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Background
A widely studied problem known as variational inclusion problem have many applica-
tions in the fields of optimization and control, economics and transportation equilib-
rium, engineering sciences, etc.. Several researches used different approaches to develop 
iterative algorithms for solving various classes of variational inequality and variational 
inclusion problems. For details see Ansari et al. (2000), Cho et al. (2004), Chang et al. 
(2005), Ding (2003), Fang and Huang (2004), Kim and Kim (2004), Kassay and Kolumbán 
(1999), Kassay et al. (2002), Kazmi et al. (2009), Lan et al. (2007), Noor (2001), Siddiqi 
et al. (1998), Sun et al. (2008), Yan et al. (2005) and the references therein.

A problem of much more interest called system of variational inequalities (inclusions) 
were introduced and studied in the literature. Peng (2003), Cohen and Chaplais (1988), 
Bianchi (1993), and Ansari and Yao (1999) considered a system of scalar variational ine-
qualities and Pang showed that the traffic equilibrium problem, the spatial equilibrium 
problem, the Nash equilibrium, and the general equilibrium problem can be modeled as 
a system of variational inequalities. Verma (1999, 2001, 2004a, b) introduced and stud-
ied some systems of variational inequalities and developed some iterative algorithms for 
approximating the solutions of system of variational inequalities in Hilbert spaces.

As generalization of system of variational inequalities, Agarwal et  al. (2004) intro-
duced a system of generalized nonlinear mixed quasi-variational inclusions and studied 
the sensitivity analysis of solutions. After that, Fang and Huang (2004), Verma (2005), 
and Fang et al. (2005) introduced and studied different system of variational inclusions 
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involving H-monotone operators, A-monotone operators, and (H , η)-monotone opera-
tors, respectively.

In this paper, we introduced and study a system of three variational inclusions and 
we call it system of generalized implicit variational inclusions in real Hilbert spaces. We 
design an iterative algorithm with error terms based on relaxed resolvent operator for 
solving system of generalized implicit variational inclusions. Convergence criteria is also 
discussed. The approach of this paper is different then the methods discussed above. An 
example is given in support of our main result.

Preliminaries
Let X be a real Hilbert space endowed with a norm � · � and an inner product �·, ·�, d is 
the metric induced by the norm � · �, 2X (respectively,CB(X)) is the family of all non-
empty (respectively, closed and bounded) subsets of X,  and D(·, ·) is the Hausdörff met-
ric on CB(X) defined by

where d(x,Q) = inf y∈Q d(x, y) and d(P, y) = infx∈P d(x, y).
Let us recall the known definitions needed in the sequel.

Definition 1 A mapping g : X → X is said to be

(i) Lipschitz continuous if, there exists a constant �g > 0 such that 

(ii) monotone if, 

(iii) strongly monotone if, there exists a constant ξ > 0 such that 

(iv) relaxed Lipschitz continuous if, there exists a constant r > 0 such that 

Definition 2 A mapping F : X × X × X → X is said to be Lipschitz continuous with 
respect to first argument if, there exists a constant �F1 such that

Similarly, we can define the Lipschitz continuity of F in rest of the arguments.

Definition 3 A set-valued mapping A : X → CB(X) is said to be D-Lipschitz continu-
ous if, there exists a constant δA such that

D(P,Q) = max

{

sup
x∈P

d(x,Q), sup
y∈Q

d(P, y)

}

,

�g(x)− g(y)� ≤ �g�x − y�, ∀x, y ∈ X;

�g(x)− g(y), x − y� ≥ 0, ∀x, y ∈ X;

�g(x)− g(y), x − y� ≥ ξ�x − y�2, ∀x, y ∈ X;

�g(x)− g(y), x − y� ≤ −r�x − y�2, ∀x, y ∈ X .

�F(x1, x2, x3)− F(y1, x2, x3)� ≤ �F1�x1 − y1�, ∀x1, y1, x2, x3 ∈ X .

D(A(x),A(y)) ≤ δA�x − y�, ∀x, y ∈ X .
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Definition 4 Ahmad et al. (2016) Let H : X → X be a mapping and I : X → X be an 
identity mapping. Then, a set-valued mapping M : X → 2X is a said to be (I −H)-mono-
tone if, M is monotone, H is relaxed Lipschitz continuous and

where � > 0 is a constant.

Definition 5 Ahmad et  al. (2016) Let H : X → X be relaxed Lipschitz continuous 
mapping and I : X → X be an identity mapping. Suppose that M : X → 2X is a set-val-
ued, (I −H)-monotone mapping. The relaxed resolvent operator R(I−H)

�,M : X → X asso-
ciated with I,H and M is defined by

where � > 0 is a constant.
For the sake of convenience of readers, we give the proof following two theorems 

which can be found in Ahmad et al. (2016).

Theorem 1 Let H : X → X be an r-relaxed Lipschitz continuous mapping, I : X → X 
be an identity mapping and M : X → 2X be a set-valued, (I −H)-monotone mapping. 
Then the operator [(I −H)+ �M]−1 is single-valued, where � > 0 is a constant.

