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Abstract. This study presents a statistical downscaling (SD)

method for high-altitude, glaciated mountain ranges. The SD

method uses an a priori selection strategy of the predictor

(i.e., predictor selection without data analysis). In the SD

model validation, emphasis is put on appropriately consid-

ering the pitfalls of short observational data records that are

typical of high mountains. An application example is shown,

with daily mean air temperature from several sites (all in the

Cordillera Blanca, Peru) as target variables, and reanalysis

data as predictors. Results reveal strong seasonal variations

of the predictors’ performance, with the maximum skill evi-

dent for the wet (and transitional) season months January to

May (and September), and the lowest skill for the dry sea-

son months June and July. The minimum number of obser-

vations (here, daily means) required per calendar month to

obtain statistically significant skill ranges from 40 to 140.

With increasing data availability, the SD model skill tends to

increase. Applied to a choice of different atmospheric reanal-

ysis predictor variables, the presented skill assessment iden-

tifies only air temperature and geopotential height as signif-

icant predictors for local-scale air temperature. Accounting

for natural periodicity in the data is vital in the SD proce-

dure to avoid spuriously high performances of certain pre-

dictors, as demonstrated here for near-surface air tempera-

ture. The presented SD procedure can be applied to high-

resolution, Gaussian target variables in various climatic and

geo-environmental settings, without the requirement of sub-

jective optimization.

1 Introduction

Ongoing developments in atmospheric modeling have made

available various long-term, temporally high-resolution at-

mospheric data sets for the entire globe. However, these data

sets are still restricted in terms of spatial resolutions, such

that their immediate application to study regional and lo-

cal climate is not recommended. In fact, global atmospheric

models often miss significant processes that characterize lo-

cal weather and climate. This scale discrepancy between the

global atmospheric models and the local-scale variability is

particularly problematic for areas of complex topography,

such as glacier-covered mountains. So-called downscaling

methods bridge the gap between the available data from the

global atmospheric models and the required local-scale infor-

mation (for an overview see, e.g., Christensen et al., 2007).

Generally two types of downscaling exist, namely, dynam-

ical downscaling (e.g., Hill, 1968; Giorgi and Bates, 1989;

Mearns et al., 2003), and statistical downscaling (SD) (e.g.,

Klein et al., 1959; Wilby et al., 2004; Benestad et al., 2008).

Since the early development of both downscaling classes a

variety of different models and approaches have emerged.

A critical step in general SD procedures is the selection

of the large-scale atmospheric predictors (e.g., Von Storch,

1999; Wilby et al., 2004; Benestad et al., 2008). More pre-

cisely, predictor selection refers to the choice of (i) the large-

scale model, (ii) the model grid points or spatial area (i.e.,

the downscaling domain), and (iii) the physical variable type.

With the increasing availability of large-scale atmospheric

models and output variables, the issue of predictor selection

has become more and more intricate. Up to now, only few
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Figure 1. The map shows the Rio Santa watershed with the

Cordillera Blanca mountain range and the positions of AWS1,

AWS2 and AWS3 (mentioned in the text). Also indicated is the 1990

glacier extent (gray shaded area; Georges, 2004).

studies (e.g., Winkler et al., 1997; Cavazos and Hewitson,

2005) have systematically assessed the relevance of different

predictors in terms of variable types, spatial area, or predic-

tor model. Wilby et al. (2002) propose a promising solution

by providing regression-based, automated tools for predictor

selection in SD (see also Wilby and Dawson, 2007; Hessami

et al., 2008). Yet these methods are suitable only if the ob-

servational database for model calibration is relatively large

(e.g., daily time series for more than a decade). Moreover,

the transfer of appropriate predictors amongst different sites

or variables is usually not possible for data-based selections.

The problem of predictor and model selection is well known

also beyond the field of atmospheric sciences (e.g., Zucchini,

2000; Hastie et al., 2001; Bair et al., 2006).

This study presents an SD method for high-altitude, moun-

tainous sites. The SD method is designed to (i) appropriately

consider the pitfalls of short (i.e., few years) observational

time series in the model training and evaluation; (ii) provide

an objective tool for model and predictor assessment and se-

lection; and to (iii) be easily transferred to different sites and

target variables, without the requirement of subjective opti-

mization. The SD method as presented here is restricted to

Gaussian target variables. It is comprehensible and of min-

imum complexity. We show an application example of the

SD method to quantify the skill of reanalysis data as pre-

dictors for local-scale, daily air temperature in the tropical

Cordillera Blanca. Study site, target variables and large-scale

predictors are described in the next section (Sect. 2). Sec-

tion 3 gives a comprehensive description of the SD model.

The results of the application example, based on a priori pre-

dictor selection strategy, are presented in Sects. 4.1 to 4.3. In

Sects. 4.4 and 4.5 we show applications of the SD model for

various predictor variables, and at different timescales. Sec-

tion 5 shows limitations and possible extensions of the SD

model. The study’s main findings are summarized in Sect. 6.

2 Application example

2.1 Study site

The SD model will be presented on the basis of a case

study that focuses on the Cordillera Blanca. The Cordillera

Blanca is a glaciated mountain range located in the north-

ern Andes of Peru (Fig. 1). It harbors 25 % of all tropical

glaciers with respect to surface area (Kaser and Osmaston,

2002). Glaciers in the Cordillera Blanca have been shrink-

ing since their last maximum extent in the late 19th century

(e.g., Ames, 1998; Georges, 2004; Silverio and Jaquet, 2005;

Schauwecker et al., 2014), and have significantly shaped the

socioeconomic development in the region. During the 20th

century, a series of the history’s most catastrophic glacier

disasters occurred (i.e., outburst floods and avalanches; e.g.,

Carey, 2005, 2010). Also, Cordillera Blanca glaciers have

important positive impacts for water availability in industry,

agriculture, and households. In particular, Cordillera Blanca

glaciers contribute to balancing the strong runoff seasonal-

ity in the extensively populated Rio Santa valley (e.g., Mark

and Seltzer, 2003; Kaser et al., 2003; Juen, 2006; Juen et al.,

2007; Kaser et al., 2010).

