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Abstract
The basic reproductive number R0 of a discrete SIR epidemic model is defined and
the dynamical behavior of the model is studied. It is proved that the disease free
equilibrium is globally asymptotically stable if R0 < 1, and the persistence of the
model is obtained when R0 > 1. The main attention is paid to the global stability of
the endemic equilibrium. Sufficient conditions for the global stability of the endemic
equilibrium are established by using the comparison principle. Numerical simulations
are done to show our theoretical results and to demonstrate the complicated
dynamics of the model.
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1 Introduction
Mathematical models have played a significant role in describing the dynamical evolu-
tion of infectious diseases. SIR model is one of the classical epidemic models with com-
partment structure, suitable for the transmission of infectious diseases that confer long-
lasting immunity such as chicken pox and SARS. The host population is divided into three
epidemiological groups: the susceptibles, the infectives, and the removed/recovered. The
transmission dynamics of an infectious disease is described by modeling the population
movements among those epidemiological compartments.
There is an increasing interest in the study and application of discrete epidemic mod-

els. Allen et al. have studied some discrete-time SI, SIR, and SIS epidemic models, com-
pared the dynamics of deterministic and stochastic discrete-time epidemic models, and
also applied the discrete epidemicmodel to the spread of rabies [–]. Allen andDriessche
have given the basic reproductive number for some discrete-time epidemic models [].
Castillo-Chavez and Yakubu have investigated a discrete SIS model with complex dy-
namics []. Zhou et al. have formulated and discussed the dynamical behavior of age-
structured SIS models [, ]. A stage-structured model, a discrete epidemic model with
seasonal variation in environment, a discrete tuberculosis transmission model, and many
other discrete epidemic models have been constructed, studied, and applied [–]. One
reason for the upsurge of discrete epidemicmodels is that discretemodels have advantages
in describing an infectious disease since epidemic data are usually collected in discrete
time units, which would make it more convenient to use discrete-time models [].
The studies on discrete epidemicmodels are relatively few compared with those on con-

tinuous epidemic models. Most research works on discrete epidemic models concern the
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definition of the basic reproductive number, the global stability of the disease free equi-
librium, the persistence of diseases, the existence and local stability of endemic equilibria,
the existence of flip bifurcation and Hopf bifurcation. The results on the global stability
of the endemic equilibrium are quite few for discrete epidemic models due to the follow-
ing two factors: () There is not enough effective theory and methods for global stability
of discrete dynamical systems; () The discrete model exhibits much more complicated
dynamical behaviors than its corresponding continuous model.
We will study the global stability of the endemic equilibrium of a discrete SIRmodel and

get sufficient conditions. The discrete SIRmodel, the biological requirement of themodel,
the basic reproductive number, and the invariant domain of themodel are given in the next
section. The global stability of disease free equilibrium and the persistence are discussed
in Section . The sufficient conditions for the global stability of endemic equilibrium are
obtained in Section . Numerical simulations and application are presented to demon-
strate our theoretical results, to show the complex dynamics and application example of
the model in Section . Conclusions and discussions are included in the last section.

2 The discrete SIR model
There are different approaches to model infectious disease evolution in discrete time. The
recurrent difference equations from the discretization of continuous differential equation
models is one of the direct and frequently-used modeling approaches. This kind of model
can be well understood in application under reasonable assumptions though there are
some limitations on the range of parameters. We will adopt this approach to formulate
model and assume that the infected people will obtain permanent immunity after they get
recovered from infection.
Let N(t) denote the number of the host population at time t. According to the disease

transmissionmechanism, the host population is grouped into three epidemiological com-
partments. Let S(t), I(t), and R(t) be the number of individuals in the susceptible, infective,
and removed/recovered compartments at time t, respectively. In addition to the death and
recruitment, there are population movements among those three epidemiological com-
partments from time unit t to time t + . We assume that the recruited individuals (by
birth and immigration) are constant and enter the susceptible compartment. After one
unit time, the susceptible individuals may stay in the susceptible compartment, or get in-
fected and move to the infectious compartment, or die. The individuals in the infective
compartment can keep being the infective, or get recover and transfer to the recovered
compartment, or die. The individuals in the recovered compartment never leave the com-
partment unless they die. The discrete SIR model is

⎧⎪⎪⎨
⎪⎪⎩
S(t + ) = S(t) +� – βS(t)I(t)

N(t) –μS(t),

I(t + ) = I(t) + βS(t)I(t)
N(t) – (μ + δ + γ )I(t),

R(t + ) = R(t) + γ I(t) –μR(t),

()

where � is the constant recruitment rate of the population, β is the transmission rate, μ
is the natural death rate, δ is the death rate caused by disease, and γ is the recovery rate.
The biological background requires that all parameters be non-negative.
There is abundant amount of research into SIRmodels since they capture the basic evo-

lution mechanism of the infectious diseases when the recovered individuals will acquire
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life-long immunity. A lot of results on the existence and global stability of the endemic
equilibrium have been obtained for continuous SIR models with various transmission
rate. However, the result on the global stability of the endemic equilibrium for discrete
SIR model is rare, even for the model with mass action incidence. We will try to give suffi-
cient conditions for the global stability of the endemic equilibrium. Those results on global
stability of the endemic equilibrium can promote the study on this challengeable problem.
Adding all equations in (), we see that the number of host population, N(t), satisfies

N(t + ) =N(t) +� –μN(t) – δI(t)≤ � + ( –μ)N(t). ()

The equation Ñ(t+) = �+(–μ)Ñ(t) has a unique equilibrium Ñ∗ = �
μ
, which is globally

asymptotically stable, namely, limt→∞ Ñ(t) = Ñ∗. The comparison principle implies that
N(t)≤ Ñ(t) ≤ Ñ∗ when N()≤ Ñ()≤ Ñ∗. In the analysis of model (), we assume that

