Garge et al. BMC Bioinformatics 2013, 14:125
http://www.biomedcentral.com/1471-2105/14/125

BMC
Bioinformatics

SOFTWARE Open Access

Random forest methodology for model-based
recursive partitioning: the mobForest package

for R

Nikhil R Garge’, Georgiy Bobashev and Barry Eggleston

Abstract

importance plot.

Background: Recursive partitioning is a non-parametric modeling technique, widely used in regression and
classification problems. Model-based recursive partitioning is used to identify groups of observations with similar
values of parameters of the model of interest. The mob() function in the party package in R implements model-
based recursive partitioning method. This method produces predictions based on single tree models. Predictions
obtained through single tree models are very sensitive to small changes to the learning sample. We extend the
model-based recursive partition method to produce predictions based on multiple tree models constructed on
random samples achieved either through bootstrapping (random sampling with replacement) or subsampling
(random sampling without replacement) on learning data.

Results: Here we present an R package called “mobForest” that implements bagging and random forests
methodology for model-based recursive partitioning. The mobForest package constructs large number of model-
based trees and the predictions are aggregated across these trees resulting in more stable predictions. The package
also includes functions for computing predictive accuracy estimates and plots, residuals plot, and variable

Conclusion: The mobForest package implements a random forest type approach for model-based recursive
partitioning. The R package along with it source code is available at http://CRAN.R-project.org/package=mobForest.

Keywords: Random forests, Model-based recursive partitioning, Ensemble, R

Background

Recursive partitioning is a non-parametric modeling tech-
nique, widely used in regression and classification prob-
lems. Recursive partitioning methods like Random
Forests™ [1] are able to deal with large number of predictor
variables even in the presence of complex interactions.
“Classification and regression trees” (CART) [2] is one of
the most commonly used recursive partitioning methods
that can select from among a large number of variables that
are most important in explaining the outcome variable.
The basic idea of CART algorithm is to sequentially split
the data to identify groups of observations with similar
values of response variable. During each step, a number of
bivariate association models are run using every suspected

* Correspondence: ngarge@rti.org

Health Sciences Division, Social, Statistical and Environmental Sciences,
Research Triangle Institute, 3040 Cornwallis Road, Cox 342, Research Triangle
Park, NC 27709, USA

(BiolMed Central

predictor variable, and the one that has the strongest asso-
ciation with the response variable is selected. Then the data
is split into two or more subgroups based on the optimal
cutpoint in the selected predictor [3]. Thus the selected
predictor becomes a partitioning variable. For binary pre-
dictor the split is unambiguous, but for a continuous one
the bets split is used and the strength of association is usu-
ally adjusted for multiple choices, Strobl et al. 2009 [3]. The
subrgoups formed by such split are often called nodes or
“leafs”. The partitioning of the data continues till a stopping
condition is met such as a) nodes contain observations of
only one class, b) no predictor variable shows strong associ-
ation within a given node, ¢) number of observations within
a node are less than the specified minimum threshold.
Model-based recursive partitioning [4] partitions the
groups of observations with similar model trends (between
another predictor variable and the response variable). This
is different from partitioning that identifies groups of

© 2013 Garge et al, licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

http://cran.r-project.org/package=mobForest
mailto:ngarge@rti.org
http://creativecommons.org/licenses/by/2.0

Garge et al. BMC Bioinformatics 2013, 14:125
http://www.biomedcentral.com/1471-2105/14/125

observations that show similar value of the response vari-
able. For example, a linear regression could be used to
model the efficacy of treatments considered in a study.
However, the treatment effects as well as the intercept
parameter of this model may be different for different sub-
groups of patients. In this example, the model of interest
relates treatment and clinical response but the model
parameters can be different for different subgroups.
“Model-based recursive partitioning” partitions the feature
space to identify subgroups of patients with similar treat-
ment effects and predicts clinical response based on the
estimated treatment effects within different subgroups.
The mob() function [4] implemented in the “party” pack-
age in R [5] allows one to perform model-based recursive
partitioning. This function takes the model of interest and
partition variables (covariates specifying the feature space
that are used as splitting variables in a model-based tree)
as input arguments and returns a tree with fitted models
in each terminal node.