Proof For any z ∈ X and a constant � > 0, let x, y ∈ [(I −H)+ �M]−1(z). Then,

Since M is monotone, we have

Since H is r-relaxed Lipschitz continuous, we have

it follows that (1+ r)�x − y�2 = 0, which implies that x = y. Thus [(I −H)+ �M]−1 is 
single-valued.  �

Theorem 2 Let H : X → X be an r-relaxed Lipschitz continuous mapping, I : X → X 
be an identity mapping and M : X → 2X be a set-valued, (I −H)-monotone mapping. 
Then the relaxed resolvent operator RI−H

�,M : X → X is 1
1+r-Lipschitz continuous. i.e.,

[(I −H)+ �M](X) = X ,

(1)RI−H
�,M (x) = [(I −H)+ �M]−1(x), ∀x ∈ X ,

�
−1[z − (I −H)(x)] ∈ M(x);

�
−1[z − (I −H)(y)] ∈ M(y).

�−(I −H)(x)+ z + (I −H)(y)− z, x − y� ≥ 0;

−�(I −H)(x)− (I −H)(y), x − y� ≥ 0;

−�x −H(x)− y+H(y), x − y� ≥ 0;

�x −H(x)− y+H(y), x − y� ≤ 0;

�x −H(x)− y+H(y), x − y� ≤ 0;

�x − y, x − y� − �H(x)−H(y), x − y� ≤ 0.

0 ≥ �x − y, x − y� − �H(x)−H(y), x − y� ≥ �x − y�2 + r�x − y�2 ≥ 0,



Page 4 of 16Ahmad et al. SpringerPlus  (2016) 5:1283 

Proof Let x and y be any given point in X. If follow from (1) that

i.e.,

Since M is (I −H)-monotone i.e., M is monotone, we have

It follows that

By Cauchy-Schwartz inequality, (5) and r-relaxed Lipschitz continuity of H,  we have

Thus, we have

i.e., the relaxed resolvent operator RI−H
�,M  is 1

1+r-Lipschitz continuous.  �

�RI−H
�,M (x)− RI−H

�,M (y)� ≤
1

1+ r
�x − y�, ∀x, y ∈ X .

(2)
RI−H
�,M (x) = [(I −H)+ �M]−1(x),

RI−H
�,M (y) = [(I −H)+ �M]−1(y),

(3)

1

�

[

x − (I −H)(RI−H
�,M (x))

]

∈ M
(

RI−H
�,M (x)

)

,

1

�

[

y− (I −H)(RI−H
�,M (y))

]

∈ M
(

RI−H
�,M (y)

)

.

(4)

1

�

〈

x − (I −H)(RI−H
�,M (x))− (y− (I −H)(RI−H

�,M (y))),RI−H
�,M (x)− RI−H

�,M (y)
〉

≥ 0,

1

�

〈

x − y− {(I −H)(RI−H
�,M (x))− (I −H)(RI−H

�,M (y))},RI−H
�,M (x)− RI−H

�,M (y)
〉

≥ 0.

(5)

〈

x − y,RI−H
�,M (x)− RI−H

�,M (y)
〉

≥

〈

(I −H)(RI−H
�,M (x))− (I −H)(RI−H

�,M (y)),RI−H
�,M (x)− RI−H

�,M (y)
〉

.

(6)

∥

∥

∥x − y
∥

∥

∥

∥

∥

∥R
I−H
�,M (x)− RI−H

�,M (y)
∥

∥

∥

≥

〈

x − y,RI−H
�,M (x)− RI−H

�,M (y)
〉

≥

〈

RI−H
�,M (x)−H(RI−H

�,M (x))− RI−H
�,M (y)+H(RI−H

�,M (y)),RI−H
�,M (x)− RI−H

�,M (y)
〉

=

〈

RI−H
�,M (x)− RI−H

�,M (y),RI−H
�,M (x)− RI−H

�,M (y)
〉

−

〈

H(RI−H
�,M (x))−H(RI−H

�,M (y)),RI−H
�,M (x)− RI−H

�,M (y)
〉

≥

∥

∥

∥R
I−H
�,M (x)− RI−H

�,M (y)
∥

∥

∥

2

+ r
∥

∥

∥R
I−H
�,M (x)− RI−H

�,M (y)
∥

∥

∥

2

= (1+ r)
∥

∥

∥R
I−H
�,M (x)− RI−H

�,M (y)
∥

∥

∥

2

.

∥

∥

∥R
I−H
�,M (x)− RI−H

�,M (y)
∥

∥

∥ ≤
1

1+ r
�x − y�,
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System of generalized implicit variational inclusions and iterative algorithm
In this section, we introduce a system of generalized implicit variational inclusions and 
design an iterative algorithm with error terms for solving the system of generalized 
implicit variational inclusions in Hilbert spaces.

For each i ∈ {1, 2, 3}, let Xi be a real Hilbert space, Hi, gi : Xi → Xi, Fi,Pi : X1 × X2× 
X3 → Xi be the single-valued mappings and Ai1,Ai2,Ai3 : Xi → CB(Xi) be the set-val-
ued mappings. Let Ii : Xi → Xi be the identity mappings and Mi : Xi × Xi → 2Xi be the 
set-valued, (Ii −Hi)-monotone mappings. We consider the following system of general-
ized implicit variational inclusions (in short, SGIVI):

Find (x1, x2, x3,u11,u12,u13,u21,u22,u23,u31,u32,u33) such that for each i ∈ {1, 2, 3}, 
(x1, x2, x3) ∈ X1 × X2 × X3, ui1 ∈ Ai1(x1), ui2 ∈ Ai2(x2), ui3 ∈ Ai3(x3) such that

Let us see some special cases of SGIVI (7) below.