 ≤ S(),  ≤ I(),  ≤ R() and S() + I() + R()≤ Ñ∗. ()

The epidemiological interpretation requires the solution of model () with initial val-
ues satisfying () to be non-negative. This requirement can be met if the following two
inequalities hold:

β +μ < , μ + δ + γ < . ()

Those two conditions in () are natural requirements for model (). The first inequality,
β + μ < , says that the percentage of the susceptible individuals who die or get infected
is less than one within a unit time. The second inequality, μ + δ + γ < , states that the
percentage of the infected people who die or get recovered is less than one within a unit
time. It is easy to verify that those two inequalities ensure S(t) ≥ , I(t) ≥ , and R(t) ≥ 
for all t ≥  if the initial values satisfy ().
In the rest of the paper, we assume that the initial conditions and the parameters satisfy

() and (), respectively. It is easy to verify that the domain

� =
{
(S, I,R) ∈R


+

∣∣∣ S + I + R ≤ �

μ

}

is a compact, positively invariant set for model (). � is also a global compact attractor of
system () since it attracts all positive orbits with an initial value (S, I,R) ∈R


+.

The basic reproductive number, R, is fundamental and widely used in the study of
epidemiological models. R is the average number of secondary infections produced by
one infected individual during the entire course of infection in a completely suscepti-
ble population. R often serves as a threshold parameter that predicts whether an in-
fection dies out or keeps persistence in a population. Following the idea and framework
given in [, , ], we obtain the formula of the basic reproduction number of model
(), R = β

μ+δ+γ
. The magnitude of R plays a crucial role in determining the dynamical

behavior of model ().
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3 Extinction and persistence for the disease
This section focuses on the disease extinction or persistence, which is determined by the
stability of the disease free equilibrium and the existence of endemic equilibrium ofmodel
(). It is obvious that E(�

μ
, , ) is an equilibrium of model (). E is called the disease free

equilibrium since I and R components are zero. The stability of the disease free equilib-
rium E is given in the following theorem.

Theorem  The disease free equilibrium E of model () is globally asymptotically stable
if R < , and E is unstable if R > .

Proof The linearized matrix of () at the disease free equilibrium E is

A =

⎛
⎜⎝
 –μ –β 
  + β –μ – δ – γ 
 γ  –μ

⎞
⎟⎠ .

Obviously, the eigenvalues of matrix A are λ = λ =  – μ and λ =  + β – μ – δ – γ ,
respectively. The conditions β +μ < ,μ+ δ+γ < , and R <  imply that |λi| < , i = , , .
Therefore, the disease free equilibrium E is asymptotically stable. When R > , we have
λ =  + β –μ – δ – γ > , then the disease free equilibrium E is unstable.
From the second equation of model () and the fact S(t)≤ N(t), we have

I(t + ) ≤ I(t) + βI(t) – (μ + δ + γ )I(t) =
(
 – (μ + δ + γ )( – R)

)
I(t). ()

The conditions μ + δ + γ <  and R <  imply that  <  – (μ + δ + γ )( – R) < . The
recurrent use of inequality () yields

I(t) =
(
 – (μ + δ + γ )( – R)

)tI(). ()

The inequality () implies that limt→∞ I(t) = .
From the fact limt→∞ I(t) = , we know that for any ε > , there exists a large positive

integer T such that I(t) < ε when t ≥ T. Consequently,

R(t + ) = R(t) + γ I(t) –μR(t)≤ R(t) + γ ε –μR(t) for t ≥ T. ()

The equation R̃(t+) = R̃(t)+γ ε–μR̃(t) has a unique equilibrium R̃∗ = γ ε

μ
, which is globally

asymptotically stable. The comparison principle implies that there exists an integer T >
T such that R(t)≤ R̃(t) < γ ε

μ
if t > T. The arbitrary ε implies that limt→∞ R(t) = .

From () we have

N(t) +� – δε –μN(t)≤ N(t + ) ≤ � + ( –μ)N(t) if t > T. ()

From the left inequality of () and the comparison principle, we know that for any given
ε > , there exists an integer T > T such that N(t) ≥ �–δε

μ
– ε for all t > T. From the

right inequality of () and the comparison principle, we know that for any given ε > ,

http://www.advancesindifferenceequations.com/content/2013/1/42


Ma et al. Advances in Difference Equations 2013, 2013:42 Page 5 of 19
http://www.advancesindifferenceequations.com/content/2013/1/42

there exists an integer T > T such that N(t)≤ �
μ
+ ε for all t > T. Let T = T +T, then

the inequalities

� – δε

μ
– ε ≤ N(t)≤ �

μ
+ ε for all t > T,

and the arbitrary ε, ε, and ε imply that limt→∞ N(t) = �
μ
, i.e., limt→∞ S(t) = limt→∞(N(t)–

I(t) – R(t)) = �
μ
. Those limits

lim
t→∞S(t) =

�

μ
, lim

t→∞ I(t) = , lim
t→∞R(t) = 

imply that the disease free equilibrium of () is globally asymptotically stable when
R < . �

R >  means that the average number of a new infection by an infected individual is
more than one. The epidemiological interpretation indicates that the disease may keep
persistent in the population. The following theorem confirms the persistence of the dis-
ease in the case R > .

Theorem  If R > , then the disease will keep persistence in the population, i.e., there
exists a positive ε such that the solution of model () with the initial value I() >  satisfies
lim inft→∞ I(t) > ε.