Regardless of the choice of recursive partitioning
method (model-based or CART), single tree models could
be instable to small changes in learning data. In other
words, a slight change in learning sample can produce
substantially different tree structures thereby inducing high
variability in predictions obtained across trees [3]. There-
fore, ensemble methods like “bagging” [6] and “random
forests” - random selection of features (sets of predictor
variables) - are commonly exercised to build large number
of tree models and aggregate predictions cross the diverse
set of trees to obtain stablepredictions [6-9]. Both the
methods, bagging and random forests, construct trees on
random samples of learning data. Random sampling is
achieved either through bootstrapping (random sampling
with replacement) or subsampling (sampling without
replacement). Bagging, involves fitting trees to each
random sample while considering the complete set of
predictor variables during the process of splitting a tree
node. “Random forests” produces a more diverse set of
trees because at each level of a tree, a random subset of
predictor variables is considered from which one might be
selected for splitting the node. This allows a tree model to
incorporate useful but weaker predictors that otherwise
would be dominated by stronger predictors [3].

The main objective of this paper is to introduce the
mobForest R package which implements random forest
for both bagging and random variable selection method-
ology for model-based recursive partitioning. The
mobForest package is available from the Comprehensive R
Archive Network (CRAN) at http://CRAN.R-project.org/
package=mobForest. This package computes predictions
on multiple model-based trees that are constructed
through random forest methodology. Predictions are
aggregated across trees to produce stable predictions. The
package provides functions to compute predictive accuracy

Page 2 of 8

estimates on individual trees and the complete mobForest.
Predictive performance is computed on out-of-bag (OOB)
cases — cases not used in a tree building process [4]. The
metrics implemented to compute predictive performance
are “pseudo R*” and mean square error (MSE) for continu-
ous outcome and “proportion of correctly classified” (PCC)
for binary outcome. The pseudo R* predictive accuracy
metric is defined as the proportion of total variation in
outcome explained by the tree model (or forest). Both
metrics “pseudo R*” and PCC range between 0 and 1. The
mobForest package computes variable importance scores
and provides functions to draw variable importance and
predictive performance plots. This package can use
multiple cores/processors for parallel computation. The
parallel package that supports parallel computing (in R) is
utilized for building trees on multiple cores/processors
simultaneously. The computation time is greatly reduced if
the analysis is run on a multi-core machine.

Implementation

Overview of functions available in mobForest package
The mobForest package contains functions for constructing
model-based trees incorporating random forest meth-
odology, computing predictions, predictive accuracy
estimates, residuals plot, and variable importance plot.
The detailed description of all the implemented func-
tions is provided in the manual posted at CRAN
(http://CRAN.R-project.org/package=mobForest). Here
we outline most important functions.

Tree modeling

The main function used to develop model-based trees
incorporating random forest methodology is called
mob_rf tree(). The mob_rf tree() is a modified version of
mob() function, implemented in the party package in R.
The source code in the mob() function was modified such
that a random subset of partitioning variables is selected
during the process of splitting a tree node.. From this
subset, a variable associated with the highest “parameter
instability” [4] is selected as a splitting variable.

Setting up forest controls

Before starting the analysis the users are recommended to
specify the parameters that control forest growth. The
parameters can be set using mobForest_control() function
that returns an object of S4 class mobForestControl
containing forest controls. The parameters include:

e ntree: Number of trees to be constructed in
mobForest (default = 300)

e mtry = number of input variables randomly
sampled as candidates at each node (default
is one-third of the number of partitioning
variables).

http://cran.r-project.org/package=mobForest
http://cran.r-project.org/package=mobForest
http://cran.r-project.org/package=mobForest

Garge et al. BMC Bioinformatics 2013, 14:125
http://www.biomedcentral.com/1471-2105/14/125

e replace = TRUE/FALSE. replace = TRUE performs
bootstrapping. replace = FALSE (default) performs
sampling without replacement.

e fraction: number of observations to draw without
replacement (default is 0.632). This parameter is
relevant only if replace = FALSE).

e mob.control: Object, implemented in party package,
used to set up control parameters for building
model-based trees. A few important parameters in
this object include:

o alpha: A node is considered for splitting if the p
value for any partitioning variable in that node
falls below alpha (default 1).

o Bonferroni: logical. Should p values be
Bonferroni corrected? (default FALSE).

o minsplit: integer. The minimum number of
observations (sum of the weights) in a node
(default 20).