(i)  If F1(x1, x2, x3) ≡ F(x1, x2), F2(x1, x2, x3) ≡ G(x1, x2), F3 ≡ 0, P1(., ., .) ≡ P(., .), 
P2(., ., .) ≡ Q(., .), P3 ≡ 0, M1(g1(x1), x1) ≡ M1(g1(x1)), M2(g2(x2), x2) ≡ M2(g2(x2)), 
M3 ≡ 0, then problem (7) reduces to the system of generalized mixed quasi-variational 
inclusions with (H , η)-monotone operators, which is to find (x1, x2) ∈ X1 × X2 such 
that 

 Problem (8) was introduced and studied by Peng and Zhu (2007).
(ii)  If F1(x1, x2, x3) ≡ F(x1, x2), F2(x1, x2, x3) ≡ G(x1, x2), F3 ≡ 0, P1 = P2 = P3 ≡ 0, 

g1 ≡ I1(the identity map on X1), g2 ≡ I2 (the identity map on X2) g3 ≡ 0, 
M1(g1(x1), x1) ≡ M1(x1), M2(g2(x2), x2) ≡ M2(x2), M3 ≡ 0, then problem (7) 
reduces to the system of variational inclusions with (H , η)-monotone operators, which 
is to find (x, y) ∈ X1 × X2 such that 

 Problem (9) was introduced and studied by Fang et al. (2005).
Now, we mention the following fixed point formulation of SGIVI (7).

Lemma 1 For each i ∈ {1, 2, 3}, let Xi be a real Hilbert space, Hi, gi : Xi → Xi, 
Fi,Pi : X1 × X2 × X3 → Xi be single-valued mappings and Ai1,Ai2,Ai3 : Xi → CB(Xi) 
be the set-valued mappings. Let Ii : Xi → Xi be the identity mappings and 
Mi : Xi × Xi → 2Xi be the set-valued, (Ii −Hi)-monotone mappings. Then 
(x1, x2, x3,u11,u12,u13,u21,u22,u23,u31,u32,u33) with (x1, x2, x3) ∈ X1 × X2 × X3, 
ui1 ∈ Ai1(x1), ui2 ∈ Ai2(x2), ui3 ∈ Ai3(x3) is a solution of SGIVI (7), if and only if the fol-
lowing equations are satisfied:

(7)







0 ∈ F1(x1, x2, x3)+ P1(u11,u12,u13)+M1(g1(x1), x1),
0 ∈ F2(x1, x2, x3)+ P2(u21,u22,u23)+M2(g2(x2), x2),
0 ∈ F3(x1, x2, x3)+ P3(u31,u32,u33)+M3(g3(x3), x3).

(8)

{

0 ∈ F(x1, x2)+ P(u, v)+M1(g1(x1)),
0 ∈ G(x1, x2)+ Q(w, z)+M2(g2(x2)).

(9)
{

0 ∈ F(x1, x2)+M1(x1),
0 ∈ G(x1, x2)+M2(x2).

gi(xi) = R
Ii−Hi
�i ,Mi(.,xi)

[(Ii −Hi)(gi(xi))− �iFi(x1, x2, x3)− �iPi(ui1,ui2,ui3)],
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where RIi−Hi
�i ,Mi(.,xi)

= [(Ii −Hi)+ �iMi(., xi)]
−1 are the relaxed resolvent operators and 

�i > 0 are constants.

Proof The proof is a direct consequence of the definition of the relaxed resolvent oper-
ator.  �

We design the following iterative algorithm with error terms to approximate the solu-
tion of SGIVI (7).

Iterative Algorithm  1 For each i ∈ {1, 2, 3}, given x0i ∈ Xi, take u0i1 ∈ Ai1(x
0
1), 

u0i2 ∈ Ai2(x
0
2), u

0
i3 ∈ Ai3(x

0
3) and let

Since u0i1 ∈ Ai1(x
0
1), u

0
i2 ∈ Ai2(x

0
2), u

0
i3 ∈ Ai3(x

0
3), by Nadler’s (1992) theorem, there exist 

u1i1 ∈ Ai1(x
1
1), u

1
i2 ∈ Ai2(x

1
2), u

1
i3 ∈ Ai3(x

1
3), such that

Again, let

By Nadler’s (1992) theorem, there exist u2i1 ∈ Ai1(x
2
1), u

2
i2 ∈ Ai2(x

2
2), u

2
i3 ∈ Ai3(x

2
3) such 

that

Continuing the above process inductively, we can obtain the sequences {xni }, {u
n
i1}, {u

n
i2}, 

{uni3} by the following iterative schemes:

x1i = (1− µi)x
0
i + µi[x

0
i − gi(x

0
i )+ R

Ii−Hi

�i ,Mi(.,x
0
i )
((Ii −Hi)(gi(x

0
i ))− �iFi(x

0
1, x

0
2, x

0
3)

− �iPi(u
0
i1,u

0
i2,u

0
i3))] + µie

0
i .

�u1i1 − u0i1� ≤ (1+ 1)D1(Ai1(x
1
1),Ai1(x

0
1),

�u1i2 − u0i2� ≤ (1+ 1)D2(Ai2(x
1
2),Ai2(x

0
2)),

�u1i3 − u0i3� ≤ (1+ 1)D3(Ai3(x
1
3),Ai3(x

0
3)).

x2i = (1− µi)x
1
i + µi[x

1
i − gi(x

1
i )+ R

Ii−Hi

�i ,Mi(.,x
1
i )
((Ii −Hi)(gi(x

1
i ))− �iFi(x

1
1, x

1
2, x

1
3)

− �iPi(u
1
i1,u

1
i2,u

1
i3))] + µie

1
i .