Proof We define the sets X = � = {(S, I,R) ∈ R

+ | S + I + R ≤ �

μ
}, X = {(S, I,R) ∈ X | I >

,R > }, and ∂X = X\X. Let 
 : X → X, 
t(x) = φ(t,x), be the solution map of model
() with φ(,x) = x and x = (S(), I(),R()). Let M = {
} = (�

μ
, , ) and

M∂ =
{
(S, I,R) ∈ ∂X | 
t(S, I,R) ∈ ∂X,∀t ≥ 

}
.

It is clear that {(S, , ) ∈ ∂X | S ≥ } ⊂M∂ andM∂ = {(S, I,R) ∈ ∂X | I = }. Furthermore,
there is exactly one fixed point 
 of 
 inM∂ . The equation

S(t + ) = � + ( –μ)S(t)

has a positive equilibrium S∗ = �
μ
, which is globally attractive. By using Lemma . in

[], we know that no subset of M forms a cycle in ∂X. The fact 
t((S(), ,R())) =
(S(t), ,R(t)) implies that 
t(M∂ ) ⊂ M∂ . If x = (S(), ,R()) ∈ M∂ , then we have
limt→∞ S(t) = �

μ
, limt→∞ R(t) = limt→∞( –μ)tR() = , and �(M∂ ) = 
.

Since  ≤ I(t) ≤ N(t) and N(t + ) = � +N(t) –μN(t) – δI(t), we have N(t + ) ≥ N(t) +
� – (μ + δ)N(t) and N(t + ) ≤ N(t) + � – μN(t). The difference equation N(t + ) =
� + ( – μ – δ)N(t) has a unique equilibrium N∗

 = �
μ+δ

, and N(t + ) = N(t) + � – μN(t)
has a unique equilibrium N∗

 = �
μ
, which is globally asymptotically stable. Therefore, for

any given ε > , there exists a T >  such that �
(μ+δ) – ε ≤ N(t)≤ �

μ
+ ε for all t ≥ T.

If R > , then we can prove that there exists a small positive number σ such that

lim sup
t→∞

d
(

t

(
S, I,R),


) ≥ σ for
(
S, I,R) ∈ X. ()
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If the conclusion in () does not hold, then for any positive number σ , there exist a point
(Sσ , Iσ ,R

σ ) ∈ X and a large T > T such that

d
(

t

(
Sσ , I


σ ,R


σ

)
,


)
< σ for t > T. ()

The inequality in () implies that

I(t) ≤ σ and S(t) >
�

μ
– σ if t > T. ()

When t > T, the equations in () imply that

N(t + ) ≤ N(t) +� –μN(t),

I(t + ) > I(t) +
β(�

μ
– σ )I(t)
N(t)

– (μ + δ + γ )I(t).
()

From the first inequality in (), we know that there exists a number T > T such that
N(t) ≤ �

μ
holds for all t > T. When t > T, we substitute the inequality N(t) ≤ �

μ
into the

second inequality of () to obtain

I(t + ) > I(t) +
β(� –μσ )I(t)

�
– (μ + δ + γ )I(t)

= I(t)
(
 +

(
R( –μσ /�) – 

)
(μ + δ + γ )

)
. ()

If we choose σ small enough, then the condition R >  implies that

R( –μσ /�) –  >  and  +
(
R( –μσ /�) – 

)
(μ + γ ) > . ()

From the inequalities in () and (), we have that limt→∞ I(t) = ∞. The limit limt→∞ I(t) =
∞ contradicts the inequality I(t) < σ in (). The contradiction comes from the assump-
tion given in (). Therefore, the conclusion in () holds true. Subsequently,Ws(
)∩X =
∅ and 
 is isolated in X. From Theorem .. and Remark .. in [], it follows that 


is uniformly persistent with respect to (X, ∂X). Furthermore, Theorem .. in [] im-
plies that the solutions of model () are uniformly persistent with respect to (X, ∂X)
when R > . That is, there exists an ε >  such that lim inft→∞ I(t) > ε > . �

The conditions in Theorem  and Theorem  are very simple though the proof is long
and complicated. It is very easy to determine whether the disease goes to extinction or
keeps persistence in the population by the magnitude of the basic reproductive number,
R. The underlining mechanism of the nice threshold result given in Theorem  is that
the number of the infected population will gradually become lower and lower if the new
infection created by an individual during his/her infection period is less than one. The
epidemiological interpretation of Theorem  says that there is at least a certain number of
infected population if the new infection created by an individual during his/her infection
period is more than one. The necessary condition is to eliminate an infectious disease, to
reduce R, and to have R < . The basis reproductive number, R, is a very useful quantity
in mathematical analysis and epidemiological application.
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4 The stability of the endemic equilibrium
This section deals with the existence and stability of the endemic equilibrium of model
(). Let E∗(S∗, I∗,R∗) be the endemic equilibrium of model (). Then S∗, I∗, and R∗ satisfy
the following equations:

� –
βS∗I∗

N∗ –μS∗ = ,
βS∗

N∗ – (μ + δ + γ ) = , γ I∗ –μR∗ = ,

where N∗ = S∗ + I∗ +R∗. By straightforward and careful calculations, we know that model
() has a unique endemic equilibrium when R >  with

S∗ =
�(μ + γ )

μ((μ + δ + γ )(R – ) + (μ + γ ))
,

I∗ =
�(R – )

(μ + δ + γ )(R – ) + (μ + γ )
, R∗ =

γ I∗

μ
.

The local stability of the endemic equilibrium E∗ is given in the following theorem.

Theorem  If R > , then the endemic equilibrium E∗ = (S∗, I∗,R∗) of model () is locally
asymptotically stable.

Proof In order to discuss the stability of the endemic equilibriumofmodel (), we consider
the following equivalent system:

⎧⎪⎪⎨
⎪⎪⎩
N(t + ) =N(t) +� –μN(t) – δI(t),

I(t + ) = I(t) + (μ + δ + γ )(R – )I(t) – βI(t)
N(t) – βI(t)R(t)

N(t) ,

R(t + ) = R(t) + γ I(t) –μR(t).

