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Abstract

The purpose of this paper is to investigate the existence and uniqueness of positive
solutions for the following fractional boundary value problem

Dα
0+u(t) + f (t, u(t)) = 0, 0 < t < 1,

u(0) = u(1) = u′(0) = 0,

where 2 <a ≤ 3 and Dα
0+ is the Riemann-Liouville fractional derivative.

Our analysis relies on a fixed-point theorem in partially ordered metric spaces. The
autonomous case of this problem was studied in the paper [Zhao et al., Abs. Appl.
Anal., to appear], but in Zhao et al. (to appear), the question of uniqueness of the
solution is not treated.
We also present some examples where we compare our results with the ones
obtained in Zhao et al. (to appear).
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1 Introduction
Differential equations of fractional order occur more frequently on different research

areas and engineering such as physics, chemistry, economics, etc. Indeed, we can find

numerous applications in viscoelasticity, electrochemistry control, porous media, elec-

tromagnetic, etc. [1-6].

For an extensive collection of results about this type of equations, we refer the reader

to the monograph by Kilbas and Trujillo [7], Samko, Kilbas, and Marichev [8], Miller

and Ross [9], and Podlubny [10].

On the other hand, some basic theory for the initial value problems of fractional dif-

ferential equations involving the Riemann-Lioville differential operator has been dis-

cussed by Lakshmikantham et al. [11,12], Bai et al. [13-16], Zhang [17], etc.

In [15], the authors studied the following two-point boundary value problem of frac-

tional order

Dα
0+u(t) + a(t)f (t, u(t)) = 0, 0 < t < 1, 1 < α ≤ 2

u(0) = u(1) = 0,
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and they proved the existence of positive solutions by means of the Krasnosel’skii

fixed-point theorem and Legget-Williams fixed-point theorem.

Recently, in the paper [18] to appear in this special issue, the authors studied the

existence of positive solutions for the following autonomous boundary value problem

of fractional order

Dα
0+u(t) + λf (u(t)) = 0, 0 < t < 1,

u(0) = u(1) = u′(0) = 0,
(1)

where 2 <a ≤ 3, l is a positive parameter, and f : (0, ∞) ® (0, ∞) is continuous.

Motivated by this last work, in this paper, we discuss the existence and uniqueness of

positive solutions for the nonautonomous version of Problem (1). More precisely, we

study the following problem

Dα
0+u(t) + f (t, u(t)) = 0, 0 < t < 1,

u(0) = u(1) = u′(0) = 0,
(2)

where 2 <a ≤ 3 and f : [0, 1] × [0, ∞) ® [0, ∞) is a continuous function.

Notice that in [18] the question of uniqueness of solutions is not treated.

In our study, the main tool is a fixed-point theorem in partially ordered sets, which

gives us uniqueness of the solution. This result appears in [19].

2 Basic facts
For the convenience of the reader, we present some definitions, lemmas, and basic

results that will be used later.

Definition 1. [7] The Riemann-Liouville fractional derivative of order a > 0 of a

function f : (0, ∞) ® ℝ is given by

Dα
0+ f (t) =

1
�(n − α)

(
d
dt

)n t∫
0

f (s)

(t − s)α−n+1 ds,

where n = [a] + 1 and [a] denotes the integer part of a and Γ(a) denotes the

gamma function, provided that the right side is pointwise defined on (0, ∞).

Definition 2. [7] The Riemman-Liouville fractional integral of order a > 0 of a func-

tion f : (0, ∞) ® ℝ is defined by

Iα0+ f (t) =
1

�(α)

t∫
0

(t − s)α−1f (s)ds,

provided that the right side is pointwise defined on (0, ∞).

The following two lemmas can be found in [20].

Lemma 1. Let a > 0 and u Î C(0, 1) ∩ L1(0, 1). Then, the fractional differential

equation

Dα
0+u(t) = 0

has

u(t) = c1t
α−1 + c2t

α−2 + · · · + cnt
α−n,

where ci Î ℝ (i = 1, ... n) and n = [a] + 1 as unique solution.
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Lemma 2. Assume that u Î C(0, 1) ∩ L1(0, 1) with a fractional derivative of order a
> 0 that belongs to C(0, 1) ∩ L1(0, 1). Then,

Iα0+D
α
0+u(t) = u(t) + c1t

α−1 + c2t
α−2 + · · · + cnt

α−n,

for some ci Î ℝ (i = 1, ..., n) and n = [a] + 1.