�u2i1 − u1i1� ≤

(

1+
1

2

)

D1(Ai1(x
2
1),Ai1(x

1
1),

�u2i2 − u1i2� ≤

(

1+
1

2

)

D2(Ai2(x
2
2),Ai2(x

1
2)),

�u2i3 − u1i3� ≤

(

1+
1

2

)

D3(Ai3(x
2
3),Ai3(x

1
3)).

(10)

xn+1
i = (1− µi)x

n
i + µi[x

n
i − gi(x

n
i )+ R

Ii−Hi

�i ,Mi(.,x
n
i )
((Ii −Hi)(gi(x

n
i ))

− �iFi(x
n
1 , x

n
2 , x

n
3)− �iPi(u

n
i1,u

n
i2,u

n
i3))] + µie

n
i .

(11)�un+1
i1 − uni1� ≤

(

1+
1

n+ 1

)

D1(Ai1(x
n+1
1 ),Ai1(x

n
1),

(12)
�un+1

i2 − uni2� ≤

(

1+
1

n+ 1

)

D2(Ai2(x
n+1
2 ),Ai2(x

n
2)),
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where n = 0, 1, 2 . . . , for i ∈ {1, 2, 3}, µi > 0, �i > 0 are constants, eni ∈ Xi (n ≥ 0) are 
errors to take into account a possible inexact computation of the resolvent operator 
point and Di(., .) are the Hausdorff metrics on CB(Xi).

An existence and convergence result
In this section, we will prove an existence result for SGIVI (7) and we show the conver-
gence of iterative sequences generated by Algorithm 1, which is our main motive.

Theorem 3 For each i ∈ {1, 2, 3}, let Xi be a Hilbert space, Ii : Xi → Xi be the identity 
mappings and Hi, gi : Xi → Xi be the single-valued mappings such that gi is ξi-strongly 
monotone, �gi-Lipschitz continuous and Hi is �Hi-Lipschitz continuous, ri-relaxed Lip-
schitz continuous. Suppose that Ai1,Ai2,Ai3 : Xi → CB(Xi) are the set-valued mappings 
such that Ai1 is δAi1-D1-Lipschitz continuous, Ai2 is δAi2-D2-Lipschitz continuous and Ai3 
is δAi3-D3-Lipschitz continuous, respectively. Let Fi,Pi : X1 × X2 × X3 → Xi be the sin-
gle-valued mappings such that Fi’s are Lipschitz continuous in all three arguments with 
constants �Fi1 > 0, �Fi2 > 0, �Fi3 > 0, respectively and Pi’s are Lipschitz continuous in all 
three arguments with constants �Pi1 > 0, �Pi2 > 0, �Pi3 > 0, respectively. Suppose that 
Mi : Xi × Xi → 2Xi are the set-valued, (Ii −Hi)-monotone mappings. Assume that there 
exist constants �i > 0 and hi > 0 such that the following conditions hold:

and

Then, the SGIVI (7) admits a solution (x1, x2, x3,u11,u12,u13,u21,u22,u23,u31,u32,u33) 
and the iterative sequences {xni }, {u

n
i1}, {u

n
i2}, {u

n
i3} generated by iterative Algorithm1 

strongly converge to xi, ui1, ui2, ui3, respectively, for each i ∈ {1, 2, 3}.

(13)�un+1
i3 − uni3� ≤

(

1+
1

n+ 1

)

D3(Ai3(x
n+1
3 ),Ai3(x

n
3)),

(14)
∥

∥

∥
R
Ii−Hi
�i ,Mi(.,x)

(z)− R
Ii−Hi
�i ,Mi(.,y)

(z)
∥

∥

∥
≤ hi�x − y�, ∀x, y, z ∈ Xi,

(15)



























































































κi = 1− µi + µihi + µi

�

1− 2ξi + �2gi
+

µi�gi
+µi�Hi

�gi
1+ri

+
3
�

j=1

µj�j�Fji

1+rj
< 1,

νi = µi

�

3
�

j=1

µj�j�Pji
δAji

1+rj

�

< 1,

κi + νi < 1 and 2ξi < 1+ �
2
gi
, for each i ∈ {1, 2, 3},

∞
�

q=1

�e
q
1 − e

q−1

1 �κ−q < ∞,
∞
�

q=1

�e
q
2 − e

q−1

2 �κ−q < ∞,

∞
�

q=1

�e
q
3 − e

q−1

3 �κ−q < ∞,

lim
n→∞

en1 = lim
n→∞

en2 = lim
n→∞

en3 = 0, for each κ ∈ (0, 1).
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Proof For each i ∈ {1, 2, 3}, let dni = [(Ii −Hi)(gi(x
n
,i))− �iFi(x

n
1
, xn

2
, xn

3
)− �iPi(u

n
i1,

uni2,u
n
i3)].