()

When R > , the positive equilibrium of system () is (N∗, I∗,R∗), where

N∗ =
�(μ + γ )R

μ((μ + δ + γ )(R – ) + (μ + γ ))
.

The linearization matrix of () at the positive equilibrium (N∗, I∗,R∗) is

A =

⎛
⎜⎝

 –μ –δ 
βI∗(I∗+R∗)

N∗  – βI∗
N∗ – βI∗

N∗
 γ  –μ

⎞
⎟⎠ .

The characteristic equation of matrix A is

φ(λ) = ( –μ – λ)
(
( –μ – λ)

(
 –

βI∗

N∗ – λ

)
+

γβI∗

N∗ +
δβI∗(I∗ + R∗)

N∗

)
.

We see that the equation φ(λ) =  has an eigenvalue  < λ =  –μ < . Therefore, in order
to determine the stability of the positive equilibrium of model (), we discuss the roots
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of the following equation:

φ(λ) = ( –μ – λ)
(
 –

βI∗

N∗ – λ

)
+

γβI∗

N∗ +
δβI∗(I∗ + R∗)

N∗

= λ –
(
 –μ –

βI∗

N∗

)
λ + ( –μ)

(
 –

βI∗

N∗

)
+

γβI∗

N∗ +
δβI∗(I∗ + R∗)

N∗ .

When R > , the calculation yields

φ() =  –
(
 –μ –

βI∗

N∗

)
+ ( –μ)

(
 –

βI∗

N∗

)
+

γβI∗

N∗ +
δβI∗(I∗ + R∗)

N∗

=
μβI∗

N∗ +
γβI∗

N∗ +
δβI∗(I∗ + R∗)

N∗ > ,

φ(–) =  +
(
 –μ –

βI∗

N∗

)
+ ( –μ)

(
 –

βI∗

N∗

)
+

γβI∗

N∗ +
δβI∗(I∗ + R∗)

N∗

= 
(
 –μ –

βI∗

N∗

)
+  +

μβI∗

N∗ +
γβI∗

N∗ +
δβI∗(I∗ + R∗)

N∗

> ( –μ – β) +  +
μβI∗

N∗ +
γβI∗

N∗ +
δβI∗(I∗ + R∗)

N∗ > .

Furthermore, the constant term satisfies

c = ( –μ)
(
 –

βI∗

N∗

)
+

γβI∗

N∗ +
δβI∗(I∗ + R∗)

N∗

=  –μ –
βI∗

N∗ +
γβI∗

N∗ +
δβI∗

N∗
R – 
R

<  –μ – ( –μ – δ – γ )
βI∗

N∗ < .

The Jury criterion [] implies that the two roots, λ and λ, of the equation φ(λ) = 
satisfy |λ| <  and |λ| < . The linearization theory implies that the positive equilibrium
(N∗, I∗,R∗) of system () is locally asymptotically stable if R > , i.e., the endemic equi-
librium E∗ of system () is locally asymptotically stable. �

The global stability of the endemic equilibrium E∗ of model () is quite difficult. Suf-
ficient conditions are presented in two theorems for the special case δ =  and for the
general case.

Theorem Assume that δ = . The endemic equilibrium E∗(S∗, I∗,R∗) of model () is glob-
ally asymptotically stable if R > μ+γ

μ
and γ < μ.

Proof When δ = , the host population N(t) = S(t) + I(t) + R(t) satisfies

N(t + ) = � + ( –μ)N(t), N() =N > , ()

which has the solution

N(t) =
�( – ( –μ)t)

μ
+ ( –μ)tN.

http://www.advancesindifferenceequations.com/content/2013/1/42
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From the solution of the host population, we have that limt→∞ N(t) = N∗ = �
μ
, and the

limit of N(t) is independent of the initial value N.
The global stability of the endemic equilibrium, E∗, of model () is equivalent to the

global stability of the endemic equilibrium E∗
N (N∗,S∗, I∗) of the following model:

⎧⎪⎪⎨
⎪⎪⎩
N(t + ) = � + ( –μ)N(t),

S(t + ) = S(t) +� – βS(t)I(t)
N(t) –μS(t),

I(t + ) = I(t) + βS(t)I(t)
N(t) – (μ + γ )I(t).

()

The first equation of model () is independent of other two state variables S(t) and I(t).
The fact that limt→∞ N(t) =N∗ leads to the following limit model:

⎧⎨
⎩S(t + ) = S(t) +� – βμS(t)I(t)

�
–μS(t),

I(t + ) = I(t) + βμS(t)I(t)
�

– (μ + γ )I(t).
()

The limitingmodel () possesses the same dynamical property as that of model (). Both
equations of model () are nonlinear, but with a similar term βμS(t)I(t)

�
. We introduce the

new variable L(t) = S(t) + I(t) to have one linear equation, then we have

L(t + ) = L(t) +� – γ I(t) –μL(t),

I(t + ) = I(t) +
βμ(L(t) – I(t))I(t)

�
– (μ + γ )I(t).

()

The global stability of the positive equilibrium of model () is equivalent to that of model
(). From the inequality  ≤ I(t) ≤ L(t) and the first equation of (), we have

L(t + ) ≤ L(t) +� –μL(t),

L(t + ) ≥ L(t) +� – (μ + γ )L(t).
()

From those two inequalities in () and the comparison theorem [], we know that for
any small ε > , there exists a positive integer Tl such that Ll ≤ L(t)≤ Lm for t > Tl , where
Ll =

�
μ+γ

– ε and Lm = �
μ
+ ε.

