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1 Introduction and preliminaries

Consistent with Jachymski [1], let X be a nonempty set and d be a metric on X. A set
{(x,x) : x € X} is called a diagonal of X x X and is denoted by A. Let G be a directed graph
such that the set V(G) of its vertices coincides with X and E(G) is the set of the edges of
the graph with A C E(G). Also assume that the graph G has no parallel edges. One can
identify a graph G with the pair (V(G), E(G)). Throughout this paper, the letters R, R*, »
and N will denote the set of real numbers, the set of nonnegative real numbers, the set of

nonnegative integers and the set of positive integers, respectively.

Definition 1.1 [1] A mapping f : X — X is called a Banach G-contraction or simply G-
contraction if

(a1) for each x,y € X with (x,y) € E(G), we have (f(x),f(y)) € E(G),
(ap) there exists @ € (0,1) such that for all x,y € X with (x,y) € E(G) implies that
d(f(x).f () < ad(x,y).

Let X := {x € X : (%,f(x)) € E(G) or (f(x),x) € E(G)}.

Recall thatif f : X — X, then a set {x € X : x = f(x)} of all fixed points of f is denoted by
F(f). A self-mapping f on X is said to be

(1) a Picard operator if F(f) = {x*} and f"(x) — x* as n — oo for all x € X;

(2) aweakly Picard operator if F(f) # # and for each x € X, we have f"(x) — x* € F(f) as

n— oQ;

° © 2013 Abbas and Nazir; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Prlnger Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction

in any medium, provided the original work is properly cited.


https://core.ac.uk/display/193587163?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.fixedpointtheoryandapplications.com/content/2013/1/20
mailto:talat@ciit.net.pk
http://creativecommons.org/licenses/by/2.0

Abbas and Nazir Fixed Point Theory and Applications 2013, 2013:20 Page2of 8
http://www.fixedpointtheoryandapplications.com/content/2013/1/20

(3) orbitally continuous if for all x,a € X, we have
klim f"(x)=a implies 'limf(f”k (x)) =f(a).
The following definition is due to Chifu and Petrusel [2].

Definition 1.2 An operator f : X — X is called a Banach G-graphic contraction if

(by) for each x,y € X with (x,y) € E(G), we have (f(x),f(y)) € E(G),
(by) there exists « € [0,1) such that

d(f(x),f2(x)) < ad(x,f(x)) forallxe X/.

If x and y are vertices of G, then a path in G from x to y of length k € N is a finite
sequence {x,}, n € {0,1,2,...,k} of vertices such that xy = x, x; = y and (x;_1,%;) € E(G) for
ie{l,2,...,k}.

Notice that a graph G is connected if there is a path between any two vertices and it
is weakly connected if G is connected, where G denotes the undirected graph obtained
from G by ignoring the direction of edges. Denote by G™! the graph obtained from G by

reversing the direction of edges. Thus,
E(G) ={(xy) € X x X:(y,x) € E(G)}.

Since it is more convenient to treat G as a directed graph for which the set of its edges is

symmetric, under this convention, we have that
EG) = E(G)UE(G™).

If G is such that E(G) is symmetric, then for x € V(G), the symbol [x]s denotes the equiv-
alence class of the relation R defined on V(G) by the rule:

yRz if there is a path in G from y to z.

A graph G is said to satisfy the property (A) (see also [2]) if for any sequence {x,} in V(G)
with x,, — x as n — 00 and (x,, x,,41) € E(G) for n € N implies that (x,,x) € E(G).

Jachymski [1] obtained the following fixed point result for a mapping satisfying the
Banach G-contraction condition in metric spaces endowed with a graph.