Using Algorithm 1, condition (14) and Theorem 2, we have

As g1 is ξ1-strongly monotone and �g1-Lipschitz continuous, we obtain

As g1 is �g1-Lipschitz continuous, F1 is Lipschitz continuous in all three arguments with 
constants �F11 , �F12 and �F13 , respectively, P1 is Lipschitz continuous in all three argu-
ments with constants �P11 , �P12 and �P13 , respectively, A11 is δA11-D1-Lipschitz continuous, 
A12 is δA12-D2-Lipschitz continuous and A13 is δA13-D3-Lipschitz continuous, respec-
tively, we obtain

(16)

�xn+1
1

− xn1�

= �(1− µ1)x
n
1 + µ1[x

n
1 − g1(x

n
1)+ R

I1−H1

�1,M1(.,x
n
1
)
(dn1 )] + µ1e

n
1 − (1− µ1)x

n−1
1

− µ1[x
n−1
1

− g1(x
n−1
1

)+ R
I1−H1

�1,M1(.,x
n−1
1

)
(dn−1

1
)] − µ1e

n−1
1

�

≤ (1− µ1)�x
n
1 − xn−1

1
� + µ1�x

n
1 − xn−1

1
− (g1(x

n
1)− g1(x

n−1
1

))�

+ µ1�R
I1−H1

�1,M1(.,x
n
1
)
(dn1 )− R

I1−H1

�1,M1(.,x
n
1
)
(dn−1

1
)� + µ1�R

I1−H1

�1,M1(.,x
n
1
)
(dn−1

1
)

− R
I1−H1

�1,M1(.,x
n−1
1

)
(dn−1

1
)� + µ1�e

n
1 − en−1

1
�

≤ (1− µ1)�x
n
1 − xn−1

1
� + µ1�x

n
1 − xn−1

1
− (g1(x

n
1)− g1(x

n−1
1

))�

+
µ1

1+ r1
�dn1 − dn−1

1
� + µ1h1�x

n
1 − xn−1

1
� + µ1�e

n
1 − en−1

1
�

≤ (1− µ1 + µ1h1)�x
n
1 − xn−1

1
� + µ1�x

n
1 − xn−1

1
− (g1(x

n
1)− g1(x

n−1
1

))�

+
µ1

1+ r1
�dn1 − dn−1

1
� + µ1�e

n
1 − en−1

1
�.

(17)

�xn1 − xn−1
1 − (g1(x

n
1)− g1(x

n−1
1 ))�2

= �xn1 − xn−1
1 �2 − 2

〈

xn1 − xn−1
1 , g1(x

n
1)− g1(x

n−1
1 )

〉

+ �g1(x
n
1)− g1(x

n−1
1 )�2

≤ (1− 2ξ1 + �
2
g1
)�xn1 − xn−1

1 �2.
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(18)

�dn1 − dn−1
1

�

= �(I1 −H1)(g1(x
n
1))− �1F1(x

n
1 , x

n
2 , x

n
3)− �1P1(u

n
11,u

n
12,u

n
13)

− (I1 −H1)(g1(x
n−1
1

))+ �1F1(x
n−1
1

, xn−1
2

, xn−1
3

)+ �1P1(u
n−1
11

,un−1
12

,un−1
13

)�

≤ �g1(x
n
1)− g1(x

n−1
1

)� + �H1(g1(x
n
1))−H1(g1(x

n−1
1

))�

+ �1�F1(x
n
1 , x

n
2 , x

n
3)− F1(x

n−1
1

, xn−1
2

, xn−1
3

)� + �1�P1(u
n
11,u

n
12,u

n
13)

− P1(u
n−1
11

,un−1
12

,un−1
13

)�

≤ �g1(x
n
1)− g1(x

n−1
1

)� + �H1(g1(x
n
1))−H1(g1(x

n−1
1

))� + �1�F1(x
n
1 , x

n
2 , x

n
3)

− F1(x
n−1
1

, xn2 , x
n
3)� + �1�F1(x

n−1
1

, xn2 , x
n
3)− F1(x

n−1
1

, xn−1
2

, xn3)�

+ �1�F1(x
n−1
1

, xn−1
2

, xn3)− F1(x
n−1
1

, xn−1
2

, xn−1
3

)� + �1�P1(u
n
11,u

n
12,u

n
13)

− P1(u
n−1
11

,un12,u
n
13)� + �1�P1(u

n−1
11

,un12,u
n
13)− P1(u

n−1
11

,un−1
12

,un13)�

+ �1�P1(u
n−1
11

,un−1
12

,un13)− P1(u
n−1
11

,un−1
12

,un−1
13

)�

≤ �g1�x
n
1 − xn−1

1
� + �H1

�g1�x
n
1 − xn−1

1
� + �1�F11�x

n
1 − xn−1

1
� + �1�F12�x

n
2

− xn−1
2

� + �1�F13�x
n
3 − xn−1

3
� + �1�P11�u

n
11 − un−1

11
� + �1�P12�u

n
12 − un−1

12
�

+ �1�P13�u
n
13 − un−1

13
�

≤ �g1�x
n
1 − xn−1

1
� + �H1

�g1�x
n
1 − xn−1

1
� + �1�F11�x

n
1 − xn−1

1
� + �1�F12�x

n
2

− xn−1
2

� + �1�F13�x
n
3 − xn−1

3
� + �1�P11

(

1+
1

n

)

D1(A11(x
n
1),A11(x

n−1
1

))

+ �1�P12

(

1+
1

n

)

D2(A12(x
n
2),A12(x

n−1
2

))

+ �1�P13

(

1+
1

n

)

D3(A13(x
n
3),A13(x

n−1
3

))

≤ �g1�x
n
1 − xn−1

1
� + �H1

�g1�x
n
1 − xn−1

1
� + �1�F11�x

n
1 − xn−1

1
�

+ �1�F12�x
n
2 − xn−1

2
� + �1�F13�x

n
3 − xn−1

3
�

+ �1�P11δA11

(

1+
1

n

)

�xn1 − xn−1
1

� + �1�P12

(

1+
1

n

)

δA12
�xn2 − xn−1

2
�

+ �1�P13δA13

(

1+
1

n

)