Located in the outer tropical climate zone, atmospheric

seasonality in the Cordillera Blanca is mainly characterized

by precipitation variance (e.g., Niedertscheider, 1990). By

contrast, seasonal air temperature variance in the Cordillera

Blanca is small (e.g., Kaser and Osmaston, 2002; Georges,

2005; Juen, 2006). More than 50 % of the annual precipita-

tion falls during the humid season (January to March). Dur-

ing the dry season (June to August), less than 2 % of the an-

nual precipitation falls. An observational network of several
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automatic weather stations (AWSs) has been installed at and

nearby glaciers in the Cordillera Blanca since 1999. The pri-

mary goal of the measurement network was to provide high-

resolution data for glacier mass balance, and runoff modeling

(Juen et al., 2007). Maintaining the AWSs to provide contin-

uous and reliable atmospheric time series has represented a

logistical and technical challenge. Field work has been costly

in terms of time and materials, since the AWSs are located at

very high altitudes (between 4700 and 5100 ma.s.l.), and in

remote areas. Further problems also include instrument theft

and natural hazards (Juen, 2006). Due to these difficulties of

providing long-term and reliable measurement series from

these sites, SD methods have been investigated that are able

to provide useful results also on the basis of limited mea-

surement availability. Hofer et al. (2010) presented a compre-

hensive SD modeling procedure for extending the short-term

AWS time series backwards in time. They used sub-daily

air temperature and specific humidity as the target variables,

and reanalysis data as the large-scale predictors. Hofer et al.

(2010) found that the SD model skill largely varies as a func-

tion of season and time of day, and emphasized uncertainty

in the exact choice of the mixed-field predictors variables.

Hofer et al. (2012) used a simpler methodology that is based

on single linear regression, in order to determine the opti-

mum reanalysis data set for air temperature in the Cordillera

Blanca.

2.2 The predictands: daily mean air temperature from

different sites

The target variables (predictands) of the present study are

daily mean air temperature time series measured at three dif-

ferent AWSs in the Cordillera Blanca (hereafter referred to

as AWS1, AWS2, and AWS3). AWS1, AWS2 and AWS3

include the longest time series available from all AWSs in-

stalled in the Cordillera Blanca to date. Yet the measuring

periods are still relatively short, ranging from July 2006 to

July 2012 (AWS1), to August 2011 (AWS2), and to Decem-

ber 2009 (AWS3), with 3 months of missing data at AWS2.

Below, we refer to period 1 as the common period of avail-

able data for all three AWSs (i.e., July 2006 to Decem-

ber 2009), and to period 2 as the longest measurement pe-

riod (at AWS1, i.e., July 2006 to July 2012). AWS1, AWS2,

and AWS3 are situated in the vicinity of retreating glacier

tongues on rocky terrain (glacial polish and moraines), at

5050, 4825, and 4950 ma.s.l., respectively. Whereas AWS1

and AWS2 are located at only about two kilometers distance

in the Paron valley (northern Cordillera Blanca), AWS3 is

located approximately 100 km further southward in the Shal-

lap valley (to the west of Huaraz, the capital of the Ancash

region). The locations of AWS1, AWS2, and AWS3 are indi-

cated in Fig. 1. In technical terms, the measurements were

carried out at a hourly time interval with HMP45 sensors

by Väisalla and ventilated radiation shields, as described by

Georges (2002).
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Figure 2. Monthly statistics of daily air temperature time se-

ries at AWS1 (5050 ma.s.l.), AWS2 (4820 ma.s.l.), and AWS3

(4950 ma.s.l.), and of the a priori selected predictor rea-ens-air (as

defined in the text). Shown are the means (blue solid line) and the

medians (red dashes). The edges of the thick blue bars are the 25

and the 75 percentiles. The thin blue bars extend to the most ex-

treme data not considered as outliers, and the red crosses are the

outliers. All statistics are computed for period 1 (July 2006 to De-

cember 2009).

Figure 2 shows statistics of AWS1, AWS2, and AWS3

daily mean air temperature for each calendar month, for pe-

riod 1. The daily means are calculated from hourly samples

measured at the AWSs. The daily mean air temperature val-

ues are approximately normally distributed (not shown). The

seasonal cycles in the data are small (< 2 ◦C), showing mul-

tiple local minima and maxima throughout the year. This oc-

currence of multiple maxima and minima, however, should

not be overvalued as a climatology, because they are based

on only 4 years of measurements. The interquartile ranges of

the daily mean air temperature (blue bars in Fig. 2) amount to

less than 2 ◦C in 50 % of all months, at all AWSs. The high-

est within-month variabilities occur from December to Jan-

uary, which points to El Niño–Southern Oscillation (ENSO)

playing an important role in the region at this time of the

year (e.g., Vuille et al., 2008b). Within-month variabilities

are generally lower for the dry season months June to July.

Also shown in Fig. 2 are statistics of the reanalysis data pre-

dictor that will be referred to later.

2.3 Reanalysis data: the large-scale predictors

In this study, reanalysis data are used as the large-scale pre-

dictors for daily mean air temperature measured at AWS1,

AWS2, and AWS3. Generally available at sub-daily time

resolutions, reanalysis data are the computationally expen-

sive product of data assimilation, i.e., the optimum com-

bination of state-of-the-art general circulation model fore-

casts with quality-controlled observations. Being based on
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a fixed modeling system over the entire assimilation pe-

riod, the reanalyses do not include data discontinuities due to

changes in atmospheric model and assimilation techniques,

as do the numerical weather prediction analyses. Thus, in

terms of spatiotemporal completeness and consistency, re-

analysis data are known to represent the most accurate es-

timate of the past state of the atmosphere. However, a ma-

jor source of uncertainty in the reanalysis data relates to

changes in the observing system (e.g., Trenberth et al., 2001).

Global reanalysis data are produced at five institutions world-

wide: (i) the National Centers for Environmental Prediction,

NCEP, (ii) the European Centre for Medium-Range Weather

Forecasts, ECMWF, (iii) the Japan Meteorological Agency,

JMA, (iv) the National Aeronautics and Space Administra-

tion, NASA, and (v) the National Oceanic and Atmospheric

Administration, NOAA (in cooperation with partner institu-

tions not mentioned here for brevity).

To extend knowledge about the mountain glacier varia-

tions to unobserved time periods or regions, more and more

studies have relied on reanalysis data (e.g., Stahl et al., 2008;

Kotlarski et al., 2010; Paul and Kotlarski, 2010; Marzeion

et al., 2012; Mölg et al., 2012; van Pelt et al., 2012; Giesen

and Oerlemans, 2013). For studies about the Cordillera

Blanca and the South American Andes, the first-generation

NCEP reanalyses have been a frequent choice (e.g., Garreaud

et al., 2003; Vuille et al., 2008a, b; Hofer et al., 2010). Hofer

et al. (2012), however, point out that the first-generation

NCEP reanalyses show considerably weaker performance

than several other reanalyses for the Cordillera Blanca, e.g.,

(i) the ERA-interim reanalyses by the ECMWF, (ii) the Mod-

ern Era Retrospective-Analysis for Research and Applica-

tions from NASA (MERRA), and (iii) the NCEP Climate

Forecast System Reanalysis by the NCEP (CFSR).

