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1 Introduction
Let H and H be two real Hilbert spaces. Let D and Q be nonempty, closed, and con-
vex subsets of H and H, respectively. Let A : H → H be a bounded linear operator.
Then the split feasibility problem [] is to find z ∈ H such that z ∈ D ∩ A–Q. Defining
U = A∗(I – PQ)A in the split feasibility problem, we see that U : H → H is an inverse
strongly monotone operator [], where A∗ is the adjoint operator of A and PQ is the met-
ric projection of H onto Q. Furthermore, if D ∩ A–Q is nonempty, then z ∈ D ∩ A–Q is
equivalent to

z = PD
(
I – λA∗(I – PQ)A

)
z, (.)

where λ >  and PD is the metric projection of H onto D. Using such results regarding non-
linear operators and fixed points, many authors have studied the split feasibility problem
in Hilbert spaces; see, for instance, [–]. Recently, Takahashi [] and [] extended such an
equivalent relation (.) in Hilbert spaces to Banach spaces and then obtained strong con-
vergence theorems for finding a solution of the split feasibility problem in Banach spaces.
Very recently, using the hybrid method by Nakajo and Takahashi [] in mathematical pro-
gramming, Alsulami et al. [] prove strong convergence theorems for finding a solution
of the split feasibility problem in Banach spaces; see also [, ].

Theorem  ([]) Let H be a Hilbert space and let F be a strictly convex, reflexive and
smooth Banach space. Let JF be the duality mapping on F . Let C and D be nonempty, closed,

© 2015 Takahashi and Yao. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13663-015-0324-3
http://crossmark.crossref.org/dialog/?doi=10.1186/s13663-015-0324-3&domain=pdf
mailto:yaojc@mail.cmu.edu.tw


Takahashi and Yao Fixed Point Theory and Applications  (2015) 2015:87 Page 2 of 13

and convex subsets of H and F , respectively. Let PC and PD be the metric projections of H
onto C and F onto D, respectively. Let A : H → F be a bounded linear operator such that
A �=  and let A∗ be the adjoint operator of A. Suppose that C ∩ A–D �= ∅. Let x ∈ H and
let {xn} be a sequence generated by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

zn = PC(xn – rA∗JF (Axn – PDAxn)),

yn = αnxn + ( – αn)zn,

Cn = {z ∈ H : ‖yn – z‖ ≤ ‖xn – z‖},
Qn = {z ∈ H : 〈xn – z, x – xn〉 ≥ },
xn+ = PCn∩Qn x, ∀n ∈N,

where  ≤ αn ≤ a <  for some a ∈ R and  < r‖A‖ < . Then {xn} converges strongly to a
point z ∈ C ∩ A–D, where z = PC∩A–Dx.

Takahashi [] also obtained the following result from the idea of the shrinking projection
method by Takahashi et al. [].

Theorem  ([]) Let H be a Hilbert space and let F be a uniformly convex Banach space
whose norm is Fréchet differentiable. Let JF be the duality mapping on F . Let C and D be
nonempty, closed, and convex subsets of H and F , respectively. Let PC and PD be the metric
projections of H onto C and F onto D, respectively. Let A : H → F be a bounded linear
operator such that A �=  and let A∗ be the adjoint operator of A. Suppose that C ∩A–D �= ∅.
Let {un} be a sequence in H such that un → u. Let x ∈ H , C = H , and {xn} be a sequence
generated by

⎧
⎪⎪⎨

⎪⎪⎩

zn = PC(xn – rA∗JF (Axn – PDAxn)),

Cn+ = {z ∈ H : ‖zn – z‖ ≤ ‖xn – z‖} ∩ Cn,

xn+ = PCn+ un+, ∀n ∈N,

where  < r‖A‖ ≤ . Then {xn} converges strongly to a point z ∈ C ∩ A–D, where z =
PC∩A–Du.