�xn3 − xn−1
3

�

≤

(

�g1 + �1�F11 + �H1
�g1 + �1�P11δA11

(

1+
1

n

))

�xn1 − xn−1
1

�

+

(

�1�F12 + �1�P12δA12

(

1+
1

n

))

�xn2 − xn−1
2

�

+

(

�1�F13 + �1�P13δA13

(

1+
1

n

))

�xn3 − xn−1
3

�.
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Using (17) and (18), (16) becomes

Using the same arguments as for (19), we have

Using the same arguments as for (19), we have

(19)

�xn+1
1

− xn1� ≤

(

1− µ1 + µ1h1 + µ1

√

1− 2ξ1 + �2g1

+
µ1(�g1 + �1�F11 + �H1

�g1 + �1�P11δA11
(1+ 1

n ))

1+ r1

)

�xn1 − xn−1
1

�

+
µ1(�1�F12 + �1�P12δA12

(1+ 1

n ))

1+ r1
�xn2 − xn−1

2
�

+
µ1(�1�F13 + �1�P13δA13

(1+ 1
n ))

1+ r1
�xn3 − xn−1

3
�

+ µ1�e
n
1 − en−1

1
�.

(20)

�xn+1
2

− xn2� ≤
µ2(�2�F21 + �2�P21δA21

(1+ 1
n ))

1+ r2
�xn1 − xn−1

1
�

+

(

1− µ2 + µ2h2 + µ2

√

1− 2ξ2 + �2g2

+
µ2(�g2 + �2�F22 + �H2

�g2 + �2�P22δA22
(1+ 1

n ))

1+ r2

)

�xn2 − xn−1
2

�

+
µ2(�2�F23 + �2�P23δA23

(1+ 1
n ))

1+ r2
�xn3 − xn−1

3
�

+ µ2�e
n
2 − en−1

2
�.

(21)

�xn+1
3

− xn3� ≤
µ3(�3�F31 + �3�P31δA31

(1+ 1
n ))

1+ r3
�xn1 − xn−1

1
�

+
µ3(�3�F32 + �3�P32δA32

(1+ 1
n ))

1+ r3
�xn2 − xn−1

2
�

+

(

1− µ3 + µ3h3 + µ3

√

1− 2ξ3 + �2g3

+
µ3(�g3 + �3�F33 + �H3

�g3 + �3�P33δA33
(1+ 1

n ))

1+ r3

)

�xn3 − xn−1
3

�

+ µ3�e
n
3 − en−1

3
�.
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Combining (19) to (21), we have

�xn+1
1

− xn1� + �xn+1
2

− xn2� + �xn+1
3

− xn3�

≤

(

1− µ1 + µ1h1 + µ1

√

1− 2ξ1 + �2g1

+
µ1(�g1 + �1�F11 + �H1

�g1 + �1�P11δA11
(1+ 1

n ))

1+ r1

)

�xn1 − xn−1
1

�

+
µ1(�1�F12 + �1�P12δA12

(1+ 1

n ))

1+ r1
�xn2 − xn−1

2
�

+
µ1(�1�F13 + �1�P13δA13

(1+ 1
n ))

1+ r1
�xn3 − xn−1

3
�

+
µ2(�2�F21 + �2�P21δA21

(1+ 1

n ))

1+ r2
�xn1 − xn−1

1
�

+

(

1− µ2 + µ2h2 + µ2

√

1− 2ξ2 + �2g2

+
µ2(�g2 + �2�F22 + �H2

�g2 + �2�P22δA22
(1+ 1

n ))

1+ r2

)

�xn2 − xn−1
2

�

+
µ2(�2�F23 + �2�P23δA23

(1+ 1

n ))

1+ r2
�xn3 − xn−1

3
�

+
µ3(�3�F31 + �3�P31δA31

(1+ 1

n ))

1+ r3
�xn1 − xn−1

1
�

+
µ3(�3�F32 + �3�P32δA32

(1+ 1
n ))

1+ r3
�xn2 − xn−1

2
�

+

(

1− µ3 + µ3h3 + µ3

√

1− 2ξ3 + �2g3

+
µ3(�g3 + �3�F33 + �H3

�g3 + �3�P33δA33
(1+ 1

n ))

1+ r3

)

�xn3 − xn−1
3

�

+ µ1�e
n
1 − en−1

1
� + µ2�e

n
2 − en−1

2
� + µ3�e

n
3 − en−1

3
�

=

(

1− µ1 + µ1h1 + µ1

√

1− 2ξ1 + �2g1
+

µ1�g1 + µ1�H1
�g1

1+ r1
+

µ1�1�F11

1+ r1

+
µ2�2�F21

1+ r2
+

µ3�3�F31

1+ r3

+

(

µ1�1�P11δA11

1+ r1
+

µ2�2�P21δA21

1+ r2
+

µ3�3�P31δA31

1+ r3

)(

1+
1

n

))

�xn1 − xn−1
1

�

+

(

1− µ2 + µ2h2 + µ2

√

1− 2ξ2 + �2g2
+

µ2�g2 + µ2�H2
�g2

1+ r2

+
µ1�1�F12

1+ r1
+

µ2�2�F22

1+ r2
+

µ3�3�F32

1+ r3

+

(

µ1�1�P12δA12

1+ r1
+

µ2�2�P22δA22

1+ r2
+

µ3�3�P32δA32

1+ r3

)(

1+
1

n

))