Theorem 1.3 [1] Let (X,d) be a complete metric space and G be a directed graph and let
the triple (X, d, G) have a property (A). Let f : X — X be a G-contraction. Then the following
statements hold.:

1. Fy #9 if and only if Xy # 0;

2. if Xy #V and G is weakly connected, then f is a Picard operator;

3. for any x € Xy we have that f | is a Picard operator;

4. if f C E(G), then f is a weakly Picard operator.
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Gwodzdz-Lukawska and Jachymski [3] developed the Hutchinson-Barnsley theory for
finite families of mappings on a metric space endowed with a directed graph. Bojor [4]
obtained a fixed point of a ¢-contraction in metric spaces endowed with a graph (see
also [5]). For more results in this direction, we refer to [2, 6, 7].

On the other hand, Mathews [8] introduced the concept of a partial metric to obtain
appropriate mathematical models in the theory of computation and, in particular, to give
a modified version of the Banach contraction principle more suitable in this context. For
examples, related definitions and work carried out in this direction, we refer to [9-19] and
the references mentioned therein. Abbas et al. [20] proved some common fixed points in
partially ordered metric spaces (see also [21]). Guand He [22] proved some common fixed
point results for self-maps with twice power type ®-contractive condition. Recently, Gu
and Zhang [23] obtained some common fixed point theorems for six self-mappings with
twice power type contraction condition.

Throughout this paper, we assume that a nonempty set X = V(G) is equipped with a
partial metric p, a directed graph G has no parallel edge and G is a weighted graph in the
sense that each vertex x is assigned the weight p(x,x) and each edge (x,y) is assigned the
weight p(x, ). As p is a partial metric on X, the weight assigned to each vertex x need not
be zero and whenever a zero weight is assigned to some edge (x,y), it reduces to a loop
(x, ).

Also, the subset W(G) of V(G) is said to be complete if for every x,y € W(G), we have
(x,7) € E(G).

Definition 1.4 Self-mappings f and g on X are said to form a power graphic contraction
pair if
(a) for every vertex vin G, (v,fv) and (v,gv) € E(G),
(b) there exists ¢ : R* — R* an upper semi-continuous and nondecreasing function
with ¢(t) < t for each ¢ > 0 such that

P (fx,y) < ¢ (p* (%, y)p" (x, )P (7,29)) (L1)
for all (x,y) € E(G) holds, where o, 8,y > 0 with§ = + B + ¥ € (0,00).

If we take f = g, then the mapping f is called a power graphic contraction.

The aim of this paper is to investigate the existence of common fixed points of a power
graphic contraction pair in the framework of complete partial metric spaces endowed with
a graph. Our results extend and strengthen various known results [8, 12, 13, 24].

2 Common fixed point results
We start with the following result.

Theorem 2.1 Let (X,p) be a complete partial metric space endowed with a directed
graph G. Iff,g : X — X form a power graphic contraction pair, then the following hold:
(i) F(f)#0 or F(g) # @ if and only if F(f) N F(g) # 0.
(i) Ifu € F(f) N F(g), then the weight assigned to the vertex u is 0.
(iii) F(f) NF(g) #9 provided that G satisfies the property (A).
(iv) F(f) N F(g) is complete if and only if F(f) N F(g) is a singleton.
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Proof To prove (i), let u € F(f). By the given assumption, (4, gu) € E(G). Assume that we
assign a non-zero weight to the edge (u,gu). As (4,u) € E(G) and f and g form a power
graphic contraction, we have

P’ (u,gu) = p*(fu,gu)
< ¢ (p* (u, w)p” (u, fu)p” (u, gu))
= (0P (u, w)p" (u, gu))
< ¢(p**" (u, gup” (u, gu))
= ¢(p° (u,gu))
< P’ (u,gu),

a contradiction. Hence, the weight assigned to the edge (i, gu) is zero and so u = gu. There-
fore, u € F(f) N F(g) # @. Similarly, if u € F(g), then we have u € F(f). The converse is
straightforward.

Now, let u € F(f) N F(g). Assume that the weight assigned to the vertex u is not zero,
then from (1.1), we have

P (u,u) = p°(fu, gu)
< & (p* (w, wp’ (u, fu)p" (u, gu))
= B ()
= ¢(p’ (u,u))

< p(u,u),

a contradiction. Hence, (ii) is proved.