On the other hand, Byrne et al. [] considered the following problem: Given set-valued
mappings Ai : H → H ,  ≤ i ≤ m, and Bj : H → H ,  ≤ j ≤ n, respectively, and
bounded linear operators Tj : H → H,  ≤ j ≤ n, the split common null point problem
[] is to find a point z ∈ H such that

z ∈
( m⋂

i=

A–
i 

)

∩
( n⋂

j=

T–
j

(
B–

j 
)
)

,

where A–
i  and B–

j  are null point sets of Ai and Bj, respectively.
In this paper, motivated by these problems and results for the problems in Hilbert spaces,

we consider the split common null point problem in Banach spaces. Then using the hybrid
method and the shrinking projection method in mathematical programming, we prove
two strong convergence theorems for finding a solution of the split common null point
problem in Banach spaces.



Takahashi and Yao Fixed Point Theory and Applications  (2015) 2015:87 Page 3 of 13

2 Preliminaries
Throughout this paper, we denote by N the set of positive integers and by R the set of real
numbers. Let H be a real Hilbert space with inner product 〈· , ·〉 and norm ‖·‖, respectively.
For x, y ∈ H and λ ∈R, we have from []

‖x + y‖ ≤ ‖x‖ + 〈y, x + y〉; (.)
∥∥λx + ( – λ)y

∥∥ = λ‖x‖ + ( – λ)‖y‖ – λ( – λ)‖x – y‖. (.)

Furthermore we see that, for x, y, u, v ∈ H ,

〈x – y, u – v〉 = ‖x – v‖ + ‖y – u‖ – ‖x – u‖ – ‖y – v‖. (.)

Let C be a nonempty, closed, and convex subset of a Hilbert space H . The nearest point
projection of H onto C is denoted by PC , that is, ‖x–PCx‖ ≤ ‖x–y‖ for all x ∈ H and y ∈ C.
Such PC is called the metric projection of H onto C. We know that the metric projection
PC is firmly nonexpansive, i.e.,

‖PCx – PCy‖ ≤ 〈PCx – PCy, x – y〉 (.)

for all x, y ∈ H . Furthermore 〈x – PCx, y – PCx〉 ≤  holds for all x ∈ H and y ∈ C; see [].
Let E be a real Banach space with norm ‖ · ‖ and let E∗ be the dual space of E. We denote

the value of y∗ ∈ E∗ at x ∈ E by 〈x, y∗〉. When {xn} is a sequence in E, we denote the strong
convergence of {xn} to x ∈ E by xn → x and the weak convergence by xn ⇀ x. The modulus
δ of convexity of E is defined by

δ(ε) = inf

{
 –

‖x + y‖


: ‖x‖ ≤ ,‖y‖ ≤ ,‖x – y‖ ≥ ε

}

for every ε with  ≤ ε ≤ . A Banach space E is said to be uniformly convex if δ(ε) >  for
every ε > . It is well known that a Banach space E is uniformly convex if and only if for
any two sequences {xn} and {yn} in E such that

lim
n→∞‖xn‖ = lim

n→∞‖yn‖ =  and lim
n→∞‖xn + yn‖ = ,

limn→∞ ‖xn – yn‖ =  holds. A uniformly convex Banach space is strictly convex and re-
flexive. We also know that a uniformly convex Banach space has the Kadec-Klee property,
i.e., xn ⇀ u and ‖xn‖ → ‖u‖ imply xn → u.

The duality mapping J from E into E∗ is defined by

Jx =
{

x∗ ∈ E∗ :
〈
x, x∗〉 = ‖x‖ =

∥∥x∗∥∥}

for every x ∈ E. Let U = {x ∈ E : ‖x‖ = }. The norm of E is said to be Gâteaux differentiable
if for each x, y ∈ U , the limit

lim
t→

‖x + ty‖ – ‖x‖
t

(.)
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exists. In the case, E is called smooth. We know that E is smooth if and only if J is a single-
valued mapping of E into E∗. We also know that E is reflexive if and only if J is surjective,
and E is strictly convex if and only if J is one-to-one. Therefore, if E is a smooth, strictly
convex and reflexive Banach space, then J is a single-valued bijection and in this case, the
inverse mapping J– coincides with the duality mapping J∗ on E∗. The norm of E is said to
be Fréchet differentiable if for each x ∈ U , the limit (.) is attained uniformly for y ∈ U . It
is known that if the norm of E is Fréchet differentiable, then J is norm to norm continuous.
For more details, see [] and []. We know the following result.

