.e., 
 

                     
)(exp1][ xU

Z
xXP −==  (1) 

 
Where: x is a realization of X; Z is a normalization constant; and 
U(x) is the Gibbs energy function. 
 
The straight lines that are extracted from the image around the 
edges of the projected roof polyhedron are used to build a MRF 
model that expresses specific forms of building roofs with 
reference to the projected roof polyhedron. The energy function 
is defined so that each straight line is associated with a random 
variable (xi), which takes binary values according to the 
following rule, 
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This rule (Equation 2) results in an n-dimensional random 
vector, where n is the number of straight lines. This random 
vector is the unknown that is determined with an optimization 
process. 
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Figure 1. Geometric elements for defining the relative length, 
proximity, and orientation energy terms 
 
Figure 1 shows a hypothetical example of a building roof that is 
projected onto the image space. The projected straight lines are 
f1, …, fn. We assume that nk straight lines were extracted around 
the projected straight line fk. Figure 1 shows only the ith straight 
line (Fi) that was extracted from the fk bounding box and the jth 
straight line (Fj) that was extracted from the fk+2 bounding box. 
We say that the projected straight line fk (or fk+2) is the nearest 
line to the extracted straight line Fi (or Fj). These elements, and 
others that are explained just below, are sufficient to understand 
the formulations of the relative length, proximity, and 
orientation energy terms. 
 
The energy function U(x) is composed of five energy terms: 
1) The first term (Equation 3) favors long straight lines with 

reference to the nearest projected straight line. It is called 
the relative length energy term. 

 

                                U1 (x ) = xi
L fk

LFi
i=1

n
∑  (3) 

 
 Where: L!!  is the length of the projected straight line (fk) 

that is nearest the ith straight line that was extracted from 
the image (Fi); and L!!  

is the length of the extracted straight 
line (Fi). 

 
2) The second term of the energy function (Equation 4) is 

called the proximity term and is defined for two extracted 
straight lines (e.g., Fi and Fj) that are in the neighborhood of 
two different projected straight lines (fk and fk+2 considering 
Fi and Fj, respectively). This term favors a pair of straight 
lines that is closer to the projected straight lines. 

 

                         ∑ ∑=
= ∈

n

i iNjj
ji jiPxxxU

1 |
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Where: 𝑃 𝑖, 𝑗 = 0.5(𝑑!! +  𝑑!! +  𝑑!! +  𝑑!!); 𝑑!! and 𝑑!! are 
the distances between the endpoints of the extracted straight 
line Fi and the nearest projected straight line (fk); 𝑑!! and 𝑑!! 
are the distances between the endpoints of the extracted 
straight line Fj and the nearest projected straight line (fk+2); 
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and Ni is the set of straight lines that is in the neighborhood 
of the extracted straight line Fj. 

 
3) The third term is called the orientation term (Equation 5) 

and favors a pair of extracted straight lines (e.g., Fi and Fj) 
with similar orientations to the nearest projected straight 
lines (fk and fk+2 considering Fi and Fj, respectively). 
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n
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 Where: 𝑠! = 2/ 1 + exp [-𝛽(𝜃 − 𝜃!)!] -1;  𝜃 =  𝜃! + 𝜃!;    

𝜃! is the angle between the extracted straight line Fi and the 
nearest projected straight (fk); 𝜃! is the angle between the 
extracted straight line Fj and the nearest projected straight 
line (fk+2); 𝛽 is a positive constant; and 𝜃! is the optimal 
value (0° or 180°) of the parameter 𝜃. 

 
4) The fourth term is called the rectangularity term and favors 

configurations of extracted straight lines that intersect at 
approximately right angles. This occurs with rectilinear roof 
boundaries. This property is usually not valid for straight 
lines that represent roof ridgelines. The rectangularity term 
is as follows, 
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n
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 Where: 𝛼!" is the angle between the extracted straight lines 

Fi and Fj, each of which neighbors two adjacent projected 
straight lines. 

 
5) The fifth term is called the corner term and should favor 

extracted straight lines that intersect near a corner in the 
image where two roof edges intersect each other at 
approximately a right angle. This principle can be 
mathematically represented as 

 

             =1 |
( ) = . . . ( )λ5
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Where: Dij is the Euclidian distance between the 
intersection point of two extracted straight lines (Fi and Fj) 
that neighbor two adjacent projected straight lines and the 
nearest corner (qij) detected in the image; and λ!" is the angle 
between the edges that define the corner qij. 

 
It is worth noting that the fourth and fifth energy terms should 
only be applied for straight-line candidates to represent roof 
boundaries. Roof ridgelines usually do not intersect at right 
angles. Finally, the energy equation is formulated as follows, 
 

U(x)= k1U1(x) + … + k5U5(x)                            (8) 
 
Where: k1, …, k5 are positive constants, with k1 + … + k5= 1. 
 
The optimal configuration x is obtained by minimizing the 
energy function U(x); i.e., x= argmin(U(x)). We employed the 
Genetic Algorithm (GA). 
 
GAs are based on evolutionary ideas of natural selection. They 
exploit a random search to solve optimization problems. The 
search space comprises a population of individuals 

(chromosomes) that represent possible solutions to a problem. A 
random vector of components represents each individual. 
Usually, each component is coded to a binary value (i.e., 0 or 
1). After randomly selecting an initial population, the algorithm 
proceeds by employing the following three operators: 1) 
selection, which equates to survival of the fittest; 2) crossover, 
which represents the coupling between individuals; and 3) 
mutation, which introduces random modifications. The GA 
optimization converges when the fittest individual is good 
enough according to a fitness measurement. For more details, 
please refer to the relevant literature, such as Goldberg (1989).  
 