The main function mobForestAnalysis()

The mobForest package provides one main function
called mobForestAnalysis() that takes all the necessary
parameters as input arguments to start the mobForest
analysis for model-based recursive partitioning. The
input arguments to this function are kept similar to
those in mob() from the party package, so users familiar
with that function have an easy transition to using
mobForestAnalysis(). mobForestAnalysis() takes following
input parameters:

e formula: an object of class formula specifying the
model that will be fit within each node. This should
be of type y ~x1 + ... + xk where the variables x1,
x2, ..., xk are predictor variables and y represents
an outcome variable. In this paper, this model will
be referred to as the node model.

e PartitionVariables: A character vector specifying the
partition variables used to build trees within the
mobForest.

e Data: input dataset that is used for constructing
trees in mobForest. Learning samples and out-of-bag
(OOB) samples are created from this data (using
bootstrapping or subsampling). The mobForest is
constructed using learning samples and validated on
out-of-bag samples.

e mobForest.controls: object of class
mobForestControl returned by mobForest_control(),
that contains parameters controlling the
construction of mobForests.

e model: model of class StatModel used for fitting
observations in current node, and it is used in
the same manner as used in mob(). This
parameter allows fitting a linear model or

Page 3 of 8

generalized linear model with formula

y~x1+... + xk. The parameter “linearModel” fits
linear model. The parameter “glinearModel” fits
Poisson or logistic regression model depending
upon the specification of parameter “family”
(explained next). If “family” is specified as
binomial() then logistic regression is performed.
If the “family” is specified as poisson() then
Poisson regression is performed.

e family: a description of error distribution and link
function to be used in the model, and it is used in the
same manner as used in mob(). This parameter needs
to be specified if generalized linear model is considered.
The parameter “binomial()” is to be specified when
logistic regression is considered and “poisson()” when
Poisson regression is considered. The values allowed
for this parameter are binomial() and poisson().

e newTestData: A data frame representing test data
for independent validation of mobForest model. This
data is not used in the tree building process.

e processors: the number of processors/cores on your
computer. By default only one core is used for
computations. If a computer has more than one
core then increasing this variable to a value less than
or equal to the number of cores will allow the
package to exploit the multi-core parallelism and
produce results relatively faster.

The function mobForestAnalysis() returns an object of
class mobForestOutput which stores results from random
forest analysis. This object stores predicted values, predict-
ive accuracy estimates, residuals and variable importance
scores produced during the analysis. This object is passed
as an input argument to other functions to extract the
relevant results.

Predictions

After constructing a model-based tree on a learning
set using the function mob_rf _tree(), the predicted
values for each subject are computed using the func-
tion treePredictions(). This function, called within
mobForestAnalysis(), takes a dataset and a tree model as
input arguments and returns fitted values of response vari-
able on each observation within the dataset. Based on the
characteristics of each observation, the treePredictions()
function traverses through the tree model to an appropri-
ate terminal node and obtains model parameters to com-
pute fitted values of response variable. If the model of
interest is logistic regression, then the fitted values are pre-
dicted probabilities of a classification (in one category).
The mobForest package summarizes predictions obtained
across multiple model-based trees. The Fitted values are
averaged across the tree models (for each subject) and can
be obtained using the function getPredictedValues(),

Garge et al. BMC Bioinformatics 2013, 14:125
http://www.biomedcentral.com/1471-2105/14/125

which is a S4 method of class mobForestOutput. This
function returns fitted values averaged on OOB data
only, complete data or a new test data (supplied as a
newTestData argument in the function mobForest-
Analaysis()). The getPredictedValues() function takes three
input arguments.

e mobForestOutput object - returned by
mobForestAnalysis()

e OOB = TRUE/FALSE: OOB = TRUE (default)
returns predictions across tree model on out-of-bag
data (combined across all trees). OOB = FALSE
returns predictions on complete data.

e Newdata = TRUE/FALSE. If newdata = TRUE, the
OOB parameter is ignored and the predictions on
the new test data, supplied as a newTestData
argument to mobForestAnalysis(), are returned.
newdata = FALSE (default) ignores newdata
parameter and returns predictions based on the
OOB parameter.