To prove (iii), we will first show that there exists a sequence {x,} in X with fxy, = x2,41
and gxo,41 = Xou42 for all n € N with (x,,, %,41) € E(G), and lim,,_, oo (%, %141) = 0.

Let x be an arbitrary point of X. If fxy = x¢, then the proofis finished, so we assume that
fxo # xo. As (xo,fxo) € E(G), so (x9,%1) € E(G). Also, (x1,gx1) € E(G) gives (x1,x2) € E(G).
Continuing this way, we define a sequence {x,} in X such that (x,, %,.+1) € E(G) with fx, =
Xons1 and @xoy,,1 = Koy for me N

We may assume that the weight assigned to each edge (xy,,%,41) is non-zero for all
n € N. If not, then xox = w1 for some &, s0 fxor = x9x41 = %2k, and thus xyx € F(f). Hence,
%9k € F(f) N F(g) by (i). Now, since (24, ¥24+1) € E(G), so from (1.1), we have

pa(x2n+l:x2n+2) = pa(fomgx2n+1)
< @ (" (%2 X2041)PP (s fr20)P” (2141, §2141))
= ¢ (p" W2 %2m:1)P” K2 %2001 )P” (20115 %2m42))
= ¢ (p* (%20, %20:1)P” (241 %2112))

< Pmﬂ (me x2n+l)py (x2n+1¢ x2n+2):
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which implies that
Pwﬁ (%2041, %242) <pa+ﬂ(x2mx2n+1)r

a contradiction if « + 8 = 0. So, take « + 8 > 0, and we have
PX241, %2n42) < (K2 X2p141)

for all » € N. Again from (1.1), we have

P(S (%2n42, X243) = PS (g%2n+1, fX242)
=p (fxans2, g¥2n+1)
<o(p” (%2142, X2:1)PP (212, fXoms2) D" (X241 @X2n1))
= ¢ (p" ®ans1s %20:2)D” (Ko %2043)D” (K1, Xans2))
= ¢(pa+y(x2n+1’x2n+2)pﬂ(x2n+2»x2n+3))

o+
<p V(x2n+17x2n+2)pﬂ (x2n+2: x2n+3)7
which implies that
o+ o+
P (®oni2s %2n43) < p*Y (R2na1s X2ns2)-

We arrive at a contradiction in case @ + y = 0. Therefore, we must take o + y > 0; conse-
quently, we have

P X242, %2043) < P(K2n41, Xons2)
for all » € N. Hence,
pa(xn)xnﬂ) < ¢(p6(xn—17xn)) <p5(xn—17xn) (21)

for all # € N. Therefore, the decreasing sequence of positive real numbers {p°(x,,%,.1)}
converges to some ¢ > 0. If we assume that ¢ > 0, then from (2.1) we deduce that

0<c<lim supd)(p‘s(xn,l,xn)) <¢()<c

n—00

a contradiction. So, ¢ = 0, that is, lim,,_, o p° (%, %4,1) = 0 and so we have lim,,_, o p(x,,
%,41) = 0. Also,

PP Fnr 1) < O (0° W1, ) < -+ < @ (0P (w0, 21)). (2.2)
Now, for m, n € N with m > n,

) ) ) )
P (xn)xm) < p (xn:xn+1) +I9 (xn+l)xn+2) +oe- +p (xm—lyxm)
S 8 S
4 (xn+1:xn+1) —-p (xn+2’xn+2) - p (xm—bxm—l)

< ¢" (P (x0,21)) + @™ (p° (%0, 21)) + - - + ¢ (P (%0, %1))
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implies that p°(x,,x,,) converges to 0 as n,m — oco. That is, lim,, ;00 p(%,, %) = 0. Since
(X, p) is complete, following similar arguments to those given in Theorem 2.1 of [9], there
exists a u € X such that lim, y— 0o P(Xn, X)) = limy,_ 00 p(x, u) = p(u, u) = 0. By the given
hypothesis, (x2,, #) € E(G) for all n € N. We claim that the weight assigned to the edge
(u, gu) is zero. If not, then as f and g form a power graphic contraction, so we have

pa(x2n+1: M) = Ps(fxzmgbi)
< ¢ (p* (%2, W)’ (o, fon) P (11, gu1))