3 SD model architecture

3.1 A priori predictor selection as a universal approach

Generally, there are two ways of predictor selection: (1) a

priori predictor selection (based on knowledge outside the

data), and (2) data-based predictor selection (based on pre-

ceding statistical analysis of the predictands). Most SD stud-

ies more or less systematically use a combination of (1)

and (2), by first pre-selecting a subset of potential predictors

from an available pool based on process knowledge, and then

choosing the definite, final predictors based on criteria de-

rived from the data (e.g. Klein and Glahn, 1974; Wilby et al.,

2002). Yet, data-based selection algorithms have encountered

problems such as suboptimal skill of the SD model (e.g.,

Michaelsen, 1987; Stahl et al., 2008). Furthermore, the va-

lidity of data-based selections is generally restricted to each

specific site and to the data period of available observations,

and generalizations thereof are usually impossible. In this

study, we present, apply, and discuss systematic, a priori pre-

Table 1. Specifications of the reanalysis data grid points applied as

predictors: coordinates, surface heights (h), and mean geopotential

heights (gph), with standard deviations in brackets, during the in-

vestigation period (all values are in meters above see level).

h [ma.s.l.] gph 550 hPa [ma.s.l.]

interim (77.5◦W, 9◦ S) 3324 5113 (±11.4)

CFSR (77.5◦W, 8.5◦ S) 3409 5106 (±11.6)

MERRA (77.3◦W, 8.5◦ S) 3120 5103 (±11.4)

dictor selection (thus, selection without looking at observa-

tional data).

The proposed a priori selection strategy consists of three

simple steps: (i) to relate the same physical predictor and pre-

dictand variables; (ii) to consider the time series of this phys-

ical variable at only one grid point, namely, the grid point lo-

cated closest to the study site (in terms of latitude, longitude,

and altitude); and (iii) to average these single grid point time

series over several different, modern large-scale atmospheric

data sets. This a priori predictor selection strategy reduces the

five dimensions of the predictor space (here, latitude, longi-

tude, altitude, physical variables, and large-scale data sets)

to one dimension, without data analysis. This way, straight-

forward application to different target variables and/or study

regions is allowed for, without requiring subjective optimiza-

tion. Limitations of this a priori predictor selection will be

discussed in Sect. 5.

For the application example in our study, (i) implies to use

the variable air temperature as predictor for local-scale air

temperature measured in the Cordillera Blanca, at the model

grid point that is located spatially closest to the study site

(ii). Note that the closest grid point is usually not located

near the large-scale model surface. Generally, the coarser the

large-scale model, the larger is the discrepancy between the

real and the model surface. For example, Table 1 shows co-

ordinates, geopotential heights, and surface elevations of the

ERA-interim, MERRA, and CFSR grid points located closest

to the study site. The surface grid points of all three reanaly-

sis models are situated only between 3000 and 3500 m a.s.l.,

thus about 1500 m lower than the AWS sites in reality. The

predictors from the vertical pressure level of the AWSs (i.e.,

550 hPa) consequently do not contain characteristics of near-

surface variables. However, given the large discrepancy be-

tween the reanalysis model topographies, and the real topog-

raphy, it is reasonable to exclude unrealistic surface variabil-

ity in the predictors. Step (iii) is a measure of protection

against numerical model errors that may affect single grid

point data (e.g., Grotch and MacCracken, 1991; Williamson

and Laprise, 2000; Räisänen and Ylhäisi, 2011). By averag-

ing data from different models, numerical noise is reduced

even more effectively, than by applying the mean filter to a

single model (e.g., Hofer et al., 2012). In this study, we apply

three reanalysis data sets, namely, ERA-interim, MERRA,

Geosci. Model Dev., 8, 579–593, 2015 www.geosci-model-dev.net/8/579/2015/
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and CFSR. These three reanalysis data sets have already

shown high skill with regard to daily air temperature varia-

tions in the Cordillera Blanca (see Hofer et al., 2012). In this

regard, their selection here is not independent from data anal-

ysis. However, it is an intuitive choice, because all three re-

analysis data sets have been produced very recently, are thus

based on state-of-the art modeling systems, and are available

at very high spatial resolutions. To sum up, in our study the

a priori predictor consists of the average of three time series

in total (of the three reanalysis models). This a priori pre-

dictor (reanalysis-ensemble-air temperature) is abbreviated

hereafter by rea-ens-air. Statistics of rea-ens-air computed

over period 1 are shown in Fig. 2.

3.2 Preprocessing: accounting for seasonal periodicity

If atmospheric time series are considerably shorter than 30

years and the climatological seasonal cycle is not known,

the problem arises of how to strictly distinguish periodic,

seasonal variations from aperiodic (or less periodic), day-to-

day and inter-annual variability. Especially in statistical fore-

casting, periodicity must be accounted for to avoid that the

periodic, seasonal variations dominate the model fit. When

long enough data series are available, the problem is gener-

ally avoided by subtracting the climatological seasonal cycle

from the time series (e.g., Madden, 1976). This way seasonal

periodicity is removed from the time series, but not necessar-

ily from the model error.

Here we assume that seasonal atmospheric periodicity

leads to changing relationships between large- and local-

scale atmospheric variables throughout the year. To consider

the atmospheric seasonal cycle in SD models is important

especially if the study site is located in the mountains. For

example, local-scale atmospheric conditions can be affected

by topographic shading that changes with the solar eleva-

tion throughout the year. Due to the general discrepancies

between the real topography and model topographies, how-

ever, these effects are naturally not represented by the pre-

dictors. Therefore, by using separate statistical predictor–

predictand transfer functions for the different months of the

year (or more generally also for different seasons, or Julian

day numbers; e.g., Themeßl et al., 2011), seasonal periodicity

is eliminated not only in the time series but also in the model

error. Different transfer functions for the different calendar

months are used often also in SD models that rely on stochas-

tic weather generators (e.g., Wilby and Dawson, 2007).

In practice in this study, the predictor–predictand pairs are

divided into 12 separate time series, one for each calendar

month. The number of observations in each time series con-

sequently amounts to approximately n=N/12, where N is

the length of the entire time series. Hence, all steps of model

training and validation (described in the next section) are re-

peated individually for each calendar month’s time series,

ym(t) (ym(t) consists of the concatenated daily mean time

series of January 2007, January 2008, January 2009, etc.).

For simplicity in the following sections, we use the symbol

y(t) for each of the 12 calendar months’ time series, omitting

the index m for months.