The function getPredictedValues() returns a matrix
with 3 columns. The first column contains average pre-
dicted value for each subject across all the trees models.
The predictions are averaged on OOB data, complete data
or a new test data (as per the input parameter specifica-
tion). The second column contains standard deviation of
predictions, for each subject, across all the tree models.
The third column contains residuals — difference between
observed outcome and expected prediction - for each
subject across the tree models. The residuals are reported
only when linear or Poisson regression is considered as
the node model.

Predictive accuracy and error estimates

Metrics

The OOB cases provide a fair means of performance/
error estimation based on training data alone. The
predictive accuracy estimates are computed differently
for a logistic regression model than linear or Poisson
regression model. When linear or Poisson regression
model is considered, predictive accuracy metric R is
defined as the proportion of total variation in out-
come variable explained by the kth tree on OOB
cases. In case of logistic regression model, the pre-
dicted probabilities for OOB cases are converted into
classes (yes/no, high/low, etc. as specified) based on
the probability cutoff specified by the end user
(default is 0.5 if not specified) and predictive accuracy
PCCy is defined as the proportion of OOB cases
correctly classified by the kth tree model. Both
metrics PCC, and R? range between zero and 1. In
case of linear regression model, R{ is a function of
“sum of squared errors” (SSE,) and “total sum of

Page 4 of 8

squares” (SSTOy) on OOB data used to build the kth
tree. It is computed as

SSEy
RE=1-— 1
k SSTOk ()
where,
n N2
SSEc= . (=) (2)
SSTOr =" (3 —3)° (3)

and y, is the observed outcome for xth OOB case, 7,
is the predicted outcome for xth OOB case, n is the
number of OOB cases not considered in building kth
tree, and y is the mean observed outcome of OOB
cases. It should be noted that Rf can be negative when
SSEy is greater than SSTO,. In such situations, we force
R} to zero. The other metric used for measuring predictive
accuracy is “mean square error” (MSE) [10]. MSE, defined
as the MSE estimate on OOB cases for the kth tree model
and is calculated as follows.

ZZZI i —7,)°

g @)

Predictive performance is also estimated at “forest
level” - after aggregating OOB predictions across all the
trees and then computing R* and MSE.

MSE) =

Predictive accuracy function

The function PredictiveAccuracy() (S4 method of class
mobForestOutput) can be used to extract predictive ac-
curacy estimates over OOB cases and/or a new test data.
It takes three input arguments:

e mobForestOutput object

e Newdata = TRUE/FALSE. If newdata = TRUE,
R? (or PCC) and MSE are obtained for the new
test data supplied as a newTestData argument to
mobForestAnalysis(). newdata = FALSE (default)
ignores newdata parameter and returns R? (or PCQ)
and MSE estimates based on OOB predictions and
complete dataset predictions summarized across
all trees.

e plot = TRUE (default). This allows user to
purview the distribution of R? (or PCC) and MSE
estimates for OOB cases across all the trees, overall
R? (or PCC) and MSE estimates when OOB
predictions are aggregated across all the trees, and
overall R? (or PCC) and MSE estimates when
predictions on new test data are aggregated across
all the trees. plot = FALSE produces no plot.