In [21], it is proved the following result by using Lemmas 1 and 2.

Lemma 3. Given f Î C[0, 1] and 2 <a ≤ 3. The unique solution of

Dα
0+u(t) + f (t) = 0, 0 < t < 1,

u(0) = u(1) = u′(0) = 0,
(3)

is

u(t) =
∫ 1

0
G(t, s)f (s)ds,

where

G(t, s) =

⎧⎪⎪⎨
⎪⎪⎩

tα−1(1 − s)α−1 − (t − s)α−1

�(α)
, 0 ≤ s ≤ t ≤ 1

tα−1(1 − s)α−1

�(α)
, 0 ≤ t ≤ s ≤ 1.

is the Green’s function associated to the boundary value problem (3).

Remark 1. In [21], it is proved that G(t, s) ≥ 0, for t, s Î [0, 1].

Now, we present the fixed-point theorems that we will use later. These results

appear in [19].

Theorem 1. Let (X, ≤) be a partially ordered set and suppose that there exists a

metric d in X such that (X, d) is a complete metric space. Assume that X satisfies the

following condition

if (xn) is a nondecreasing sequence in X such that xn → x then xn ≤ x, for all n ∈ N. (4)

Let T : X ® X be a nondecreasing mapping such that

d(Tx,Ty) ≤ d(x, y) − ψ(d(x, y)), for x ≥ y,

where ψ : [0, ∞) ® [0, ∞) is a continuous and nondecreasing function such that ψ is

positive in (0, ∞), ψ(0) = 0, and limt®∞ ψ(t) = ∞. If there exists x0 Î X with x0 ≤ Tx0
then T has a fixed point.

Moreover, if (X, ≤) satisfies the following condition:

for each x, y ∈ X there exists z ∈ X which is comparable to x and y, (5)

we have the following result.

Theorem 2. Adding condition (5) to the hypotheses of Theorem 1, we obtain unique-

ness of the fixed point.

Remark 2. In Theorems 1 and 2, the condition limt®∞ ψ(t) = ∞ is superfluous.

In our considerations, we will work in the Banach space C[0, 1] = {x : [0, 1] ® ℝ,

continuous} with the standard distance given by d(x, y) = sup0≤t≤1{|x(t) - y(t)|}.

Moreover, this space can be equipped with a partial order given by

x, y ∈ C[0, 1], x ≤ y ⇔ x(t) ≤ y(t), for t ∈ [0, 1].
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In [22], it is proved that (C[0, 1], ≤) with the above-mentioned metric satisfies condi-

tion (4) of Theorem 1. Moreover, for x, y Î C[0, 1], as the function max(x, y) Î C[0,

1], (C[0, 1], ≤) satisfies condition (5).

By F , we denote the class of functions ψ : [0, ∞) ® [0, ∞) continuous, nondecreas-

ing, positive in (0, ∞) and ψ(0) = 0, and by J the class of functions � : [0, ∞) ® [0, ∞)

continuous, nondecreasing, and satisfying that I − ϕ ∈ F , where I denotes the identity

mapping on [0, ∞).

3 Main result
Our starting point of this section is the following result about Green’s function appear-

ing in Section 2.

Lemma 4. maxt∈[0,1]
1∫
0
G(t, s)ds = 1

�(α+1)

[(
α−1

α

)α−1 − (
α−1

α

)]
Proof. In fact,

1∫
0

G(t, s)ds =

t∫
0

G(t, s)ds +

1∫
t

G(t, s)ds

=

t∫
0

tα−1(1 − s)α−1 − (t − s)α−1

�(α)
ds +

1∫
t

tα−1(1 − s)α−1

�(α)
ds

=

1∫
0

tα−1(1 − s)α−1

�(α)
ds −

t∫
0

(t − s)α−1

�(α)
ds

=
1

�(α)

[
tα−1

α
− tα

α

]
=

1
�(α + 1)

(tα−1 − tα)

By an elemental calculation, it can be proved that the maximum of

h(t) =
∫ 1
0 G(t, s)ds = 1

�(α+1) (t
α−1 − tα) is reached at t0 = α−1

α
, thus,

max
0≤t≤1

1∫
0

G(t, s)ds =
1

�(α + 1)

[(
α − 1

α

)α−1

−
(

α − 1
α

)α
]

□
In the sequel, we present the main result of this paper.