When t ≥ Tl , we substitute Ll ≤ L(t) ≤ Lm into the second equation of () to obtain

I(t + ) ≤ I(t) +
βμ(Lm – I(t))I(t)

�
– (μ + γ )I(t),

I(t + ) ≥ I(t) +
βμ(Ll – I(t))I(t)

�
– (μ + γ )I(t).

()

We consider the following two difference equations corresponding to the inequalities in
():

⎧⎨
⎩Im (t + ) = Im (t) +

βμ(Lm –Im (t))Im (t)
�

– (μ + γ )Im (t),

Il(t + ) = Il(t) +
βμ(Ll–I

l
(t))I

l
(t)

�
– (μ + γ )Il(t).

()

http://www.advancesindifferenceequations.com/content/2013/1/42


Ma et al. Advances in Difference Equations 2013, 2013:42 Page 10 of 19
http://www.advancesindifferenceequations.com/content/2013/1/42

We substitute Im (t) =
�+βμLm –�(μ+γ )

βμ
xm (t) and Il(t) =

�+βμLl–�(μ+γ )
βμ

xl(t) into the first and
the second equations of () to have

⎧⎨
⎩xm (t + ) = rm xm (t)( – xm (t)), with rm =  – (μ + γ ) + βμLm

�
,

xl(t + ) = rlxl(t)( – xl(t)), with rl =  – (μ + γ ) + βμLl
�

.
()

The variables xm (t) and xl(t) satisfy the quadratic difference equation. The well-known
result of the famous populationmodel x(t+) = rx(t)(–x(t)) says that x∗

 =  is the unique
and globally asymptotically stable equilibrium if  < r < , whereas x∗

 =  – 
r is the unique

positive equilibrium if  < r <  and x∗
 is globally asymptotically stable. The result on the

quadratic population model x(t + ) = rx(t)( – x(t)) implies that the first equation in ()
has a positive equilibrium Im∗ = Lm – �

μR
, which is globally asymptotically stable. A similar

argument implies that the second equation in () has a positive equilibrium Il∗ = Ll –
�

μR
,

which is globally asymptotically stable if R > μ+γ

μ
.

The asymptotical stability and the comparison theory imply that there exists a Ti ≥ Tl

such that Il ≤ I(t) ≤ Im for all t > Ti, where Il = Il∗ – ε and Im = Im∗ + ε. When t ≥ Ti, we
substitute the inequality Il ≤ I(t) ≤ Im into the first equation of () and have

L(t + ) ≤ L(t) +� –μL(t) – γ Il,

L(t + ) ≥ L(t) +� –μL(t) – γ Im .
()

From () and a similar argument, we can obtain that there exists a positive integer Tl

such that Ll ≤ L(t) ≤ Lm for all t ≥ Tl , where Ll =
�–γ Im

μ
– ε, Lm = �–γ Il

μ
+ ε, and Ll < Ll <

Lm < Lm .
When t ≥ Tl , the inequality Ll ≤ L(t) ≤ Lm and the second equation of () imply that

I(t + ) ≤ I(t) +
βμ(Lm – I(t))I(t)

�
– (μ + γ )I(t),

I(t + ) ≥ I(t) +
βμ(Ll – I(t))I(t)

�
– (μ + γ )I(t).

()

A similar argument implies that there exists a Ti ≥ Tl such that Il ≤ I(t) ≤ Im for all
t > Ti, where Il = Ll –

�
μR

– ε and Im = Lm – �
μR

+ ε. After substituting Lm = �–γ Il
μ

+ ε and

Ll =
�–γ Im

μ
– ε into the equations Im = Lm – �

μR
+ ε and Il = Ll –

�
μR

– ε, we have

⎧⎨
⎩Im = – γ Il

μ
+ �(R–)

Rμ
+ ε,

Il = – γ Im
μ

+ �(R–)
Rμ

– ε.
()

Equations in () hold when t > Ti and Il ≤ I(t) ≤ Im . From the mathematical induction,
we know that there exist sequences Tkl , Tki, Llk , L

m
k , I

l
k , and Imk such that Ilk < I(t) < Imk for

all t > Tki. Furthermore, Ilk and Imk satisfy the following recurrence equations:

⎧⎨
⎩Imk+ = – γ Ilk

μ
+ �(R–)

Rμ
+ ε,

Ilk+ = – γ Imk
μ

+ �(R–)
Rμ

– ε.
()
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() is a linear system of difference equations. System () has a positive equilibrium
Pi∗(Il∗(ε), Im∗ (ε)), where

Il∗(ε) =
μ� –�γ + �(γ –μ)

β
– εμ – εμγ

μ – γ  ,

Im∗ (ε) =
� – γ Il∗(ε)

μ
–

�(μ + γ )
βμ

+ ε.

()

Let λ and λ be two roots of the linearized matrix of system () at the equilibrium
Pi∗. It is easy to see that |λ| = |λ| = γ

μ
<  if γ < μ. The stability theory of difference

equations implies that the equilibrium Pi∗ of () is globally asymptotically stable, i.e.,
limk→∞ Ilk = Il∗(ε) and limk→∞ Imk = Im∗ (ε). From the expressions of Il∗(ε) and Im∗ (ε), we have
that limε→ Il∗(ε) = limε→ Im∗ (ε) = �(R–)

β
. From the inequality Ilk < I(t) < Imk and those lim-

its, we obtain that limt→∞ I(t) = �(R–)
β

.
Similarly, we can prove that the sequences {Llk} and {Lmk } satisfy a linear system of dif-

ference equations. The sequences {Llk} and {Lmk } tend to the same limit when k tends to
infinity and ε tends to zero, i.e.,

lim
k→∞

Llk = lim
k→∞

Lmk =
�(βμ + γ (μ + γ ))

μ(μ + γ )β
as ε → .