PredictiveAccuracy() returns a list containing: a) OOB
R? (or PCC) estimates across all the trees, b) MSE

Garge et al. BMC Bioinformatics 2013, 14:125
http://www.biomedcentral.com/1471-2105/14/125

estimates on OOB data across all the trees, ¢) overall R*
(or PCC) estimate when OOB predictions are aggregated
across all trees, d) overall MSE estimate when OOB
predictions are aggregated across all trees, e) R* (or PCC)
estimates on complete data across all the trees, f) MSE es-
timates on complete data across all the trees, g) overall R*
(or PCC) estimate when complete-data predictions are
aggregated across all the trees, h) overall MSE estimate
when complete-data predictions are aggregated across all
the trees, i)the node model and partition variables used, j)
if newdata = TRUE, overall R*> (or PCC) and MSE
estimates when predictions on new test data are aggregated
across all the trees.

Variable importance Variable importance assessment is
a process of ranking variables in the predictor set according
to their importance in producing accurate predictions.
“Permutation accuracy importance” method [1,3,10] is used
to compute importance scores for each variable. To deter-
mine the importance of a variable m, values of m in the
OOB cases are randomly permuted and PCCp (proportion
of OOB cases correctly classified when binary out-
come is considered) or MSE, (for continuous out-
come) is obtained through variable-m-permuted OOB
data. Next, MSE, is subtracted from MSE, (or PCCp
is subtracted from PCCk) which was obtained using
original un-permuted OOB data. The average of this
number over all the trees in the forest is the raw import-
ance score for variable m. One can invoke functions
getVarimp() and varimplot() (S4 methods of class
mobForestOutput) to produce variable importance scores
and variable importance plot.

Residual plot One can invoke the function residualPlot()
(S4 method of class mobForestOutput) to produce the
following diagnostic plots.

e residuals vs. predicted outcomes for OOB cases: this
plot should produce a distribution of points
randomly scattered across 0, regardless of the size of
the fitted value.

e histogram of OOB residuals: this plot is expected
to be roughly normal with mean 0.

It should be noted that the above diagnostic
plots are typical when the fitted values are
obtained through linear regression but not
when logistic or Poisson regression is considered
as a node model. Therefore, mobForest package
produces the above residual plots only when
linear regression is considered. For logistic or
Poisson models, a message is printed saying
“Residual Plot not produced when logistic

of Poisson regression is considered as the

node model”.

Page 5 of 8

Results and discussion

We illustrate the use of mobForest package on alcohol
treatment data from the COMBINE study [11]. The pur-
pose of this study was to evaluate the efficacy of pharma-
ceutical and behavioral therapies (as well as combinations
of the two therapy types) for treatment of alcohol depend-
ence. The study enrolled 1383 alcohol-dependent adults
(not experiencing significant alcohol withdrawal) from 11
different sites. Subjects were randomized into 8 treatment
groups. There are 8 groups made up of 2 x 2 x 2 factorial
design in treatments; naltrexone/placebo, acamprosate/pla-
cebo, and CBI + medical management/medical manage-
ment only. The treatment duration was 4 months. The goal
for this analysis was to estimate the effects of treatments on
a continuous outcome variable “fifty.reduce” — indicator
variable (0/1) representing if a subject reduced his/her
drinks per drinking day by at least 50% from the baseline.
Our node model of interest was

P(Y =1)
L°g<1 “P(Y =1)

) =By + B X+ BT
Jr/)JSTS +:84T4 Jr:35T5
+/))6T6 +:87T7 +/))8T8

+e (5)

where Y represents “fifty.reduce”, X represents baseline per-
cent drinking days (bpdrkday), T; is a 0/1 dummy variable
representing the jth treatment,, 3, represents the intercept
term of regression model, 5; represents baseline effect,
B . .Ps represent the treatment effects for treatments
Ts,. .., Tg (with treatment group 1 as a reference category),
and e represents residuals . We used mobForest package to
estimate the treatment effects for different groups of
patients, partitioned through model-based recursive trees,
and summarize outcome predictions across large number
of trees.