3.3 SD model training and validation

The simplest way to relate an a priori predictor to a target

variable is a simple linear regression model. It applies

y(t)= α1+α2 · x(t)+ ε(t). (1)

In Eq. (1), y(t) is the local-scale target variable (the predic-

tand) that varies with time t . x(t) is the predictor time series

(here, a single time series). α1 and α2 are the least-squares re-

gression parameters (intercept and slope). α1 and α2 are esti-

mated by minimizing the model error, ε(t), which is assumed

to follow a Gaussian distribution with zero mean. Note that

least-squares regression does not account for the time order-

ing in the data series, and the parameters in Eq. (1) are there-

fore not affected by the use of discontinuous, concatenated

(month-separated) time series. Note further that linear least-

squares regression is usually problematic for target variables

which strongly deviate from a Gaussian distribution. More

precisely, for non-Gaussian variables the normality assump-

tion of ε(t) is usually violated. Potential modifications of

the SD model presented here for non-Gaussian target vari-

ables are mentioned in Sect. 5. The analytical solutions for

the least-squares parameters α1 and α2 yield:

α1 = y−α2 · x,

α2 = r ·Rσ , (2)

with x and y being the temporal means of x(t) and y(t), re-

spectively, and

Rσ =
σ(y)

σ (x)
,

r =
σ(x,y)

σ (x) · σ(y)
. (3)

In Eq. (3), σ(y) is the temporal standard deviation of y(t),

σ(x) is the temporal standard deviation of x(t), and σ(x,y)

is the sample covariance of y(t) and x(t). r is the Pearson

correlation coefficient (e.g., Von Storch and Zwiers, 2001).

ŷ(t) are the predictions from the SD model, defined as fol-

lows:

ŷ(t)= α1+α2 · x(t)= y(t)− ε(t). (4)

The SD model is trained and validated based on a mod-

ification of leave-one-out cross-validation described in the

following. For each calendar month’s time series, the least-

squares parameter estimation is repeated n times, with n be-

ing the number of observations of each calendar month’s

time series. Each time, nlo observations are excluded from

the model fit (the left-out observations), with

nlo = 2 · τρ∼=0+ 1. (5)

www.geosci-model-dev.net/8/579/2015/ Geosci. Model Dev., 8, 579–593, 2015
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τρ∼=0 is the temporal lag, for which the autocorrelation func-

tion of each (concatenated) calendar month’s time series

(y(t)
)

is within the 95 % confidence interval of the autocor-

relation for Gaussian white noise. The 95 % confidence in-

terval is approximated with 2/n1/2. τρ∼=0 is also known as

decorrelation time (e.g., Von Storch and Zwiers, 2001). In

each cross-validation repetition, nT = n− nlo data pairs are

used for the least-squares parameter estimation (the index T

denotes training). We use the notation yT for the nT train-

ing observations that slightly differ in each turn of the cross-

validation, and ŷT for the SD model estimated based on yT.

The central of the nlo withheld observations can then be con-

sidered as independent from the calibration process, and is

used to estimate the model test error, εV(t). By repeating the

above-described procedure n times, each observation in y(t)

is used once as independent observation for estimating εV(t):

εV(t)= y(t)− ŷV(t). (6)

By contrast to ε(t), εV(t) is not involved in the model train-

ing process, and is thus more useful for the determination of

the model skill. Above, ŷV(t) is the SD model estimated indi-

vidually for each time step t based on all observations despite

[y(t−τρ∼=0). . .y(t+τρ∼=0)]. This way, n different estimates of

the SD model parameters in Eq. (2) result, being based on n

(slightly) varying sub-samples of y(t). The resulting variance

of the SD model parameters is a measure of the stability of

the model parameters (e.g., with regard to influential outliers,

see Michaelsen, 1987). The average of the SD model param-

eters is used to calculate the final SD model predictions, ŷ(t),

for each calendar month. The complete SD model time series

is then obtained by putting together in chronological order

the 12 calendar month’s SD models.

3.4 Skill estimation and significance analysis

When the cross-validation process is completed, the skill

score (SS) can be calculated as follows (e.g. Wilks, 2006):

SS= 1−
mse

mser

, (7)

with

mse=
1

n
·

∑
ε2

V(t). (8)

mser in Eq. (7) is the mean of squared errors of the reference

model ŷr := yT, with yT(t) being the temporal mean of yT,

and εr(t)= y(t)− ŷr:

mser =
1

n
·

∑
ε2

r (t). (9)

Note that SS is a relative accuracy measure, which can be

decomposed into the squared Pearson product-moment cor-

relation between the observations and the validation forecasts

ryŷ := r
(
y(t), ŷV(t)

)
, deflated by two penalty terms, as fol-

lows (e.g., Murphy, 1988; Wilks, 2006):

SS= r2
yŷ
− [ryŷ−

σ(ŷV)

σ (y)

]2

−

[ ¯̂yV− ȳ

σ (y)

]2

. (10)

Above, σ(y) and σ(ŷV) are the temporal standard deviations

of y(t) and ŷV(t), and ȳ and ¯̂yV are the temporal means of

y(t) and ŷV(t). The second term in Eq. (10) is a measure of

reliability, or conditional bias, and the third term in Eq. (10)

is the square of the unconditional bias standardized by σ(y).

For least-squares regression, the second and third terms in

Eq. (10) are usually zero. However, because for each time

step t , the least-squares model training for ŷV(t) is inde-

pendent from y(t) (since the training sample used to esti-

mate ŷV(t) does not include y(t) nor nearby, correlated data

points), the terms will usually differ from zero.

Below, we show an application of the SD model frame-

work for short measurement series (about 3- to 7-year mea-

surements, as introduced in Sect. 2). In order to give an ob-

jective quantification of whether the available time series are

long enough for the SD model and skill assessment to be re-

liable (and useful), we determine if SS is significantly larger

than 0 as follows. Because of Eq. (7), SS> 0 implies that

mser−mse> 0. Because of the linearity of the mean, this

further implies dsε > 0, with dsε(t) := ε2
r (t)− ε

2
V(t), and ·

denoting the mean over all n time steps. To estimate the sam-

pling distribution of the mean of the squared error differences

dsε, we use moving block bootstrap. Moving block bootstrap

is a variant of bootstrap that preserves the temporal autocor-

relation structure of a time series. It works in the same way

as ordinary bootstrap (e.g., Wilks, 2006), but instead of re-

sampling from n individual (independent) observations, the

resampling is based on blocks of observations of length L.