The inequality Llk < L(t) < Lmk and the limit imply limt→∞ L(t) = �(βμ+γ (μ+γ ))
μ(μ+γ )β . Finally, we

have

lim
t→∞S(t) = lim

t→∞
(
L(t) – I(t)

)
=

�(μ + γ )
μβ

and

lim
t→∞R(t) = lim

t→∞
(
N(t) – L(t)

)
=

�γ (R – )
μβ

.

Therefore, the endemic equilibrium of system () is globally asymptotic stable when
R > μ+γ

μ
and γ < μ. Equivalently, the endemic equilibrium of system () is globally asymp-

totic stable. �

The comparison principle is the main idea to prove Theorem . The limitation of the
method and the construction of the comparison equationsmay lead to the imposed condi-
tions R > μ+γ

μ
and γ ≤ μ. We do hope that the global stability of the endemic equilibrium

can be proved under the condition R > .When δ > , the global stability condition of en-
demic equilibrium ismore complicated.We use the same idea to get the sufficient stability
conditions.

Theorem  If μ > δ + γ , μ > (μ+δ)(μ+δ+γ )
+μ+δ+γ

and

max

{
μ + δ + γ

μ
,

δ

μ – δ – γ

}
< R <

(
 +


μ + δ + γ

)
μ

μ + δ
,

then the endemic equilibrium E∗(S∗, I∗,R∗) of model () is globally asymptotically stable.
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Proof Let L(t) = S(t) + I(t) and N(t) = L(t) + R(t). We consider the equivalent model

N(t + ) =N(t) +� –μN(t) – δI(t),

L(t + ) = L(t) +� – (δ + γ )I(t) –μL(t), ()

I(t + ) = I(t) + β
L(t) – I(t)

N(t)
I(t) – (μ + δ + γ )I(t).

The definitions of L(t) and N(t) show that  ≤ I(t) ≤ L(t) ≤ N(t). The global stability of
endemic equilibrium () is equivalent to that of model (). From the first equation of
system (), we have

N(t + ) ≤ N(t) +� –μN(t),

N(t + ) ≥ N(t) +� – (μ + δ)N(t).
()

From () and the comparison theorem, we know that for any small ε > , there exists
a positive integer Tn such that Nl

 ≤ N(t) ≤ Nm
 for all t > Tn, where Nl

 =
�

μ+δ
– ε and

Nm
 = �

μ
+ ε. From the second equation of system (), we have

L(t + ) ≤ L(t) +� –μL(t),

L(t + ) ≥ L(t) +� – (μ + δ + γ )L(t).
()

From () and the comparison theorem [], we know that there exists a positive integer
Tl such that Ll ≤ L(t)≤ Lm for all t > Tl , where Ll =

�
μ+γ+δ

– ε and Lm = �
μ
+ ε.

When t > Tc =max{Tn,Tl}, the inequalities Nl
 ≤ N(t) ≤ Nm

 , Ll ≤ L(t) ≤ Lm , and the
third equation of () can yield

I(t + ) ≤ I(t) + β
Lm – I(t)

Nl


I(t) – (μ + δ + γ )I(t),

I(t + ) ≥ I(t) + β
Ll – I(t)
Nm


I(t) – (μ + δ + γ )I(t).

()

The comparison equations corresponding to those inequalities in (),

Im (t + ) = Im (t) + β
Lm – Im (t)

Nl


Im (t) – (μ + δ + γ )Im (t),

Il(t + ) = Il(t) + β
Ll – Il(t)

Nm


Il(t) – (μ + δ + γ )Il(t)
()

are the quadratic difference equations of the form x(t + ) = rx(t)( – x(t)). When μ >
(μ+δ)(μ+δ+γ )

+μ+δ+γ
and μ+δ+γ

μ
< R < (+ 

μ+δ+γ
) μ

μ+δ
, the well-know result on the populationmodel

x(t + ) = rx(t)( – x(t)) and the comparison theorem imply that there exists an integer
Ti > Tc such that Il ≤ I(t) ≤ Im for all t > Ti, where Il = Ll –

Nm


R
– ε and Im = Lm – Nl


R

+ ε.
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When t ≥ Ti, we use the inequality Il ≤ I(t) ≤ Im in the first two equations of system
() to get

N(t + ) ≤ N(t) +� –μN(t) – δIl,

N(t + ) ≥ N(t) +� –μN(t) – δIm ,

L(t + ) ≤ L(t) +� –μL(t) – (δ + γ )Il,

L(t + ) ≥ L(t) +� –μL(t) – (δ + γ )Im .

()

A similar argument implies that there exists a positive integer Tc such that Nl
 ≤ N(t) ≤

Nm
 and Ll ≤ L(t) ≤ Lm hold for t > Tc, where Nl

 = �–δIm
μ

– ε, Nm
 = �–δIl

μ
+ ε, Ll =

�–(γ+δ)Im
μ

– ε, Lm = �–(γ+δ)Il
μ

+ ε, Nl
 <Nl

 <Nm
 <Nm

 , and Ll < Ll < Lm < Lm . When t > Tc,
we use those estimates of N(t) and L(t) in the third equation of () and obtain the fol-
lowing inequalities:

I(t + ) ≤ I(t) + β
Lm – I(t)

Nl


I(t) – (μ + δ + γ )I(t),

I(t + ) ≥ I(t) + β
Ll – I(t)
Nm


I(t) – (μ + δ + γ )I(t).