Prior to the analysis, the data was loaded in R and
partitioned into learning and validation sets. The training
set contained 987 subjects (80%) and the independent
validation set contained 233 subjects (20%). The validation
set was used as an independent dataset for evaluating
the performance of random forest model. We ran
mobForestAnalysis() function on the training data with
following forest settings: trees = 300, replace = F (for sam-
pling without replacement), alpha=0.5, bonferroni = T,
and minsplit =40 (minimum 40 cases in each terminal
node). The parameter “prob.cutoff” was set to 0.5. Predicted
probabilities, P(Y = 1), are converted to classes (0/1) based
on the threshold “prob.cutoff” 0.5. A list of 40 variables was
supplied as partition variables (used in splitting the
nodes in trees). It took 28 minutes to perform mobForest
analysis on a 32 bit machine with Microsoft windows XP
Professional operating system. The machine had 4 giga-
bytes of RAM and Intel i7-2600 @ 3.40GHz CPU (with 8

Garge et al. BMC Bioinformatics 2013, 14:125
http://www.biomedcentral.com/1471-2105/14/125

cores). All the eight cores were used during the mobForest
analysis on the COMBINE dataset.. The results (variable
importance scores, predictions P(Y=1) on OOB data,
complete data, test data) were produced through this ana-
lysis. After producing results, we used the function
varimplot() to produce a variable importance plot. The
Figure 1 shows the variable importance plot. According to
Figure 1, the top 5 variables show the strongest association
with the treatment outcome include “likely.to.d” — likely to
drink score, “focdsrci” — obsessive compulsive drinking
scale, “action” - University of Rhode Island Change assess-
ment score, “pssscore” — perceived stress score, and

Page 6 of 8

“tnegaff” — negative affect from alcohol abstinence on self
efficacy. Then we produced plots of predictive accuracy
estimated across individual trees using the function
PredictiveAccuracy(). Figure 2 shows the predictive perfor-
mances (PCC — proportion of correctly classified) on OOB
data and the independent validation set. Figure 2 also
reports the predictive accuracy estimates at “forest level” -
after aggregating predictions (P(Y = 1)) of subject across all
the trees. This plot is not a comparison of performance of
single trees to the performance of a forest, but simply a
graphical representation of selected measures of predictive
accuracy. The overall PCC estimate measured after

likely.to.d |

focdsrci |
action | []

pssscore !
tnegaff I
whodom4 O|
readines o|
cphysic ol
aud.prob ° |
precont °
pctedt [] |
marriedn o
cnegaff o|
ciwascor ol
confid
pheala
teealf.cN
mainten
fatigue
scdael9
bsatpar
teeala
bsatpho
lab23

sexn

age
re

depress
fh.fathern
scdae22
vigor
nomhsedun
contemp
csmokeN
cwithdr
tension
focdsitf
bsatobs

csocial
lab7

T T
0.000 0.005 0.010

Variable Importance in the data

Figure 1 Variable importance plot for alcohol dependence study.

Garge et al. BMC Bioinformatics 2013, 14:125 Page 7 of 8

http://www.biomedcentral.com/1471-2105/14/125

OOB performance (Tree Level) OOB performance (Forest Level)

A] B

60
1

Frequency

_F

T T T T T T
0.50 0.55 0.60 0.50 0.55 0.60

Proportion of subjects correctly classified Proportion of subjects correctly classified

Validation Performance

C

T T T
0.50 0.55 0.60
Proportion of subjects correctly classified

Figure 2 Predictive Accuracy plots on alcohol data. Figure A shows the distribution of PCC on OOB cases across all 300 trees. Figure B shows
overall PCC estimate when the OOB predictions are combined across all trees. Figure C shows overall PCC estimate on the independent

validation dataset.

combining OOB predictions across all 300 trees is 0.58
(577 out of 987 cases were correctly classified at “prob.cut-
off’ 0.5). The PCC estimate on the independent validation
dataset was 0.59. The “tree level” performance estimates
obtained on OOB cases ranged from 0.46 - 0.63. We also
computed area under ROC curve (AUC) for predictions
obtained on training and independent validation datasets.
AUC was computed using Wilcoxon-Mann—Whitney
statistic implemented in “ROCR” package in R. AUC
estimate on training dataset was 0.81 and validation
dataset was 0.66.