For convenience, we put A = 1
�(α+1)

[(
α−1

α

)α−1 − (
α−1

α

)α
]
.

Theorem 3. Our Problem (2) has a unique nonnegative solution u(t) if the following

conditions are satisfied:

(H1) f : [0, 1] × [0, ∞) ® [0, ∞) is continuous and nondecreasing respect to the second

argument.

(H2) There exists 0 < λ ≤ 1
Asuch that, for x, y Î [0, ∞) with y ≥ x and t Î [0, 1],

f (t, y) − f (t, x) ≤ λϕ(y − x),

where ϕ ∈ J .

Proof. Consider the cone

P = {u ∈ C[0, 1] : u(t) ≥ 0}.
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Obviously, (P, d) with d(x, y) = sup{|x(t) - y(t)|: t Î [0, 1]} is a complete metric space

satisfying conditions (4) and (5).

Consider the operator defined by

(Tx)(t) =

1∫
0

G(t, s)f (s, x(s))ds, for x ∈ P,

where G(t, s) is the Green’s function appearing in Section 2. Obviously, T applies P

into itself since f(t, x) and G(t, s) are nonnegative continuous functions.

In what follows we check that assumptions in Theorem 2 are satisfied.

Firstly, the operator T is nondecreasing.

Indeed, by (H1), for u, v Î P, u ≥ v, and t Î [0, 1], we have

(Tu)(t) =
∫ 1

0
G(t, s)f (s, u(s))ds ≥

∫ 1

0
G(t, s)f (s, v(s))ds = (Tv)(t).

Now, we prove that T satisfies the contractive condition appearing in Theorem 1.

In fact, for u, v Î P and u ≥ v and, taking into account assumption (H2), we get

d(Tu,Tv) = sup
t∈[0,1]

{|Tu(t) − Tv(t)|}

= sup
t∈[0,1]

{(Tu(t) − Tv(t))}

= sup
t∈[0,1]

1∫
0

G(t, s)(f (s, u(s)) − f (s, v(s)))ds

≤ sup
t∈[0,1]

1∫
0

G(t, s)λϕ(u(s) − v(s))ds.

As ϕ ∈ J , � is nondecreasing, and, taking into account (H2) and Lemma 4, we

obtain

d(Tu,Tv) ≤ λϕ(d(u, v)) · sup
t∈[0,1]

1∫
0

G(t, s)ds

= λϕ(d(u, v)) · A ≤ ϕ(d(u, v)) = d(u, v) − (d(u, v) − ϕ(d(u, v))).

Put ψ(x) = x - �(x). As ϕ ∈ J , this means that ψ ∈ F and from the last inequality

d(Tu,Tv) ≤ d(u, v) − ψ(d(u, v)).

This proves that T satisfies the contractive condition of Theorem 1.

Finally, the nonnegative character of the function G(t, s) and f(t, x) [assumption (H1)]

gives us

(T0)(t) =

1∫
0

G(t, s)f (s, 0)ds ≥ 0,

where 0 denotes the zero function.

Therefore, Theorem 2 says us that Problem (2) has a unique nonnegative solution.

□
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In the sequel, we present a sufficient condition for the existence and uniqueness of

positive solutions for Problem (2) (positive solution means x(t) > 0 for t Î (0, 1)). The

proof of this condition is similar to the proof of Theorem 2.3 of [23]. We present this

proof for completeness.

Theorem 4. Under assumptions of Theorem 3 and suppose that f(t0, 0) ≠ 0 for cer-

tain t0 Î [0, 1]. Then, Problem (2) has a unique positive solution.

Proof. Consider the nonnegative solution x(t) for Problem (2) whose existence is

guaranteed by Theorem 3.

In the sequel, we will prove that x(t) is a positive solution.