�xn2 − xn−1
2

�

+

(

1− µ3 + µ3h3 + µ3

√

1− 2ξ3 + �2g3

+
µ3�g3 + µ3�H3

�g3

1+ r3
+

µ1�1�F13

1+ r1
+

µ2�2�F23

1+ r2
+

µ3�3�F33

1+ r3

+

(

µ1�1�P13δA13

1+ r1
+

µ2�2�P23δA23

1+ r2
+

µ3�3�P33δA33

1+ r3

)(

1+
1

n

))

�xn3 − xn−1
3

�

+ µ1�e
n
1 − en−1

1
� + µ2�e

n
2 − en−1

2
� + µ3�e

n
3 − en−1

3
�,
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which implies that

where κi = 1− µi + µihi + µi

√

1− 2ξi + �2gi
+

µi�gi
+µi�Hi

�gi
1+ri

+
∑3

j=1

µj�j�Fji

1+rj
 and 

νni =
∑3

j=1

µj�j�Pji
δAji

1+rj

(

1+ 1
n

)

. 

It follows from (22) that

where

Letting α = max{κ1 + ν1, κ2 + ν2, κ3 + ν3}, where

then αn → α and νni → νi, as n → ∞, for each i ∈ {1, 2, 3}. From condition (15), we 
know that 0 < α < 1 and hence there exist n0 ∈ N and α0 ∈ (α, 1) such that αn ≤ α0 for 
all n ≥ n0. Therefore, it follows from (23) that

which implies that

(22)

3
�

i=1

�xn+1
i − xni � ≤

3
�

i=1



1− µi + µihi + µi

�

1− 2ξi + �2gi
+

µi�gi + µi�Hi�gi

1+ ri

+

3
�

j=1

µj�j�Fji

1+ rj
+

3
�

j=1

µj�j�PjiδAji

1+ rj

�

1+
1

n

�



�xni − xn−1
i �

+

3
�

i=1

µi�e
n
i − en−1

i �

≤

3
�

i=1

(κi + νni )�x
n
i − xn−1

i � +

3
�

i=1

µi�e
n
i − en−1

i �,

(23)
3

∑

i=1

�xn+1
i − xni � ≤

3
∑

i=1

αn�xni − xn−1
i � +

3
∑

i=1

µi�e
n
i − en−1

i �,

αn = max{κ1 + νn1 , κ2 + νn2 , κ3 + νn3 }, for all n = 1, 2, 3, · · · .

νi = µi

3
∑

j=1

µj�j�PjiδAji

1+ rj
, for each i ∈ {1, 2, 3},

3
∑

i=1

�xn+1
i − xni � ≤

3
∑

i=1

αn0�x
n
i − xn−1

i � +

3
∑

i=1

µi�e
n
i − en−1

i �, for all n ≥ n0,

3
∑

i=1

�xn+1
i − xni � ≤

3
∑

i=1

α
n−n0
0 �x

n0+1
i − x

n0
i � +

n−n0
∑

p=1

3
∑

i=1

µiα
p−1
0 ι

n−(p−1)
i , for all n ≥ n0,
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where ιni = �eni − en−1
i �, for all n ≥ n0. Hence, for any m ≥ n > n0, we have

Since 
∑∞

q=1 ι
q
1κ

−q < ∞, 
∑∞

q=1 ι
q
2κ

−q < ∞, and 
∑∞

q=1 ι
q
3κ

−q < ∞, for all κ ∈ (0, 1), and 
α0 < 1, it follows from (24) that �xm1 − xn1� → 0, �xm2 − xn2� → 0 and �xm3 − xn3� → 0, as 
n → ∞, and so {xn1}, {x

n
2} and {xn3} are Cauchy sequences in X1, X2 and X3, respectively. 

Thus, there exist x1 ∈ X1, x2 ∈ X2 and x3 ∈ X3 such that xn1 → x1, xn2 → x2 and xn3 → x3, 
as n → ∞.

Now, we prove that uni1 → ui1 ∈ Ai1(x1), uni2 → ui2 ∈ Ai2(x2), uni3 → ui3 ∈ Ai3(x3), 
for each i ∈ {1, 2, 3}. In fact, it follows from the Lipschitz continuity of Ai1, Ai2, Ai3 and 
(11)–(13) that

From (25)–(27), we know that {uni1}, {u
n
i2} and {uni3} are also Cauchy sequences. Therefore, 

there exist ui1 ∈ X1, ui2 ∈ X2 and ui3 ∈ X3 such that uni1 → ui1, uni2 → ui2, uni3 → ui3, as 
n → ∞.

Further, for each i ∈ {1, 2, 3},

Since Ai1 is closed, we have ui1 ∈ Ai1(x1). Similarly, ui2 ∈ Ai2(x2), ui3 ∈ Ai3(x3), respec-
tively. By continuity of the mappings gi, Hi, Fi, Pi, RIi−Hi

�i ,Mi
 and iterative Algorithm 1, we 

know that ui1, ui2, ui3 satisfy the following relation:

(24)

3
∑

i=1

�xmi − xni � ≤

m−1
∑

q=n

3
∑

i=1

�x
q+1

i − x
q
i �

≤

m−1
∑

q=n

3
∑

i=1

α
q−n0
0

�x
n0+1

i − x
n0
i � +

m
∑

q=n

q−n0
∑

p=1

3
∑

i=1

µiα
p−1

0
ι
q−(p−1)

i

≤

m−1
∑

q=n

3
∑

i=1

α
q−n0
0

�x
n0+1

i − x
n0
i �

+

m
∑

q=n

q−n0
∑

p=1

3
∑

i=1

µiα
q
0

ι
q−(p−1)

i

α
q−(p−1)

0

.