Lemma  ([]) Let E be a smooth Banach space and let J be the duality mapping on E.
Then 〈x–y, Jx–Jy〉 ≥  for all x, y ∈ E. Furthermore, if E is strictly convex and 〈x–y, Jx–Jy〉 =
, then x = y.

Let C be a nonempty, closed, and convex subset of a strictly convex and reflexive Banach
space E. Then we know that, for any x ∈ E, there exists a unique element z ∈ C such that
‖x–z‖ ≤ ‖x–y‖ for all y ∈ C. Putting z = PCx, we call PC the metric projection of E onto C.

Lemma  ([]) Let E be a smooth, strictly convex, and reflexive Banach space. Let C be
a nonempty, closed, and convex subset of E and let x ∈ E and z ∈ C. Then the following
conditions are equivalent:

() z = PCx;
() 〈z – y, J(x – z)〉 ≥ , ∀y ∈ C.

Let E be a smooth Banach space and let J be the duality mapping on E. Define a function
φ : E × E →R by

φ(x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖, ∀x, y ∈ E.

Observe that, in a Hilbert space H , φ(x, y) = ‖x – y‖ for all x, y ∈ H . Furthermore, we know
that, for each x, y, z, w ∈ E,

(‖x‖ – ‖y‖) ≤ φ(x, y) ≤ (‖x‖ + ‖y‖); (.)

φ(x, y) = φ(x, z) + φ(z, y) + 〈x – z, Jz – Jy〉; (.)

〈x – y, Jz – Jw〉 = φ(x, w) + φ(y, z) – φ(x, z) – φ(y, w). (.)

If E is additionally assumed to be strictly convex, then

φ(x, y) =  if and only if x = y. (.)

The following lemma was proved by Kamimura and Takahashi [].

Lemma  ([]) Let E be a uniformly convex Banach space and let r > . Then there exists
a strictly increasing, continuous, and convex function g : [, r] → [,∞) such that g() = 
and

g
(‖x – y‖) ≤ φ(x, y)

for all x, y ∈ Br , where Br = {z ∈ E : ‖z‖ ≤ r}.
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Let E be a Banach space and let A be a mapping of E into E∗ . The effective domain of
A is denoted by dom(A), that is, dom(A) = {x ∈ E : Ax �= ∅}. A multi-valued mapping A on
E is said to be monotone if 〈x – y, u∗ – v∗〉 ≥  for all x, y ∈ dom(A), u∗ ∈ Ax, and v∗ ∈ Ay.
A monotone operator A on E is said to be maximal if its graph is not properly contained in
the graph of any other monotone operator on E. The following theorem is due to Browder
[]; see also [], Theorem ...

Theorem  ([]) Let E be a uniformly convex and smooth Banach space and let J be
the duality mapping of E into E∗. Let A be a monotone operator of E into E∗ . Then A is
maximal if and only if for any r > ,

R(J + rA) = E∗,

where R(J + rA) is the range of J + rA.

Let E be a uniformly convex Banach space with a Gâteaux differentiable norm and let
A be a maximal monotone operator of E into E∗ . For all x ∈ E and r > , we consider the
following equation:

 ∈ J(xr – x) + rAxr .

This equation has a unique solution xr . We define Jr by xr = Jrx. Such Jr , r >  are called the
metric resolvents of A. The set of null points of A is defined by A– = {z ∈ E :  ∈ Az}. We
know that A– is closed and convex; see []. Let E be a uniformly convex and smooth
Banach space E and let Jr be the metric resolvent of A for r > . Using Lemma , we can
prove that the metric resolvent Jr is continuous. In fact, let xn → x. Since Jr is the metric
resolvent of A for r > , we have from []

〈
Jrxn – y, J(xn – Jrxn)

〉 ≥ , ∀y ∈ A–.

Then we have 〈Jrxn – xn + xn – y, J(xn – Jrxn)〉 ≥  and hence

‖xn – y‖‖xn – Jrxn‖ ≥ 〈
xn – y, J(xn – Jrxn)

〉

≥ 〈
xn – Jrxn, J(xn – Jrxn)

〉

= ‖xn – Jrxn‖.