Firstly, notice that x(t) is a fixed point of the operator (Tu)(t) =
∫ 1
0 G(t, s)f (s, u(s))ds

and, consequently,

x(t) =

1∫
0

G(t, s)f (s, x(s))ds.

Now, suppose that there exists 0 <t* < 1 such that x(t*) = 0. This means that

x(t∗) =
1∫

0

G(t∗, s)f (s, x(s))ds = 0.

Using that x(t) is a nonnegative function, f(t, y) is nondecreasing with respect to the

second argument and the nonnegative character of G(t, s), we get

0 = x(t∗) =
1∫

0

G(t∗, s)f (s, x(s))ds ≥
1∫

0

G(t∗, s)f (s, 0)ds ≥ 0.

This gives us x(t∗) =
∫ 1
0 G(t∗, s)f (s, 0)ds = 0.

As G(t, s) ≥ 0 and f(s, 0) ≥ 0, the last expression implies

G(t∗, s)f (s, 0) = 0 a.e(s).

As G(t*, s) ≠ 0 a.e (s) (because G(t*, s) is given by a polynomial), we can obtain

f (s, 0) = 0 a.e(s). (6)

On the other hand, as f(t0, 0) ≠ 0 for certain t0 Î [0, 1], the nonnegative character of

f(t, y) gives us f(t0, 0) > 0. As f(t, y) is a continuous function, we can find a set A ⊂ [0,

1] with t0 Î A, μ(A) > 0, where μ is the Lebesgue measure and f(t, 0) > 0 for any t Î
A. This contradicts (6).

Therefore, x(t) > 0 for t Î (0, 1). This finishes the proof. □
Remark 3. In Theorem 4, the condition f(t0, 0) ≠ 0 for certain t0 Î [0, 1] seems to be

a strong condition in order to obtain a positive solution for Problem (2), but when the

solution is unique, we will see that this condition is very adjusted one. In fact, suppose

that Problem (2) has a unique nonnegative solution x(t) then

f (t, 0) = 0 for each t ∈ [0, 1] if and only if x(t) ≡ 0.

In fact, if f(t, 0) = 0 for each t Î [0, 1], it is easily seen that the zero function satisfies

Problem (2) and the uniqueness of the solution gives us x(t) = 0. The reverse implica-

tion is obvious.
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Remark 4. Notice that the hypotheses in Theorem 3 are invariant by continuous per-

turbation. More precisely, if f(t, 0) = 0 for any t Î [0, 1] and f satisfies (H1) and (H2)

of Theorem 3 then g(t, x) = a(t) + f(t, x) with a : [0, 1] ® [0, ∞) continuous and a ≠

0, satisfies assumptions of Theorem 4, and this means that the following boundary

value problem

Dα
0+u(t) + g(t, u(t)) = 0, 0 < t < 1

u(0) = u(1) = u′(0) = 0

}

has a unique positive solution.

Now, we present an example that illustrates our results.

Example 1. Consider the boundary value problem

D

5
2
0+ u(t) + c + λ · arctg u(t) = 0, 0 < t < 1, c,λ > 0
u(0) = u(1) = u′(0) = 0

⎫⎪⎬
⎪⎭ (7)

In this case, α = 5
2 and f(t, u) = c + l · arctg u. It is easily seen that f(t, u) satisfies

(H1) of Theorem 3.

In the sequel, we prove that f(t, u) satisfies (H2) of Theorem 3.

Previously, we consider the function j : [0, ∞) ® [0, ∞) given by j(u) = arctg u and

we will see that j satisfies

φ(u) − φ(v) ≤ φ(u − v), for u ≥ v.

In fact, put j(u) = arctag u = a and j(v) = arctg v = b (notice that, as u ≥ v and j is

nondecreasing, a ≥ b).
Then, from

tg(α − β) =
tgα − tgβ

1 + tgα · tgβ

and, as α,β ∈ [0, π
2 ) , then tga, tgb Î [0, ∞), we can obtain

tg(α − β) ≤ tgα − tgβ .

Applying j to the last inequality and taking into account the nondecreasing charac-

ter of j, we obtain

α − β ≤ arctg(tgα − tgβ),

or, equivalently,

φ(u) − φ(v) = arctg u − arctg v = α − β ≤ arctg(u − v) = φ(u − v).