()

When μ > (μ+δ)(μ+δ+γ )
+μ+δ+γ

and μ+δ+γ

μ
< R < ( + 

μ+δ+γ
) μ

μ+δ
, a similar procedure as aforemen-

tioned can imply that there exists an integer Ti > Tc such that Il ≤ I(t)≤ Im for all t > Ti,
where Il = Ll –

Nm


R
– ε and Im = Lm – Nl


R

+ ε.
By using the mathematical induction, we obtain the sequences Tki, Nl

k , N
m
k , Llk , L

m
k , I

l
k ,

and Imk such that

Nl
k ≤ N(t)≤ Nm

k , Llk ≤ L(t) ≤ Lmk , Ilk ≤ I(t) ≤ Imk , t > Tik .

Furthermore, Ilk and Imk satisfy the following recurrence equations:

Imk+ = –
δ + γ

μ
Ilk +

δ

Rμ
Imk +

�(R – )
Rμ

+
ε

R
+ ε,

Ilk+ = –
δ + γ

μ
Imk +

δ

Rμ
Ilk +

�(R – )
Rμ

–
ε

R
– ε.

()

() is a linear system of difference equations. Let z(k) = (Imk , I
l
k)τ , b = (�(R–)

Rμ
+ ε

R
+

ε, �(R–)
Rμ

+ ε
R

+ ε)τ , and

B =

(
δ

Rμ
– δ+γ

μ

– δ+γ

μ
δ

Rμ

)
,

then system () becomes

z(k + ) = Bz(k) + b = Bk–b + · · · + Bb + b + Bkz(). ()

If the conditions of Theorem  hold, then we know that the two eigenvalues of matrix B
satisfy |λj| <  (j = , ), and the matrix series

∑∞
k= Bk converges to (I – B)–. Under the
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conditions of Theorem , we can have limk→∞ z(k) = (I – B)–b, i.e., z∗ = (Im∗ , Il∗) = ((I –
B)–b)τ is the globally stable equilibrium of (). Further calculation shows that

lim
ε→

(
Im∗ , Il∗

)
=

(
�(R – )

(μ + δ + γ )(R – ) + (μ + γ )
,

�(R – )
(μ + δ + γ )(R – ) + (μ + γ )

)
.

After taking ε → , we have

lim
k→∞

Ilk = lim
k→∞

Imk =
�(R – )

(μ + δ + γ )(R – ) + (μ + γ )
and

lim
t→∞ I(t) =

�(R – )
(μ + δ + γ )(R – ) + (μ + γ )

=
�(R – )

β – δ
.

A similar argument implies that

lim
k→∞

Nl
k = lim

k→∞
Nm

k =
�(μ + γ )R

μ((μ + δ + γ )(R – ) + (μ + γ ))
,

lim
t→∞N(t) =

�(μ + γ )R

μ((μ + δ + γ )(R – ) + (μ + γ ))
,

lim
k→∞

Llk = lim
k→∞

Lmk =
�(μ + γ ) +�(R – )μ

μ((μ + δ + γ )(R – ) + (μ + γ ))
,

lim
t→∞L(t) =

�(μ + γ ) +�(R – )μ
μ((μ + δ + γ )(R – ) + (μ + γ ))

.

Those limits lead to

lim
t→∞S(t) = lim

t→∞
(
L(t) – I(t)

)
=

�(μ + γ )
μ((μ + δ + γ )(R – ) + (μ + γ ))

=
�(γ +μ)(R – )

β – δ
,

lim
t→∞R(t) = lim

t→∞
(
N(t) – L(t)

)
=

�γ (R – )
μ((μ + δ + γ )(R – ) + (μ + γ ))

=
�γ (R – )
μ(β – δ)

.

Therefore, the endemic equilibrium of system () is globally asymptotic stable when the
conditions of Theorem  hold. �

There are some parameter values which can satisfy the conditions of Theorem . For
example, if δ = γ = , those conditions become μ > ,  + μ > ,  < R <  + 

μ
. Then, for

μ > , we know that the conditions of Theorem  will hold if δ and γ are small enough.

5 Numerical simulations
In this section, we carry out numerical simulations to demonstrate our theoretical results
and the complex dynamics of model () for several sets of parameters and initial values.
We use the SIR model to simulate the mumps infection in China, too.

5.1 Simulations of model (1)
The simulations in this subsection demonstrate our theoretical results or the complex
dynamics of the model. The parameter values for those simulations are selected mathe-
matically to let the model exhibit required dynamics.
When δ = , we choose μ = ., γ = ., � = , and β = ., then γ < μ, μ+γ

μ
=

., and R = . > .. Theorem  implies that the endemic equilibrium E∗(S∗, I∗,R∗)
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of () is globally asymptotically stable. The number of the infectious individuals for two
solutions with different initial values are shown in Figure (a). From Figure (a) we see that
the number of infected people approaches its equilibrium value as t tends to infinity. For
the same values of δ, μ, γ , and �, the straightforward calculation yields R ∈ (, .) if β ∈
(., .), which does not satisfy the condition R > μ+γ

μ
of Theorem . On the other

hand, the simulation shows that the endemic equilibrium of model () may be globally
asymptotically stable even if the condition R > μ+γ

μ
of Theorem  does not hold. The

solution curves of the infected people for β = . and two different initial values are given
in Figure (b). Those simulations remind us that the condition R > μ+γ

μ
of Theorem may

not be necessary for the global stability. It is a pity that we cannot prove the global stability
without the condition R > μ+γ

μ
.

For the case δ > , we choose δ = ., μ = ., γ = ., and � = . Then we have
max{ δ

μ–δ–γ
, μ+δ+γ

μ
} = ., ( + 

μ+δ+γ
) μ

μ+δ
= ., μ > (μ+δ)(μ+δ+γ )

+μ+δ+γ
, and μ > δ + γ . The-

orem  implies that the endemic equilibrium E∗ is globally asymptotically stable when
. < R < .. Figure (c) shows the global stability of the endemic equilibrium of
model () for β = . and R = . > . The straightforward calculation shows that
R ∈ (, .) for those parameter values and β ∈ (., .). Although R ∈ (, .) does
not satisfy the conditions of Theorem , the numerical simulation shows that the endemic
equilibrium of model () may still be globally asymptotically stable for R ∈ (, .). Fig-
ure (d) gives the number of the infected people for β = . and R = ., where the
condition of Theorem  does not hold, but the number of infected people approaches its
equilibrium.