This means that {xn – Jrxn} is bounded. Furthermore, since Jr is the metric resolvent of A
for r > , we know that

〈
Jrxn – Jrx, J(xn – Jrxn) – J(x – Jrx)

〉 ≥ .

Using (.) and Lemma , we see that


〈
xn – x, J(xn – Jrxn) – J(x – Jrx)

〉

≥ 
〈
xn – Jrxn – (x – Jrx), J(xn – Jrxn) – J(x – Jrx)

〉
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= φ(xn – Jrxn, x – Jrx) + φ(x – Jrx, xn – Jrxn)

≥ g
(∥∥xn – Jrxn – (x – Jrx)

∥∥)
+ g

(∥∥x – Jrx – (xn – Jrxn)
∥∥)

= g
(∥∥xn – Jrxn – (x – Jrx)

∥∥)
,

where g is a strictly increasing, continuous, and convex function in Lemma . Therefore,
if xn → x, then Jrxn → Jrx. Therefore, Jr is continuous.

Let A be a maximal monotone operator on a Hilbert space H . In a Hilbert space H , the
metric resolvent Jr of A is called the resolvent of A simply. It is known that the resolvent
Jr of A for r >  is firmly nonexpansive, i.e.,

‖Jrx – Jry‖ ≤ 〈x – y, Jrx – Jry〉, ∀x, y ∈ H .

It is also known that ‖Jλx – Jμx‖ ≤ (|λ – μ|/λ)‖x – Jλx‖ holds for all λ,μ >  and x ∈ H ; see
[, ] for more details. As a matter of fact, we have the following lemma due to Takahashi
et al. [].

Lemma  ([]) Let H be a Hilbert space and let B be a maximal monotone operator on H .
For r >  and x ∈ H , define the resolvent Jrx. Then the following holds:

s – t
s

〈Jsx – Jtx, Jsx – x〉 ≥ ‖Jsx – Jtx‖

for all s, t >  and x ∈ H .

For a sequence {Cn} of nonempty, closed, and convex subsets of a Banach space E, define
s-LinCn and w-LsnCn as follows: x ∈ s-LinCn if and only if there exists {xn} ⊂ E such that
{xn} converges strongly to x and xn ∈ Cn for all n ∈N. Similarly, y ∈ w-LsnCn if and only if
there exist a subsequence {Cni} of {Cn} and a sequence {yi} ⊂ E such that {yi} converges
weakly to y and yi ∈ Cni for all i ∈ N. If C satisfies

C = s-LinCn = w-LsnCn, (.)

it is said that {Cn} converges to C in the sense of Mosco [] and we write C =
M-limn→∞Cn. It is easy to show that if {Cn} is nonincreasing with respect to inclusion,
then {Cn} converges to

⋂∞
n= Cn in the sense of Mosco. For more details, see []. The

following lemma was proved by Tsukada [].

Lemma  ([]) Let E be a uniformly convex Banach space. Let {Cn} be a sequence of
nonempty, closed, and convex subsets of E. If C = M-limn→∞Cn exists and nonempty, then
for each x ∈ E, {PCn x} converges strongly to PC x, where PCn and PC are the metric projec-
tions of E onto Cn and C, respectively.

3 Main results
In this section, using the hybrid method in mathematical programming, we first prove a
strong convergence theorem for finding a solution of the split common null point problem
in Banach spaces.
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Theorem  Let H be a Hilbert space and let F be a uniformly convex and smooth Banach
space. Let JF be the duality mapping on F . Let A and B be maximal monotone operators
of H into H and F into F∗ such that A– �= ∅ and B– �= ∅, respectively. Let Jλ be the
resolvent of A for λ >  and let Qμ be the metric resolvent of B for μ > . Let T : H → F be a
bounded linear operator such that T �=  and let T∗ be the adjoint operator of T . Suppose
that A– ∩ T–(B–) �= ∅. Let x ∈ H and let {xn} be a sequence generated by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

zn = Jλn (xn – λnT∗JF (Txn – Qμn Txn)),

yn = αnxn + ( – αn)zn,

Cn = {z ∈ H : ‖yn – z‖ ≤ ‖xn – z‖},
Dn = {z ∈ H : 〈xn – z, x – xn〉 ≥ },
xn+ = PCn∩Dn x, ∀n ∈ N,

where {αn} ⊂ [, ] and {λn}, {μn} ⊂ (,∞) satisfy the conditions such that

 ≤ αn ≤ a < ,  < b ≤ μn, and  < c ≤ λn‖T‖ ≤ d < 

for some a, b, c, d ∈ R. Then {xn} converges strongly to z ∈ A– ∩ T–(B–), where z =
PA–∩T–(B–)x.