Here, we use L as approximated for first-order autoregres-

sive processes (AR(1)
)

by Wilks (1997), based on the im-

plicit equation

L= (n−L+ 1)(2/3)(1−neff/n), (11)

with

neff ≈ n
1− ρ1

1+ ρ1

. (12)

ρ1 is the lag-1 autocorrelation of dsε(t), and n is the num-

ber of cross-validation repetitions, as above. We use L=
√
n

as a starting value for the iterative solution of Eq. (11), as

suggested by Wilks (1997). The moving block bootstrap is

used to produce 10 000 bootstrap samples of dsε(t), and for

each bootstrap sample dsε is computed. Finally, SS is con-

sidered significant, if the 5th percentile of dsε (based on the

10 000 bootstrap samples) is larger than zero. The minimum

number of observations required for the SD model to show

significant skill, nmin, can then be estimated as follows: the
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Figure 3. Example of the SD model skill estimation based on cross-validation as described in Sects. 3.3 and 4.1, for AWS1 predictands and

the rea-ens-air predictor in March (top) and July (bottom): yT(t) (blue line), ŷ(t) based on yT(t) (red line), the ŷr (black line), y(t), the

observation considered independent from the model process (blue star), the corresponding value of ŷV(t) (red star), and of ŷr (black star).

The gray shaded area highlights the observations left out in the model calibration process (for illustration here, at cross-validation step 15).

Note that the gray bar changes its position at each cross-validation step (as described in the text).

observation time series is stepwise reduced, and the SD mod-

eling procedure and the skill assessment are repeated, until

SS is no longer found to be significant. This way, 12 num-

bers are obtained that represent the minimum number of ob-

servations required in each calendar month to construct a SD

model with statistically significant skill.

4 Results and discussion

4.1 Demonstration of the model training and validation

procedure

Figure 3 provides a comprehensible example of the skill esti-

mation procedure described above. The two plots show daily

air temperature time series (yT

)
of the months March (top)

and July (bottom) at AWS1 (blue line). The example shows

the SD model building and error estimation in an individ-

ual repetition of the least-squares regression procedure in

the frame of the modified leave-one-out cross-validation. The

gray bar indicates the nlo observations left out in the model

calibration. Note that for each of the n parameter estima-

tion repetitions, the gray bar is shifted one observation to

the right. The number of observations left out is determined

by the cross-validation parameter τρ∼=0. The values of τρ∼=0

are 11 in March, and 3 in July. This means that, e.g., in the

March time series an observation is considered independent

from an other observation only if there is a shift of at least

11 time steps (in this case, days) between the two observa-

tions. Thus, for the March time series the gray bar includes

11 · 2+ 1= 23 left-out observations. The red line is ŷT. The

error εV(t) of Eq. (6) is then estimated as the difference be-

tween the central observation y(t) (blue star in the gray bar

in Fig. 3), and the model value at this time step ŷV(t) (red

star in the gray bar in Fig. 3). ŷr used to calculate mser in

Eq. (9) is the black star in Fig. 3 (identical with the black

line), calculated as the mean of yT, the observations used in

the model training. Cross-validation is repeated until each

observation y(t) is used once to determine the model error.

This way independence between the observations used in the

model training and the validation process is guaranteed, and

at the same time all observations can be used to determine

the final SD model.

4.2 SD model parameters

Figure 4 shows the regression parameters r , and Rσ of the

12 calendar months for data from AWS1. We show r and Rσ
instead of α1 and α2, because r and Rσ can be interpreted

immediately in terms of quality of the predictor–predictand
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Figure 4. Boxplots of the ESD model parameters: medians (dots)

of the downscaling model parameters r (top) and Rσ (bottom) esti-

mated by cross-validation with AWS1 air temperature as the predic-

tands and rea-ens-air as the predictor, for all calendar months. The

edges of the boxes are the 25th and the 75th percentiles. The dashes

extend to the most extreme data not considered as outliers.

relationship (see Eq. 2). Both r and Rσ show a remarkably

high inter-monthly variability. Also shown in Fig. 4 are the

uncertainties of r and Rσ (the edges of the boxes indicate the

25 and 50 percentiles of the regression parameters estimated

in each repetition of the least-squares procedure of the cross-

validation). Values of r are higher than 0.6 for the months

January to May (wet season in the Cordillera Blanca), and

in September. For the remaining months (June to August,

November and December), values of r are between 0.4 and

0.6. The largest sampling uncertainties of r are evident for

the months February to April. Rσ throughout the year varies

from approximately 0.9 to 1.4. Values of Rσ close to one

(e.g., for the calendar months May to August) imply that the

standard deviation of the predictand is similar to the stan-

dard deviation of the predictor. Values of Rσ larger than one

(e.g., for December) imply that the standard deviation of the

predictand is larger than the standard deviation of the pre-

dictor (see Eq. 3). To sum up, while values of r indicate a

strong predictor–predictand relation, the high variations of

the downscaling parameters throughout the year clearly show

the importance of using distinct models for each calendar

month.

Figure 5 shows values of the cross-validation parameter

τρ∼=0 of the 12 calendar months for data from AWS1 (red

circles). As defined in Sect. 3.3, τρ∼=0 can be interpreted

as the temporal lag in days, for which the daily mean air

temperature values can be assumed to be independent. Val-

ues of τρ∼=0 vary between 3 (weak persistence) and 20 days

(strong persistence) for the different calendar months. For

the months January to April, values of τρ∼=0 are consider-

ably higher (13, 11, 11 and 20 days, respectively) than for

the remaining months. These higher values of τρ∼=0 are prob-
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Figure 5. The black circles show the minimum number of AWS1 air

temperature observations required for each calendar month’s model

to obtain statistically significant skill (nmin, based on rea-ens-air, as

described in the text). The red circles (right axes) show the decor-

relation time (τρ∼=0), for each month’s daily air temperature time

series recorded at AWS1.

ably due to high intra-seasonal variations of humidity and

rainfall in those months that also affect the air temperature

variations. More specifically, intra-seasonal variability in the

tropical Andes is characterized by rainy episodes in terms of

wet-day sequences followed by dry-day sequences, and are

associated to variances of air temperature (Garreaud et al.,

2003). Overall in the tropics, such synoptic episodes typi-

cally range from 30 to 60 days (with the basic mechanism

known as the Madden–Julian Oscillation, MJO; Madden and

Julian, 1994). For the Bolivian Altiplano (located nearby the

Cordillera Blanca), however, Garreaud et al. (2003) reported

shorter synoptic periods of approximately 15 days in length.

Please note that by examining τρ∼=0 of the month-separated

and concatenated time series, it is not possible to identify

the full length of the MJO cycles. Small values of τρ∼=0 es-

pecially for the austral winter months indicate small inter-

annual variability. In other words, there are no important dif-

ferences amongst the different years of the respective austral

winter months. In fact, ENSO, the most important source of

inter-annual variability in the region, has its strongest and

most widespread impacts during austral summer.