Figure 1 The global stability of the endemic equilibrium of model ().
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Figure 2 The bifurcation diagram of the endemic equilibria and periodic solutions of model ().

From the epidemiological interpretation, we assume that the inequalities  < μ+δ+γ < 
and β +μ <  hold. If those two inequalities hold, then all solutions of model () with pos-
itive initial values are non-negative, and the numerical simulations show that model ()
does not exhibit complex dynamics. If those two inequalities do not hold, then model
() may exhibit much more complicated dynamical behaviors. The numerical simulation
demonstrates that there exists a sequence of period-doubling bifurcation to chaos. Let us
take μ = ., γ = ., δ = ., and � =  to investigate the period doubling pro-
cess of model (). For small R (a linear function of β), the endemic equilibrium is unique
and globally asymptotically stable (see Figure (a)). When R passes through ., the
endemic equilibrium losses its stability, and a stable periodic solution of period  appears
(see Figure (b)). When R passes through ., the periodic solution of period  losses
its stability, and a stable periodic solution of period four appears (see Figure (c)). As R in-
creases further, the periodic solution of period  becomes unstable, and a periodic solution
of period  appears. The numerical simulation shows that the period-doubling bifurcation
may continue and go to chaos (see Figure (d)).

5.2 Application of model (1)
The simulation in this subsection is an application of the SIR model to the mumps in-
fection in China. The model parameters are estimated according to the demographic and
epidemiological data in China from  to . We have compared the model simu-
lation result of the number of annual mumps cases to the reported number of notifiable
diseases.
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Mumps, caused by the mumps virus, is an acute respirator infectious disease and it is
spread from person to person by coughing or sneezing. Mumps usually starts with a fever
and headache for a day or two. It then presents with swelling and soreness of the parotid
salivary gland. Themain symptom ofmumps is the swollen, painful salivary glands on one
or both sides of the face. The entire course ofmumps infection is  to  days. The infected
people will obtain permanent immunity after they get recovered from infection. The SIR
model is suitable to describe the infection of mumps due to its permanent immunity. The
host population is chosen to be individuals who are younger than  since mumps is com-
mon in children and adolescents, but rare among adults. The values of model parame-
ters are estimated from the demographic and epidemiological data in China from  to
.
In the application of the SIR model, the simulation time unit is taken as one day. All

the parameter values will be estimated on the basis of that time unit. From the statistical
yearbook of China, we know that the number of the host population (less than twenty
years old) in  is  million []. The annual birth rate in China from  to 
is approximately /,, and the recruitment rate is taken as � = , [–]. The
annual death rate of the population is ./, [, ], hence, the daily death rate is
./,,. Since the age of the host population is less than twenty, an individual
should be removed when his/her age is over twenty. The daily removed rate is taken to
be /,, and the value of parameter μ is estimated to be μ = . + . =
.. From the fact that the entire course of mumps infection is  to  days, we
take γ = / = . []. From the report on notifiable infectious diseases in China, we
take δ = ..
The initial time is taken to be January first of . From the data of China population

and notifiable diseases in  [], the initial values are taken to be S() = ,,,
I() = ,, and R() = ,,, respectively. By using themethod of parameter estima-
tion in [], we have β = .. After the parameters and initial values are set, we apply
the SIS model to simulate the mumps infection in China from  to . The simu-
lation results are shown in Figure . The top left plot is the number of the susceptibles,
S(t), which shows a slow downward tendency. From the demographic data in China, we
know that the number of the population younger than twenty is  million in , 
million in , and  million in  [, , ]. The change of the host population
in our simulation is consistent with the observed data. The top right is the number of the
infective, I(t), which shows the slow upward tendency. The bottom left is the number of
the recovered R(t). The curve in the bottom right plot is the number of newmumps infec-
tion cases from  to  by a model simulation. The piecewise curve with stars is the
number of annually reportedmumps cases out of notifiable infectious diseases from 
to  []. The comparison between the model simulation and the notifiable disease
report demonstrates that our model can give a good prediction for infection diseases.

6 Conclusion
SIR models are suitable to describe the transmission of infectious diseases with life long
immunity. A lot of continuous SIR models with various transmission rates have been for-
mulated and studied. The global stability of the endemic equilibrium of the continuous
SIRmodel has been investigated extensively andmany sufficient conditions have been ob-
tained. Nevertheless, the discrete SIR model and its dynamics are quite few. In this paper,
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Figure 3 The simulation of mumps infection in China from 2005 to 2015.

we have formulated a discrete SIR epidemicmodel and studied its asymptotical behaviors.
Especially, we have got some sufficient conditions for the global stability of the endemic
equilibrium. We have also applied the SIR model to the mumps infection in China. The
model simulation results match the reported data of the notifiable diseases well.
Although the SIRmodel considered in this paper is quite simple, it exhibits very compli-

cated dynamical behavior. The complicated dynamics of the simple SIRmodel reminds us
that we cannot expect to have the global stability of the endemic equilibrium when R > .
Other conditions should be given for the global stability. In this paper we have obtained
sufficient conditions for the global stability of the endemic equilibrium. Although those
conditions given in our paper are not satisfactory, our result is a good exploration of the
challengeable problem. We expect to prove the global stability of the endemic equilib-
rium when R is not large. The comparison principle used in this paper and the Lyapunov
function may help us to have better results.
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