Proof Since

‖yn – z‖ ≤ ‖xn – z‖ ⇔ ‖yn‖ – ‖xn‖ – 〈yn – xn, z〉 ≤ ,

it follows that Cn is closed and convex for all n ∈N. It is obvious that Dn is closed and con-
vex. Then Cn ∩ Dn is closed and convex for all n ∈N. Let us show that A– ∩ T–(B–) ⊂
Cn for all n ∈N. Let z ∈ A– ∩ T–(B–). Then z = Jλn z and Tz = Qμn Tz. Since Jλn is non-
expansive, we see that, for z ∈ A– ∩ T–(B–),

‖zn – z‖ =
∥∥Jλn

(
xn – λnT∗JF (Txn – Qμn Txn)

)
– Jλn z

∥∥

≤ ∥
∥xn – λnT∗JF (Txn – Qμn Txn) – z

∥
∥

=
∥
∥xn – z – λnT∗JF (Txn – Qμn Txn)

∥
∥

= ‖xn – z‖ – 
〈
xn – z,λnT∗JF (Txn – Qμn Txn)

〉

+
∥∥λnT∗JF (Txn – Qμn Txn)

∥∥

≤ ‖xn – z‖ – λn
〈
Txn – Tz, JF (Txn – Qμn Txn)

〉

+ λ
n‖T‖∥∥JF (Txn – Qμn Txn)

∥∥

= ‖xn – z‖ + λ
n‖T‖‖Txn – Qμn Txn‖

– λn
〈
Txn – Qμn Txn + Qμn Txn – Tz, JF (Txn – Qμn Txn)

〉

= ‖xn – z‖ – λn‖Txn – Qμn Txn‖

– λn
〈
Qμn Txn – Tz, JF (Txn – Qμn Txn)

〉

+ λ
n‖T‖‖Txn – Qμn Txn‖
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≤ ‖xn – z‖ – λn‖Txn – Qμn Txn‖ + λ
n‖T‖‖Txn – Qμn Txn‖

= ‖xn – z‖ + λn
(
λn‖T‖ – 

)‖Txn – Qμn Txn‖

≤ ‖xn – z‖ (.)

and hence

‖yn – z‖ =
∥
∥αnxn + ( – αn)zn – z

∥
∥

≤ αn‖xn – z‖ + ( – αn)‖zn – z‖
≤ αn‖xn – z‖ + ( – αn)‖xn – z‖
≤ ‖xn – z‖.

Therefore, A– ∩ T–(B–) ⊂ Cn for all n ∈ N. Let us show that A– ∩ T–(B–) ⊂ Dn

for all n ∈ N. It is obvious that C ∩ A–D ⊂ D. Suppose that A– ∩ T–(B–) ⊂ Dk for
some k ∈N. Then A– ∩ T–(B–) ⊂ Ck ∩ Dk . From xk+ = PCk∩Dk x, we see that

〈xk+ – z, x – xk+〉 ≥ , ∀z ∈ Ck ∩ Dk

and hence

〈xk+ – z, x – xk+〉 ≥ , ∀z ∈ A– ∩ T–(B–
)
.

Then A– ∩ T–(B–) ⊂ Dk+. We have by induction A– ∩ T–(B–) ⊂ Dn for all n ∈N.
Thus, we see that A– ∩ T–(B–) ⊂ Cn ∩ Dn for all n ∈ N. This implies that {xn} is well
defined.

Since A– ∩ T–(B–) is nonempty, closed, and convex, there exists z ∈ A– ∩
T–(B–) such that z = PA–∩T–(B–)x. From xn+ = PCn∩Dn x, we see that

‖x – xn+‖ ≤ ‖x – y‖

for all y ∈ Cn ∩ Dn. Since z ∈ A– ∩ T–(B–) ⊂ Cn ∩ Dn, we see that

‖x – xn+‖ ≤ ‖x – z‖. (.)