This proof our previous claim.

Now, for u ≥ v and t Î [0, 1], we have,

f (t, u) − f (t, v) = λ(arctg u − arctg v) ≤ λarctg(u − v).

Now, we prove that j(u) = arctg u belongs to J . Obviously, j : [0, ∞) ® [0, ∞) is a

continuous and nondecreasing function. Moreover, ψ(u) = u - j(u) = u - arctg u is

also continuous and nondecreasing and satisfies ψ(u) > 0 for u > 0 and ψ(0) = 0. Con-

sequently, φ ∈ J .
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Finally, as f(t, 0) = c + arctg 0 = c > 0, by Theorem 4, Problem (7) has a unique posi-

tive solution for

0 < λ ≤
(

1

�(5
/
2 + 1)

[(
3
5

)3/2
−

(
3
5

)5/2
])−1

≈ 17.8682.

4 Some remarks
In a recent paper [18], the authors study the existence of positive solutions of a parti-

cular case of Problem (2). More precisely, they study the following fractional autono-

mous boundary value problem

Dα
0+u(t) + λf (u(t)) = 0, 0 < t < 1

u(0) = u(1) = u′(0) = 0,
(8)

where 2 <a ≤ 3, l is a positive parameter and f : (0, ∞) ® (0, ∞) is continuous. The

main tool used by the authors in this paper is Guo-Kranosel’skii fixed-point theorem

on cones. In [18], the question about the uniqueness of solutions is not treated.

One of the results of [18] is the following theorem.

Theorem 5. [[18], Theorem 3.2] If there exists l Î (0, 1) such that q(l)c2f0 >F∞c1
holds then, for each l Î ((q(l)c2f0)

-1, (F∞c1)
-1), the boundary value problem (8) has at

least one positive solution.

Here, we consider (q(l)c2f0)
-1 = 0 if f0 = ∞ and (F∞c1)

-1 = ∞ if F∞ = 0, where

F∞ = limu→+∞ sup f (u)
u
, F∞ = limu→+∞ sup f (u)

u
, q(t) = ta-1(1 - t), k(s) = s(1 - s)a-1,

c1 = 1
�(α)

∫ 1
0 (α − 1)k(s)ds, and c2 = 1

�(α)

∫ 1
0

1
α−1q(s)k(s)ds.

Now, we present the following example.

Example 2. Consider the boundary value problem that is a variant of Example 1.

D5/2
0+ u(t) + λ(c + arctg u(t)) = 0, 0 < t < 1, c,λ > 0,

u(0) = u(1) = u′(0) = 0,
(9)

In this case, α = 5
2 and f(u) = c + arctg u. Then, we have F∞ = 0 and f0 = ∞. More-

over, c1 = 0.129, c2 = 0.0077, and q(1
/
2) =

√
2
8 = 0.1768 [[18], Example 5.1]. Thus, q

(1/2)c2f0 >F∞c1 holds. Theorem 5 gives us the existence of a positive solution for Pro-

blem (9) for each l Î (0, ∞). The question of uniqueness cannot be treated by the

results of [18].

On the other hand, following a similar reasoning that in Example 1, Theorem 4 gives

us the existence of a unique positive solution for Problem (9) when

0 < λ ≤
(

1
�(5/2+1)

[(3
5

)3/2 − (3
5

)5/2])−1
≈ 17.8682.

Our main contribution is the uniqueness of positive solution for Problem (9) when 0

<l ≤ 17.8682.

Now, we present an example that cannot be studied by the results of [18], and it can

be treated by the ones obtained in this paper.

Example 3. Consider the following boundary value problem

D5/2
0+ u(t) + λ(t + arctg u(t)) = 0, 0 < t < 1, λ > 0,

u(0) = u(1) = u′(0) = 0,
(10)
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In this case, the boundary value problem is nonautonomous, and thus, this problem

cannot be studied by the results of [18].

On the other hand, using a similar argument that in example 1, and using Theorem

4, we obtain the existence of a unique positive solution for Problem (10) when 0 <l ≤

17.868.
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