= ¢ (0" (%on, WP (%2 Xoni) 0" (u, gus)). (2.3)

We deduce, by taking upper limit as # — oo in (2.3), that

P’ (u, gu) < limsup ¢ (p® (2, w)pP (%2, X21)p (14, g11))

n—00

< (" (w, wp” (u, u)p” (u, gu))
< (PP (u, gu))
< P’ (u,gu),
a contradiction. Hence, u = gu and u € F(f) N F(g) by (i).
Finally, to prove (iv), suppose the set F(f) N F(g) is complete. We are to show that F(f) N

F(g) is a singleton. Assume on the contrary that there exist # and v such that u,v € F(f) N
F(g) but u #v. As (u,v) € E(G) and f and g form a power graphic contraction, so

0 < p’(u,v) = p° (fu, f)
< ¢ (p* (w,v)p’ (u, fu)p” (v, gv))
= ¢(p" w, V)P’ (,w)p” (v,v))
<o(P’wv)),

a contradiction. Hence, u = v. Conversely, if F(f) N F(g) is a singleton, then it follows that
F(f) N F(g) is complete. O

Corollary 2.2 Let (X,p) be a complete partial metric space endowed with a directed
graph G. If we replace (1.1) by

P (Fx.g'y) <o y)p’ (x.fx)p" (.4'7)), (2.4)

where o, 8,y >0 with§ =a + B +y €(0,00) and s,t € N, then the conclusions obtained in
Theorem 2.1 remain true.

Proof 1t follows from Theorem 2.1, that F(f*) N F(g") is a singleton provided that F(f*) N
F(g") is complete. Let F(f*) N F(g*) = {w}, then we have f(w) = f(f*(w)) = f*1(w) = f(f (W),
and g(w) = g(g'(w)) = g1 (w) = g*(g(w)) implies that fw and gw are also in F(f*) N F(g").
Since F(f*) N F(g*) is a singleton, we deduce that w = fw = gw. Hence, F(f) N F(g) is a
singleton. O
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The following remark shows that different choices of o, 8 and y give a variety of power

graphic contraction pairs of two mappings.

Remarks 2.3 Let (X,p) be a complete partial metric space endowed with a directed
graph G.
(R1) We may replace (1.1) with the following:

P(fe.2y) < ¢ (p(x,9)p(x, f)p(y, ) (2.5)

to obtain conclusions of Theorem 2.1. Indeed, taking & = 8 = y =1 in Theorem 2.1, one
obtains (2.5).
(R2) If we replace (1.1) by one of the following condition:

P’ (fx.29) < ¢ (p(x, y)p(x, fx)), (2.6)
P’ (fx.)) < ¢ (p(x,y)p(7,27)), (2.7)
P*(fx,gy) < d(plx, fo)p(y,29)), (2.8)

then the conclusions obtained in Theorem 2.1 remain true. Note that
(i) if we take = 8 =1and y =0 in (1.1), then we obtain (2.6),
(ii) take@ =y =1, B =0in (1.1) to obtain (2.7),
(iii) use B=y =1, @ = 0in (1.1) and obtain (2.8).
(R3) Also, if we replace (1.1) by one of the following conditions:

pifx.g) < d(p(x,9)), (2.9)
p(fr,gy) < (px.fx)), (2.10)
p(fx,2y) < o (p(y,29)), (2.11)

then the conclusions obtained in Theorem 2.1 remain true. Note that
(iv) take @ =1and 8 =y =0 in (1.1) to obtain (2.9),
(v) to obtain (2.10), take B =1, =y =0 in (1.1),
(vi) if one takes y =1, « = 8 = 0 in (1.1), then we obtain (2.11).

Remark 2.4 If we take f = g in a power graphic contraction pair, then we obtain fixed

point results for a power graphic contraction.
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