3. EXPERIMENTAL RESULTS 

The data set that was used in our experiments includes ALS-
derived polyhedrons that represent building roofs, which were 
extracted from an ALS point cloud with a density of 
approximately 2 points/m2, and 20-cm digital aerial images 
along with interior and exterior orientation parameters. 
 
The following parameters and thresholds were used: constant 
that controls the shape of the sigmoid function: 𝛽= 20; weights 
that control the relative importance of the energy terms of the 
energy function: k2= 0.1; k4= 0.3; k1= k3= k5= 0.2. 
 

  
(a) (b) 

 
(c) 

Figure 2. Test 1. (a) Projected ALS-derived roof polyhedron; 
(b) straight lines extracted from the image; and (c) group of 
straight lines obtained by the GA optimization 

 
Figure 2 shows a building roof that is defined by four sides and 
five ridgelines. Figure 2(a) shows the projected ALS-derived 
roof polyhedron overlaid on the image. Note that the projected 
straight lines 3, 4, and 8 coarsely match the corresponding roof 
boundaries or roof ridgelines. Moreover, registration errors are 
visible along the other roof boundaries and ridgelines. Figure 
2(b) shows nineteen straight lines that were extracted using the 
pre-processing techniques that were proposed in Subsection 2.1. 
They are candidates to represent roof boundaries and roof 
ridgelines. Roof ridgelines 6 and 8 each have only one 
candidate, roof boundaries 1, 2, and 4 each have two candidates, 
roof boundary 3 and roof ridgelines 5 and 9 each have three 
candidates, and ridgeline 7 has two candidates. Moreover, roof 
boundaries 1, 2, and 3 have candidates that belong to the ground 
or to a neighboring building’s roof. The larger the registration 
error, the larger the area within the bounding box and, as a 
result, the higher the probability of extracting straight lines from 
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adjacent objects. Figure 2(c) shows the result of the 
optimization process. Although most of the candidate sets 
involve two or more nearly parallel straight lines, the 
optimization process was able to find all of the correct 
correspondences. Moreover, roof boundaries 1 and 2 have 
candidate straight lines that belong to a neighboring building. In 
all of these cases, the correct candidates are the longest ones and 
are also nearer to the corresponding projected straight lines, 
which favors the minimization of the relative length and 
proximity energy terms. The extraction of the correct corner 
also helps in the global minimization of the energy function. For 
example, the two corrected candidate straight lines that were 
extracted from around projected straight lines 2 and 3 have the 
highest probability of intercepting near a right-angle roof 
corner; in this example, this is the image corner that is defined 
by roof edges 2 and 3. 
 

  
(a) (b) 

 
(c) 

Figure 3. Test 2. (a) Projected roof; (b) extracted lines of the 
image; and (c) results of the energy function optimization 
 
Figure 3 shows the second test building. Figure 3(a) shows the 
projected ALS-derived roof polyhedron superposed on the 
image. It is worth noting that a large registration error is clearly 
observed because the projected ALS-derived roof polyhedron is 
displaced to the right. Eighteen straight lines were extracted 
around the roof boundaries and ridgelines (Figure 3(b)). As in 
the previous example, the pre-processing step retains few 
candidates that represent every roof boundary and ridgeline. All 
of the boundaries have two candidates, four ridgelines have one 
or two candidates, and one ridgeline has four candidates. 
However, few straight lines are extracted from adjacent objects 
due to the large registration error. Figure 3(c) shows the result 
of optimizing the MRF-based energy function using the GA. 
The method correctly matches the candidate straight lines to the 
corresponding projected ALS-derived straight lines; in other 
words, no false negatives or positives occur in this example. 
 

4. CONCLUSIONS AND FUTURE WORK 

This paper proposes a method for extracting groups of straight 
lines that represent roof boundaries and roof ridgelines from 
high-resolution aerial images using corresponding ALS-derived 
roof polyhedrons as initial approximations. First, a strategy for 
extracting straight lines around roof boundaries and ridgelines 

was presented. The best group of straight lines that represent 
roof boundaries and ridgelines were then identified using the 
GA optimization method. 
 
To preliminarily demonstrate the performance of the proposed 
method, two experiments were presented, and their results were 
analyzed. These experiments were performed with two 
relatively simple hip roofs. The main difficulty of these 
examples is the relatively greater registration errors because it 
results in a higher chance of extracting candidates that belong to 
neighboring objects. Additionally, the worse the image 
orientation parameters, the poorer the projected ALS-based roof 
polyhedron, which will provide a weak reference for 
establishing the MRF building model. The examples showed 
that the proposed method can identify straight-line segments 
that represent roof features even when the registration error is 
large. All of the correspondences were correctly found for both 
test buildings. 
 
Future work includes the use of straight lines that represent roof 
boundary sides, which were precisely extracted by using the 
proposed approach, to improve the accuracy of ALS-derived 
building polyhedrons. This can be accomplished by properly 
back-projecting the straight lines extracted by the proposed 
method onto the ALS-derived building polyhedrons. 
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