4.3 Skill assessment

In Fig. 6, values of SS of the predictor rea-ens-air are shown

for the 12 calendar months, and data from AWS1, AWS2 and

AWS3, covering period 1 (bars). For AWS1, values of SS are

also shown based on period 2 (circles), and will be discussed

here first. These values of SS show a distinct seasonal pat-

tern, with two maxima for April and September (SS≈ 0.6),

and two minima for June and for November (SS≈ 0.3). The

lowest values of SS result for the core dry season months

June and July, and the highest values of SS for the wet season
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Figure 6. Values of SS for AWS1 (black), AWS2 (gray), and AWS3

(white) for the predictor rea-ens-air for period 1. The open circles

show the respective values of SS at AWS1 for its entire data period

(period 2).

months February to April. The high values of SS in the wet

season imply that the largest portion of day-to-day variabil-

ity of AWS1 air temperature can be explained by rea-ens-

air. This indicates spatially very homogenous air temperature

fluctuations for these months of the year. In fact, Garreaud

et al. (2003) reported spatially very coherent intra-seasonal

weather patterns for the nearby Bolivian Altiplano, and also

the MJO is known to act on large spatial scales (with local

wavelengths of 1.2−2×103 km). By contrast in the core dry

season, values of SS for rea-ens-air reach only half of the

wet season values. A possible explanation is that variability

in the dry season might be governed by processes that act

more locally (e.g., processes that are triggered by the com-

plex topography). We further hypothesize that the generally

weaker synoptic forcing during the dry season impacts the

local-scale variability in a more subtle way, which is not re-

solved with the single linear predictor rea-ens-air. In Fig. 3

(lower panel), the SD model predictions for daily air temper-

ature in the dry season month July show only minor variance.

Also the variability in the observational time series is evi-

dently smaller for July than for the wet season month March

(upper panel in Fig. 3). Nevertheless, the underestimation

of observed variance is smaller for the wet season month

March, indicating higher co-variability between the predictor

and predictand time series. The values of SS based on period

1 show a similar seasonal pattern for all AWSs (see Fig. 6).

However, the seasonal patterns of SS for AWS1 differ among

the two periods, period 1 versus period 2. For period 1, the

values of SS are generally lower than for period 2. This is

an expected result, because increasing the database for the

model training (from period 1 to period 2) allows for a more

accurate estimation of the model parameters (since nT in-

creases), and consequently the values of SS are higher. With

Table 2. Values of SS and r2 for the three assessed AWSs, averaged

over all months of the year, estimated using the entire measuring pe-

riods from each AWS, and in brackets the respective values based

on period 1 (only for AWS1 and AWS2, because the entire measur-

ing period of AWS3 is per definition equal to period 1).

AWS1 AWS2 AWS3

r2 0.47 (0.4) 0.5 (0.38) 0.48

SS 0.45 (0.37) 0.48 (0.32) 0.4

Table 3. List of predictors (and their abbreviations) assessed in

Sect. 4.4.

shm specific humidity at 550 hPa

gph geopotential height at 550 hPa

air air temperature at 550 hPa

uwn zonal wind speed at 550 hPa

vwn meridional wind speed at 550 hPa

spr surface pressure

vor potential vorticity at 550 hPa

t2m air temperature at 2 ma.s.l.

wwn vertical wind speed

further increase of available training data, the dependence of

SS on the length of the training series is expected to decrease

(e.g., Hastie et al., 2001).

The significance analysis reveals that values of SS in Fig. 6

are significant at the 5 % test level, for all calendar months

and AWSs. Figure 5 shows nmin, at the example of data from

AWS1, for each calendar month. nmin is related to SS, in a

way that for higher values of SS, nmin tends to be lower.

nmin largely varies from a minimum value of 33 (and 36)

for the calendar months May (and March), to 136 for the

calendar months July. Since the AWS1 time series includes

more than 120 to 150 observations per calendar month for

period 1, and 210 observations for period 2, nmin is exceeded

for each calendar month, however, only by a small margin

for July and November for period 1. Values of SS and r2 av-

eraged over all calendar months are shown in Table 2, for the

different AWSs. The values are shown for the measuring pe-

riods of each AWS (thus period 1 for AWS3), and for AWS1

and AWS2 additionally for period 1. On average, SS is high-

est at AWS2 (mean SS= 0.48) and lowest at AWS3 (mean

SS= 0.4). As discussed above for AWS1, values of SS are

considerably lower for the shorter, common time period (pe-

riod 1), for which AWS2 shows even the lowest values of SS.

Table 2 further shows that values of r2 overestimate the skill,

compared to SS based on cross-validation, with up to 0.08

higher values (see AWS3).

4.4 Towards automated predictor selection

To this point, we presented the SD modeling procedure

based on a priori predictor selection. Now we investigate
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Figure 7. Values of SS for each month (here for AWS1), and the

three predictors of those assessed in Sect. 4.4, which showed signif-

icant results.

the performance of various predictor variables, to demon-

strate how the skill assessment presented here can be used

for data-based predictor selection. Table 3 gives a list of all

abbreviations of the nine assessed predictor variables: shm,

gph, air, uwn, vwn, spr, vor, t2m, and wwn. In this sec-

tion, all predictor variables are considered from the ERA-

interim. We do not consider the multiple reanalysis ensem-

bles as above, because (i) not all variables are available by

all reanalyses as analysis values, and (ii) there are inhomo-

geneities in the CFSR variables spr and wwn between data

prior and after December 2010. These inhomogeneities are

due to changes in the model configurations from CFSR avail-

able until December 2010, to the subsequently operationally

available CFSV2. Furthermore, ERA-interim have shown the

highest skill for air temperature predictands in the Cordillera

Blanca out of all individual global reanalyses, and compa-

rably high skill as the ensemble from multiple reanalyses

(Hofer et al., 2012). However, unlike multiple reanalysis en-

sembles, individual reanalyses need to be considered at their

optimum scale, in order to eliminate numerical noise related

to single grid point data (Hofer et al., 2012). Here, we adopt

the optimum scale of the ERA-interim determined by Hofer

et al. (2012) for air temperature in the Cordillera Blanca,

which is relatively small: four times four grid points centered

horizontally around the study site.

The results of the skill assessment reveal significant skill

for only three of the assessed predictor variables: air, t2m,

and gph. Values of SS of these variables are shown in Fig. 7

for each calendar month, and AWS1 data. For all other vari-

ables listed in Table 3, the values of SS are non-significantly

different from zero; moreover, t2m clearly shows lower val-

ues of SS than air in all months. Thus, the reanalysis vari-

ables that are less affected by the model surface actually

emerge as the better predictors for near-surface predictand
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Figure 8. Values of SS for all assessed timescales (daily averages

to 6-daily averages) and the 12 calendar months (colors of the bars,

January to December), for which SS is found to be significant at

each timescale. Shown here is the example of the predictor rea-ens-

air for AWS1 daily air temperature as target variable. The values of

SS are divided by 12 (the number of calendar months), such that

the sum of the bars is equivalent to the average SS, at each of the

timescales.
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Figure 9. r2 for 6-hourly and daily (all-month) time series of AWS1

air temperature and all predictors assessed in Sect. 4.4.

air temperature at AWS1. This is consistent with findings in

earlier studies (e.g., Murphy, 1999; Rummukainen, 1997),

and supports our a priori assumption that near-surface in-

formation above unrealistic model topographies is less use-

ful than data from the pressure level that corresponds to the

measurement site. We conclude from Fig. 7 that (1) only air

temperature predictors, or gph (which is physically closely

linked with air temperature) show significant skill for day-

to-day and year-to-year variability in the linear model set up;
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(2) the a priori choice of relating the same physical variables

in the predictor–predictand transfer function is supported by

the data-based analysis; and (3) even if values of SS show

a distinct seasonal cycle, the same predictor (i.e., air) shows

the highest skill throughout the year.