(25)�uni1 − un−1
i1 � ≤

(

1+
1

n+ 1

)

δAi1�x
n
1 − xn−1

1 �,

(26)�uni2 − un−1
i2 � ≤

(

1+
1

n+ 1

)

δAi2�x
n
2 − xn−1

2 �,

(27)�uni3 − un−1
i3 � ≤

(

1+
1

n+ 1

)

δAi3�x
n
3 − xn−1

3 �, for each i ∈ {1, 2, 3}.

d(ui1,Ai1(x1)) ≤ �ui1 − uni1� + d(uni1,Ai1(x1))

≤ �ui1 − uni1� + D1(Ai1(x
n
1),Ai1(x1))

≤ �ui1 − uni1� +

(

1+
1

n+ 1

)

δAi1�x
n
1 − x1� → 0, as n → ∞.

gi(xi) = R
Ii−Hi
�i ,Mi(.,xi)

[(Ii −Hi)(gi(xi))− �iFi(x1, x2, x3)− �iPi(ui1,ui2,ui3)].
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By Lemma 1, (x1, x2, x3,u11,u12,u13,u21,u22,u23,u31,u32,u33) is a solution of SGIVI (7). 
This completes the proof.  �

Remark 1 It is to be noted that the techniques used to prove the convergence result 
Theorem 3 is different than others. For more details, we refer to Shang and Bouffanais 
(2014a, b).

The following example ensures that all the conditions of Theorem 3 are fulfilled.

Example 1 For each i ∈ {1, 2, 3}, let Xi = R and gi : Xi → Xi be the mappings defined 
by

Suppose that the mappings Hi : Xi → Xi are defined by

and the mappings Mi : Xi × Xi → 2Xi are defined by

Then, it is easy to check that g ′i s are 1
100i-Lipschitz continuous and 1

105i-strongly mono-
tone, Hi’s are i-Lipschitz continuous and i-relaxed Lipschitz continuous, and Mi’s are 
monotone mappings.

In addition, it is easy to verify that for �i = 1, [(Ii −Hi)+Mi(., y)](Xi) = Xi, which 
shows that Mi’s are (Ii −Hi)-monotone mappings. Hence, the relaxed resolvent opera-
tors RIi−Hi

�i ,Mi
: Xi → Xi associated with Ii, Hi and Mi are of the form:

It is easy to see that the relaxed resolvent operators defined above are single-valued.
Now,

Hence, the resolvent operators RIi−Hi
�i ,Mi

 are 1
1+i-Lipschitz continuous.

Let the mappings Fi : R× R× R → R be defined by

gi(x) =
x

103i
, ∀ x ∈ Xi.

Hi(x) = −
(1+ i)x

2
, ∀ x ∈ Xi,

Mi(x, y) =
(1+ i)x

2
, ∀ (x, y) ∈ Xi × Xi.

R
Ii−Hi
�i ,Mi

(x) =
x

2+ i
, ∀x ∈ Xi.

∥

∥

∥R
Ii−Hi
�i ,Mi

(x)− R
Ii−Hi
�i ,Mi

(y)
∥

∥

∥ =

∥

∥

∥

∥

x

2+ i
−

y

2+ i

∥

∥

∥

∥

=
1

2+ i
�x − y�

≤
1

1+ i
�x − y�.

Fi(x) =
x1 + x2 + x3 + 1

3480i
, ∀x = (x1, x2, x3) ∈ R× R× R,
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and the mappings Pi : R× R× R → R be defined by

It can be verified that Fi’s are 1
1150i-Lipschitz continuous in first argument, 1

2300i-Lip-
schitz continuous in second argument and 1

3450i-Lipschitz continuous in third argu-
ment, Pi’s are 1

1100i-Lipschitz continuous in first argument, 1
2200i-Lipschitz continuous 

in second argument and 1
3300i-Lipschitz continuous in third argument. Suppose that 

Ai1,Ai2,Ai3 : R → R be the identity mappings. Then, clearly Ai1’s, Ai2’s and Ai3’s are 1-Di

-Lipschitz continuous mappings. Hence, all the conditions of Theorem 3 are satisfied.

Remark 2 We choose �gi =
1

100i , ξi =
1

105i , �Hi = i, ri = i, �Fi1 =
1

1150i , �Fi2 =
1

2300i , 
�Fi3 =

1
3450i , �Pi1 =

1
1100i , �Pi2 =

1
2200i , �Pi3 =

1
3300i , δAi1 = 1, δAi2 = 1, δAi3 = 1, �i = 1, 

one can easily verify that for hi = 1
1000i and µi = 1, the condition (15) of Theorem 3 is 

satisfied.

Remark 3 We remark that our results can be further considered in Banach spaces and 
also the techniques of this paper may be helpful for solving a system of n-variational 
inclusions.

Conclusion
System of variational inclusions can be viewed as natural and innovative generaliza-
tions of the system of variational inequalities. Two of the most difficult and important 
problems related to inclusions are the establishment of generalized inclusions and the 
development of an iterative algorithm. In this article, a new system of three variational 
inclusions is introduced and studied which is more general than many existing system 
of variational inclusions in the literature. An iterative algorithm is established with 
error terms to approximate the solution of our system, and convergence criteria is also 
discussed.

We remark that our results are new and useful for further research and one can extend 
these results in higher dimensional spaces. Much more work is needed in all these areas 
to develop a sound basis for applications of the system of general variational inclusions 
in engineering and physical sciences.
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