This means that {xn} is bounded.
Next we show that limn→∞ ‖xn – xn+‖ = . From the definition of Dn, we see that xn =

PDn x. From xn+ = PCn∩Dn x we have xn+ ∈ Dn. Thus

‖xn – x‖ ≤ ‖xn+ – x‖

for all n ∈N. This implies that {‖x –xn‖} is bounded and nondecreasing. Then there exists
the limit of {‖x – xn‖}. From xn+ ∈ Dn we see that

〈xn – xn+, x – xn〉 ≥ .
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This implies from (.) that

 ≤ ‖xn+ – x‖ – ‖xn – x‖ – ‖xn+ – xn‖

and hence

‖xn+ – xn‖ ≤ ‖xn+ – x‖ – ‖xn – x‖.

Since there exists the limit of {‖x – xn‖}, we see that

lim
n→∞‖xn – xn+‖ = . (.)

From xn+ ∈ Cn, we also see that ‖yn – xn+‖ ≤ ‖xn – xn+‖. Then we get from (.) that
‖yn – xn+‖ → . Using this, we have

‖yn – xn‖ ≤ ‖yn – xn+‖ + ‖xn+ – xn‖ → . (.)

We have from (.), for any z ∈ A– ∩ T–(B–),

‖yn – z‖ =
∥∥αnxn + ( – αn)zn – z

∥∥

≤ αn‖xn – z‖ + ( – αn)‖zn – z‖

≤ αn‖xn – z‖ + ( – αn)‖xn – z‖

+ ( – αn)λn
(
λn‖T‖ – 

)‖Txn – Qμn Txn‖

≤ ‖xn – z‖ + ( – αn)λn
(
λn‖T‖ – 

)‖Txn – Qμn Txn‖.

Thus we see that

( – αn)λn
(
 – λn‖T‖)‖Txn – Qμn Txn‖

≤ ‖xn – z‖ – ‖yn – z‖

=
(‖xn – z‖ + ‖yn – z‖)(‖xn – z‖ – ‖yn – z‖)

≤ (‖xn – z‖ + ‖yn – z‖)‖xn – yn‖.

From ‖yn – xn‖ → ,  ≤ αn ≤ a < , and  < c ≤ λn‖T‖ ≤ d < , we see that

lim
n→∞‖Txn – Qμn Txn‖ = . (.)

We also see that ‖yn – xn‖ = ‖αnxn + ( –αn)zn – xn‖ = ( –αn)‖zn – xn‖. From ‖yn – xn‖ → 
and  ≤ αn ≤ a < , we see that

lim
n→∞‖xn – zn‖ = . (.)

Since {xn} is bounded, there exists a subsequence {xni} of {xn} converging weakly to w.
From (.) {yni} converges weakly to w. Furthermore, from (.) {zni} converges weakly
to w. Since T is bounded and linear, we also see that {Txni} converges weakly to Tw. Using
this and limn→∞ ‖Txn – Qμn Txn‖ = , we see that Qμn Txni ⇀ Tw. Since Qμn is the metric
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resolvent of B for μn > , we see that JF (Txn–Qμn Txn)
μn

∈ BQμn Txn for all n ∈ N. From the
monotonicity of B we see that

 ≤
〈
u – Qμni

Txni , v∗ –
JF (Txni – Qμni

Txni )
μni

〉

for all (u, v∗) ∈ B. Taking i → ∞, we have, from ‖JF (Txni – Qμni
Txni )‖ = ‖Txni –

Qμni
Txni‖ →  and  < b ≤ μni ,  ≤ 〈u – Tw, v∗ – 〉 for all (u, v∗) ∈ B. Since B is max-

imal monotone, we see that Tw ∈ B–. This implies that w ∈ T–(B–). Since zn =
Jλn (xn – λnT∗JF (Txn – Qμn Txn)), we see that

zn = Jλn

(
xn – λnT∗JF (Txn – Qμn Txn)

)

⇔ xn – λnT∗JF (Txn – Qμn Txn) ∈ zn + λnAzn

⇔ xn – zn – λnT∗JF (Txn – Qμn Txn) ∈ λnAzn

⇔ 
λn

(
xn – zn – λnT∗JF (Txn – Qμn Txn)

) ∈ Azn.