We also did fit the learning data using a logistic re-
gression model containing all the parameters in equation
(5) plus the best subset of partition variables - selected
through stepwise regression analysis with forward selec-
tion procedure. Four of the top 5 important variables
obtained through mobForest analysis were also selected

in the final model obtained using stepwise regression.
These variables include “likely.to.d”, “focdsrci”, “action”,
and “pssscore”. The AUC estimate for predictions
obtained through stepwise regression on the training
dataset was 0.71 and validation dataset was 0.60. There-
fore, mobForest showed better performance than the

stepwise regression method.

Conclusions

The R package mobForest implements random forest
method for model-based recursive partitioning. This pack-
age combines predictions obtained across diverse set of
trees to produce stable predictions. The mobForest
provides functions for producing predictive performance
plots, variable importance plots and residual plots using
data contained in the mobForest object. The package uses
multiple cores/processors to perform parallel computations.

Garge et al. BMC Bioinformatics 2013, 14:125
http://www.biomedcentral.com/1471-2105/14/125

The parallel package that supports parallel computing
(in R) is utilized for faster computation. The mobForest
package supports linear, Poisson and logistic regression
models for use in model-based random forest type analysis.

Availability and requirements
Project name: Alcohol dependence study
Project Home page:

Operating system: windows platform
Programming Language: R

License: GPL (>2)

Competing interest
The authors declare that they have no competing interest.

Authors’ contributions

BE conceived the project and oversaw its design. NRG and BE developed the
algorithm. NRG packaged the classes and functions into an R package and
drafted the manuscript. BE and GB contributed in writing sections of the
manuscript. All the authors read and approved the final manuscript.

Acknowledgements
This study was funded in part by a grant from NIAAA (number
TRC4AA020096-01, Bobashev - PI).

Received: 11 December 2012 Accepted: 27 March 2013
Published: 11 April 2013

References

1. Breiman L: Random forests. Mach Learn 2001, 45(1):5-32.

2. Breiman L, Friedman J, Stone CJ, Olshen RA: Classification and regression
trees. Chapman & Hall/CRC; 1984.

3. Strobl C, Malley J, Tutz G: An introduction to recursive partitioning:
rationale, application, and characteristics of classification and regression
trees, bagging, and random forests. Psychological methods 2009,
14(4):323-348.

4. Zelleis A, Hothorn T, Hornik K: Model-based recursive partitioning.

J Comput Graph Stat 2008, 17(2):492-514.

5. Team RC: R: a language and environment for statistical computing. Vienna,
Austria: R Foundation for Statistical Computing; 2012.

6. Breiman L: Bagging predictors. Mach Learn 1996, 24(2):123-140.

7. Bauer E, Kohavi R: An empirical comparison of voting classification
algorithms: bagging, boosting, and variants. Mach Learn 1999,
36(1-2):105-139.

8. Buhlmann P, Yu B: Analyzing bagging. Ann Stat 2002, 30(4):927-961.

9. Dietterich TG: An experimental comparison of three methods for
constructing ensembles of decision trees: bagging, boosting, and
randomization. Mach Learn 2000, 40(2):139-157.

10. Genuer R, Poggi JM, Tuleau-Malot C: Variable selection using random
forests. Pattern Recogn Lett 2010, 31(14):2225-2236.

11. Anton RF, O'Malley SS, Ciraulo DA, Cisler RA, Couper D, Donovan DM,
Gastfriend DR, Hosking JD, Johnson BA, LoCastro JS, et al: Combined
pharmacotherapies and behavioral interventions for alcohol
dependence: the COMBINE study: a randomized controlled trial.
JAMA 2006, 295(17):2003-2017.

doi:10.1186/1471-2105-14-125

Cite this article as: Garge et al: Random forest methodology for
model-based recursive partitioning: the mobForest package for R.
BMC Bioinformatics 2013 14:125.

Page 8 of 8

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

(BiolVied Central

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	Overview of functions available in mobForest package
	Tree modeling
	Setting up forest controls

	The main function mobForestAnalysis()
	Predictions

	Predictive accuracy and error estimates
	Metrics
	Predictive accuracy function

	Results and discussion
	Conclusions
	Availability and requirements
	Competing interest
	Authors’ contributions
	Acknowledgements
	References