4.5 Application of the SD model at varying timescales

In this section, we systematically investigate the skill of

the reanalysis predictors for temporal resolutions beyond the

daily timescale. We repeat the modeling procedure as intro-

duced in Sect. 3, for the AWS1 time series aggregated from

daily to 2-daily, 3-daily, 4-daily, 5-daily, and 6-daily means.

6-daily means represent the lowest temporal resolution, at

which statistically significant skill is obtained for all calen-

dar months’ models in the application example of our study.

In this experiment, we assess each timescale based on a fixed

number of time steps (nexp), in order to allow for a com-

parison of SS amongst the different timescales. nexp is deter-

mined by (i) the lowest temporal resolution considered (here,

6-daily means), and (ii) the sample size of each month’s time

series. More specifically, if a calendar month’s time series

consists of 144 daily means, it can be aggregated to a series

of 24 6-daily means, and thus nexp is fixed to 24. In order

to avoid arbitrary sub-sampling of nexp observations for the

higher time resolutions (daily to 5-daily, of which more than

nexp time steps are available for the underlying time series),

we perform a systematic sub-sampling in terms of moving

blocks of nexp consecutive observations, until each observa-

tion has been considered the same number of times (at each

timescale, and for each calendar month). The modeling pro-

cedure is then repeated for each sub-sample, and the results

are averaged over all repetitions. Figure 8 shows values of

SS for different temporal resolutions, and the 12 calendar

months of AWS1 data. The values of SS are divided by 12,

such that their sum corresponds to the average skill for each

timescale (total length of each colored bar in Fig. 8). Note

that the values of SS shown here are lower than the values

of SS found in Fig. 6, because nexp is smaller than n for all

timescales. SS shows an increase for longer averaging inter-

vals. The increase of the average skill is most notable from

the daily to the 2-daily timescale, whereas for the 4- to 6-

daily timescale, only very small differences are evident.

Finally, we show a simple analysis to demonstrate the ef-

fects of periodicity (here, diurnal) for regression analysis

based solely on r2 (an often applied criterium for predic-

tor selection). Figure 9 shows values of r2 between 6-hourly

(all-month) time series of AWS1 air temperature, and the

predictors assessed in Sect. 4.4: shm, gph, air, uwn, vwn,

spr, vor, t2m, and wwn. The same analysis is shown at a

daily timescale, where the diurnal cycle is eliminated by av-

eraging the 6-hourly data to daily means. Values of r2 for

the 6-hourly data (left hand side in Fig. 9) clearly suggest

t2m as the best predictor, showing a relatively high corre-

lation (r2 > 0.7). All other predictors (including air) show

only minor correlation to the predictand (r2 < 0.1). This pat-

tern significantly changes at the daily time resolution (right

hand side in Fig. 9): now the predictor air shows the high-

est correlation (r2 is almost 0.5), but t2m shows only very

small correlations (r2
= 0.2 – yet still higher than all other

assessed predictors). In the diurnal analysis, t2m appears as

important predictor only because of its pronounced diurnal

variations which explain the largest portion of variability also

in the predictand data. However, this is achieved easily with a

constant diurnal cycle. For example, the correlation between

the hourly air temperature series, and a time series composed

by consecutive constant diurnal cycles is r2
= 0.7. There-

fore, predictor selection that does not account for diurnal (or

other) periodicity is not meaningful. Even though this is by

no means innovative in statistics, the issue of periodicity is

not accounted for appropriately in numerous studies in the

cryospheric sciences.

5 Limitations and outlook

The simplicity that makes a priori selection applicable to

a broad variety of settings, leads to some limitations with

respect to traditionally used data-based selections in SD.

First, the predictor rea-ens-air includes only a single vari-

able, i.e. air temperature. Traditional SD studies focusing on

air temperature have suggested air temperature predictors in

combination with sea level pressure (e.g., Benestad et al.,

2002; Sauter and Venema, 2011), geopotential height (e.g.,

Kidson and Thompson, 1998), zonal wind speed and spe-

cific humidity (e.g., Hofer et al., 2010), or both circulation-

and radiation-based variables (Huth, 2004). For precipita-

tion predictands, however, it has already been shown that

so-called direct SD approaches (which assume that the sin-

gle variable precipitation integrates all relevant information

from the global atmospheric model for precipitation) out-

perform traditional approaches that involve several predic-

tor variables other than precipitation (e.g., Widmann et al.,

2003; Schmidli et al., 2007; Themeßl et al., 2011). Sec-

ond, traditional SD studies have suggested that the optimum

downscaling domain is generally not limited to the closest

grid points around the study site, but includes important syn-

optic patterns around and upstream of the study area (e.g.,

Benestad et al., 2008). The definite choice of multiple vari-

able, or grid point predictors, however, requires data-based

assessments and highly depends on the quality and the avail-

ability of observation time series for each individual case.

Furthermore, it has been found that increasing the predictor

pool leads to suboptimal performance of SD models, even if

they are based on automated, cross-validatory selection al-

gorithms (e.g., Michaelsen, 1987; Stahl et al., 2008). In fact,

the relation between large- and local-scale variables is repre-

sented most accurately by the limited-area numerical atmo-

spheric models (LAMs). LAMs include the most complete

framework of linkages between the different scales, i.e. scale
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interactions expressed by the governing atmospheric equa-

tions. However, the disadvantage of LAMs, compared to SD,

is their high computational expense.

The SD model presented here consists of 12 different

predictor–predictand transfer functions, for the 12 calendar

months of the year. Even though these transfer functions are

tested based on independent data (using cross-validation),

there is no guarantee that the transfer functions remain sta-

tionary beyond the observation period. Here we enter into the

problem of the stationarity assumption underlying SD mod-

els, e.g., the validity of the transfer functions for different

climatic periods, or for different phases of ENSO. While as-

sessing the validity of the SD stationarity assumption goes

beyond the scope of our study, we like to point out that a pri-

ori selections are usually based on assumptions that are inde-

pendent from the observation period, while data-based selec-

tions are strongly linked to the observation period. Therefore,

assuming temporal stationarity is more problematic for data-

based selections than for a priori selections. A systematic in-

vestigation of the consistency of SD models for precipitation

over century to millennium timescales is given in the work

by Frías et al. (2006).