Since A is monotone, we see that, for (u, v) ∈ A,
〈
zn – u,


λn

(
xn – zn – λnT∗JF (Txn – Qμn Txn)

)
– v

〉
≥ 

and hence
〈
zn – u,

xn – zn

λn
– T∗JF (Txn – Qμn Txn) – v

〉
≥ .

Replacing n by ni, we see that
〈
zni – u,

xni – zni

λni

– T∗JF (Txni – Qμni
Txni ) – v

〉
≥ .

Since xni – zni → ,  < c ≤ λni‖T‖, zni ⇀ w and T∗JF (Txn – Qμni
Txni ) → , we see that

〈w – u, –v〉 ≥ . Since A is maximal monotone, we see that  ∈ Aw. Therefore, w ∈ A– ∩
T–(B–).

From z = PA–∩T–(B–)x, w ∈ A– ∩ T–(B–) and (.), we see that

‖x – z‖ ≤ ‖x – w‖ ≤ lim inf
i→∞ ‖x – xni‖

≤ lim sup
i→∞

‖x – xni‖ ≤ ‖x – z‖.

Then we get

lim
i→∞‖x – xni‖ = ‖x – w‖ = ‖x – z‖.

Since H satisfies the Kadec-Klee property, we see that x – xni → x – w and hence xni →
w = z. Therefore, we have xn → w = z. This completes the proof. �

Next, using the shrinking projection method introduced by Takahashi et al. [], we
prove a strong convergence theorem for finding a solution of the split common null point
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problem in Banach spaces. Before proving the theorem, we need the following lemma,
which was proved by Takahashi [].

Lemma  Let E and F be uniformly convex and smooth Banach spaces and let JE and
JF be the duality mappings on E and F , respectively. Let A and B be maximal monotone
operators of E into E∗ and F into F∗ such that A– �= ∅ and B– �= ∅, respectively. Let Jλ
and Qμ be the metric resolvents of A for λ >  and B for μ > , respectively. Let T : E → F be
a bounded linear operator such that T �=  and let T∗ be the adjoint operator of T . Suppose
that A– ∩ T–(B–) �= ∅. Let λ,μ, r >  and z ∈ E. Then the following are equivalent:

(i) z = Jλ(z – rJ–
E T∗JF (Tz – QμTz));

(ii) z ∈ A– ∩ T–(B–).

Theorem  Let H be a Hilbert space and let F be a uniformly convex Banach space whose
norm is Fréchet differentiable. Let JF be the duality mapping on F . Let A and B be max-
imal monotone operators of H into H and F into F∗ such that A– �= ∅ and B– �= ∅,
respectively. Let Jλ be the resolvent of A for λ >  and let Qμ be the metric resolvent of B
for μ > . Let T : H → F be a bounded linear operator such that T �=  and let T∗ be the
adjoint operator of T . Suppose that A– ∩ T–(B–) �= ∅. Let {un} be a sequence in H such
that un → u. Let x ∈ H , C = H , and {xn} be a sequence generated by

⎧
⎪⎪⎨

⎪⎪⎩

zn = Jλn (xn – λnT∗JF (Txn – QμTxn)),

Cn+ = {z ∈ H : ‖zn – z‖ ≤ ‖xn – z‖} ∩ Cn,

xn+ = PCn+ un+, ∀n ∈N,

where  < c ≤ λn‖T‖ ≤  and  < μ for some c ∈ R. Then {xn} converges strongly to a point
z ∈ A– ∩ T–(B–), where z = PA–∩T–(B–)u.

Proof We first show that the sequence {xn} is well defined. Let x ∈ H and zn = Jλn (xn –
λnT∗JF (Txn – QμTxn)) with  < c ≤ λn‖T‖ ≤ . As in the proof of Theorem , we see that,
for z ∈ A– ∩ T–(B–),

‖zn – z‖ =
∥
∥Jλn

(
xn – λnT∗JF (Txn – QμTxn)

)
– Jλn z

∥
∥

≤ ∥∥xn – λnT∗JF (Txn – QμTxn) – z
∥∥

≤ ‖xn – z‖ – λn‖Txn – QμTxn‖

– λn
〈
QμTxn – Tz, JF (Txn – QμTxn)

〉
+ λ

n‖T‖‖Txn – QμTxn‖

≤ ‖xn – z‖ – λn‖Txn – QμTxn‖ + λ
n‖T‖‖Txn – QμTxn‖

= ‖xn – z‖ + λn
(
λn‖T‖ – 

)‖Txn – QμTxn‖

≤ ‖xn – z‖. (.)

Therefore, A– ∩ T–(B–) ⊂ Cn for all n ∈ N. Moreover, since

{
z ∈ H : ‖zn – z‖ ≤ ‖xn – z‖} =

{
z ∈ H : ‖zn – z‖ ≤ ‖xn – z‖}

=
{

z ∈ H : ‖zn‖ – ‖xn‖ ≤ 〈zn – xn, z〉},
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it is closed and convex. Applying these facts inductively, we find that Cn is nonempty,
closed, and convex for every n ∈N, and hence {xn} is well defined.

Let C =
⋂∞

n= Cn. Then since C ⊃ A– ∩ T–(B–) �= ∅, C is also nonempty. Let
wn = PCn u for every n ∈ N. Then, by Lemma , we have wn → z = PC u. Since a metric
projection on H is nonexpansive, it follows that

‖xn – z‖ ≤ ‖xn – wn‖ + ‖wn – z‖
= ‖PCn un – PCn u‖ + ‖wn – z‖
≤ ‖un – u‖ + ‖wn – z‖

and hence xn → z.
Since z ∈ C ⊂ Cn+, we have ‖zn – z‖ ≤ ‖xn – z‖ for all n ∈N. Letting n → ∞, we get

zn → z. By the assumption of {λn}, there exists a subsequence {λni} of {λn} converging
to λ. From  < c ≤ λn‖T‖ ≤ , we see that  < c ≤ λ‖T‖ ≤ . Put vn = xn –Jλn T∗JF (Txn –
QμTxn). We see that

∥
∥Jλ

(
I – λT∗JF (T – QμT)

)
xni – zni

∥
∥

=
∥∥Jλ

(
I – λT∗JF (T – QμT)

)
xni – Jλni

(
I – λni T

∗JF (T – QμT)
)
xni

∥∥

=
∥
∥Jλ

(
I – λT∗JF (T – QμT)

)
xni – Jλ

(
I – λni T

∗JF (T – QμT)
)
xni

+ Jλ

(
I – λni T

∗JF (T – QμT)
)
xni – Jλni

(
I – λni T

∗JF (T – QμT)
)
xni

∥∥

≤ ∥
∥(

I – λT∗JF (T – QμT)
)
xni –

(
I – λni T

∗JF (T – QμT)
)
xni

∥
∥

+ ‖Jλ vni – Jλni
vni‖

≤ |λ – λni |
∥
∥T∗JF (T – QμT)xni

∥
∥ +

|λ – λni |
λ

‖Jλ vni – vni‖ → .

On the other hand, since Jλ , T∗, Qμ, and T are all continuous, Jλ (I – λT∗JF (T – QμT))
is continuous. Then we see that

∥∥Jλ

(
I – λT∗JF (T – QμT)

)
xni – Jλ

(
I – λT∗JF (T – QμT)

)
z

∥∥ → .

Hence we see that

∥∥z – Jλ

(
I – λT∗JF (T – QμT)

)
z

∥∥

≤ ‖z – zni‖ +
∥
∥zni – Jλ

(
I – λT∗JF (T – QμT)

)
xni

∥
∥

+
∥∥Jλ

(
I – λT∗JF (T – QμT)

)
xni – Jλ

(
I – λT∗JF (T – QμT)

)
z

∥∥

→ .

This implies z ∈ A– ∩ T–(B–) by Lemma . Since z = PC u ∈ A– ∩ T–(B–) and
A– ∩ T–(B–) ⊂ C, we have z = PA–∩T–(B–)u, which completes the proof. �

We do not know whether the Hilbert space H in Theorems  and  can be replaced by
a Banach space E.
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