Because for leave-one-out cross-validation each training

data set contains almost as many data as the original time

series, it is useful especially in the case of short observa-

tional time series. For sufficiently long time series, a fre-

quently applied, computationally cheaper alternative is k-

fold cross-validation (with k being typically 5 or 10). Here,

sufficiently long means long enough such that the skill of the

SD model no longer depends on the length of the data series

(see also the issue of bias-variance trade off for k-fold cross-

validation, Hastie et al., 2001). In technical terms, leave-one-

out cross-validation is similar to (and therefore often mistak-

enly referred to as) the jackknife resampling technique. The

jackknife, however, is generally used in a different context:

i.e., for non-parametric estimation of the bias and/or stan-

dard deviation of a sampling distribution from data in a sin-

gle sample (e.g., Wilks, 2006). As not shown in this study,

cross-validation is powerful especially for multiple regres-

sion problems. Then, x(t) in Eq. (1) has multiple columns,

x ∈ R(n×p) with n representing the number of observations

in the time series, and p the number of predictors in x. In

fact, SS based on cross-validation is a powerful statistic to

detect over-fitting in the case of multiple predictors. More

precisely, in the case of over-fitting, SS as defined in Eqs. (7)

and (10) will be equal or smaller than zero, and the sig-

nificance analysis presented here will reveal no significant

skill. More detailed overviews about cross-validating mul-

tiple predictor-regressions to protect against over-fitting are

given in the statistical textbooks by Hastie et al. (2001), and

Wilks (2006).

The significance testing of SS in this study is a recom-

mended version of hypothesis testing for forecast verifica-

tion statistics (Mason, 2008), which does not involve the

bootstrap estimation of the distribution of the null hypoth-

esis (by contrast to classical statistical hypothesis testing). In

our study, the null hypothesis that SS is equal or smaller than

zero is evaluated by examining its unusualness with respect

to the 95 % bootstrap confidence intervals of SS (e.g., Wilks,

2006). Further note that the moving block bootstrap applied

in our study is based on the condition that the squared error

differences dsε(t) underly an AR(1) process. In the applica-

tion example of our study, the dsε(t) time series support the

AR(1) assumption; however, this is not necessarily the case.

Therefore, it is important to assess the autocorrelation func-

tion of dsε(t) prior to the application of the moving block

bootstrap. Adaptations of the block length L for AR(2) pro-

cesses and for autoregressive moving average processes are

proposed in the work of Wilks (1997).

Finally, we would like to add a few notes on the extension

of the SD model for non-Gaussian target variables. For non-

Gaussian target variables, the application of ordinary least-

squares regression in Eq. (1) is often problematic, because

then the normality assumption of the model error is usually

violated. In this case, there are several possibilities to ex-

tend the SD modeling procedure presented here. A simple

way to include non-Gaussian target variables is to prepro-

cess the target variable prior to the input in the regression

procedure y′(t)= f
(
y(t)

)
, such that y′(t) follows a normal

distribution (e.g., by means of power transformations, Wilks,

2006). More complex, yet flexible modifications of the mod-

eling procedure for non-Gaussian targets include the replace-

ment of the least-squares linear regression procedure applied

here (Eq. 1 to Eq. 3) by generalized linear modeling. Fur-

thermore, when nonlinear predictor–predictand relationships

are evident from the underlying physics, nonlinear regres-

sion may replace the linear regression. In the case of gener-

alized linear models and nonlinear regression, ordinary least-

squares regression is usually replaced by iterative fitting pro-

cedures, or maximum likelihood methods (see Wilks, 2006).

After the replacement of Eq. (1) with Eq. (3), with the ap-

propriate model representation for non-Gaussian targets, the

skill estimation of the SD model for short, autocorrelated ob-

servation time series (Eq. 7 to Eq. 12) can be equally applied

as described above (not shown).

6 Summary and conclusions

We have presented a SD technique that links large-scale at-

mospheric model predictors to Gaussian, local-scale target

variables measured in mountainous, glaciated environments.

The method is appropriate for temporally high-resolution

time series. It is designed to give a significant estimate of

a large-scale model’s skill particularly in the case of obser-

vation scarcity (i.e., measuring period of few-years or less),

which generally affects glaciated mountain sites all over the

globe. We highlight the importance of systematically elimi-

nating seasonal periodicity in the meteorological time series,

and at the same time in the SD model error, by using separate
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models for the different months of the year. The presented

skill estimation is based on a modification of leave-one-out

cross-validation combined with moving block bootstrap to

appropriately account for autocorrelation in the observational

data, and in the SD model error.

We have shown an application of the SD model with re-

analysis data as the predictors, and daily mean air temper-

ature measured at three high-altitude sites in the glaciated

Cordillera Blanca (Peru) as the target variables. First, the

skill of the a priori predictor rea-ens-air is assessed. High

seasonality of statistical data properties (e.g. persistence) and

SD model parameters emphasize the importance of using dif-

ferent models for different calendar months. The SD model

skill shows high seasonality as well, with generally higher

skill in the wet season, and lower skill in the dry season.

Whereas differences in the SD model skill for the different

AWSs are small, the skill increases with increasing observa-

tion availability. The skill is shown to be significant at a 5 %

test level, if at least 33 to 140 daily observations are avail-

able per calendar month. In particular, the calendar months

for which the SD model shows low skill require consid-

erably more data for the SD model to be significant (e.g.,

July). The a priori predictor air temperature from the pres-

sure level of the study sites (air) shows clearly higher skill

than other skillful predictors, such as air temperature at two

meters above the model surface (t2m), or geopotential height

of the pressure level of the study sites (gph). Six further as-

sessed reanalyses predictors show no significant skill. Inves-

tigating a model’s skill without taking account of natural pe-

riodicity leads to spuriously high performance of t2m at a

diurnal timescale, compared to air, due to the pronounced

diurnal cycle of t2m. If the same number of time steps is

used to train the SD model at different temporal resolutions

(i.e., from daily to 6-daily averages), the skill averaged over

all months increases considerably from daily to 2-daily time

steps, with only minor increases for further increasing av-

eraging intervals. The entire SD modeling framework, pre-

sented here for high-altitude air temperature in the tropical

Cordillera Blanca, can be transferred to a variety of applica-

tions. The a priori selection strategy, the data preprocessing,

and the SD model training and validation are designed to be

applicable to all Gaussian target variables, at mountainous

sites in various climatic and geo-environmental settings.
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