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Abstract

The theory of compressive sensing is briefly introduced, and some construction methods for measurement matrix
are deduced. A measurement matrix based on Kronecker product is devised, and it has been proved in
mathematical proof. Numerical simulations on 2-D image verify that the proposed measurement matrix has better
performance in storage space, construction time, and image reconstruction effect when compared with commonly
used matrices in compressive sensing. This novel measurement matrix offers great potential for hardware
implementation of compressive sensing in image and high-dimensional signal.
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1 Introduction
The compressive sensing (CS) theory in signal process-
ing provides a new approach to data acquisition which
overwhelms the common Nyquist sampling theory. Con-
sidering a signal that is sparse in some basis (often using
a wavelet-based transform coding scheme), the basic
idea of compressive sensing is projecting the high-
dimensional signal onto a measurement matrix, which is
incoherent with the sparsifying basis, resulting to a low-
dimensional sensed sequence. Then, with a relatively
small number of appropriately designed projection mea-
surements, the underlying signal may be recovered
exactly. In contrast to the common framework of
collecting as much data as possible at first and then
discarding the redundant data by digital compression
techniques, CS seeks to minimize the collection of re-
dundant data in the acquisition step. Because of the spe-
cial advantage of compressive sensing, many data
compressing and reconstruction methods based on CS
have been researched.
The feasibility of embedded hardware implementation

of measurement matrix is the key to realizing the prac-
tical application of compressed sensing. If the key prob-
lem can be solved, the compressed sensing theory which
aims at reducing the number of measured values as
much as possible can achieve reliable signal sampling
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process in a system which has relatively low hardware
complexity. The construction of sampling measurement
matrix needs to solve the following problems [1,2]:

1. Reduce the number of measured values as much as
possible on the premise of meeting the
reconstruction precision.

2. The design of observation matrix which can be
available in embedded hardware implementation.

3. The design of the observation matrix which has
universal adaptability.

The signal reconstruction precision of current com-
monly used random matrices which are higher than cer-
tainty matrix [3], but the randomness characteristics of
random matrices determine that they have complex tec-
tonic process calculation and the limitations of the hard-
ware implementation. So they are difficult to be
implemented on the embedded hardware.
Although the certainty matrix reconstruction accuracy

is not as high as random matrix, the certainty matrix
can be structured quickly and easily for hardware imple-
mentation. So it will be the trend of the development of
measurement matrix in the future. In this research, we
consider the two aspects: one is measurement matrix re-
construction precision and the other is structure com-
plexity; and then, we construct the measurement matrix
based on Kronecker product which is easy hardware-
implemented and has high reconstruction precision.
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2 The measurement matrix based on Kronecker
product
2.1 Basic theory of Kronecker product
Kronecker product has been named after the mathemat-
ician, Kronecker Leopold, which is a special form of the
tensor product. It presents the mathematical relationship
between two matrices of any size. The details are as
follows:
Set A is a m × n size matrix, and B is a p × q size

matrix, then the Kronecker product is a mp × nq
partitioned matrix. It can be shown as:

A⊗B ¼
a11B … a1nB
⋮ ⋱ ⋮

am1B ⋯ amnB

0
@

1
A ð1Þ

The Kronecker product of the matrice has many im-
portant properties, such as bilinear, associative law, etc.
This research is based on the following properties of
Kronecker product of matrix operation:
Set (α1, α2,⋯,αn) are n column vectors which are m-D

and linearly independent, (b1,b2,⋯,bq) are q column vec-
tors which are q-D and linearly independent. So vectors
αi ⊗ bj (i,j = 1,2,⋯,n) are linear independent vectors. On
the other hand, if αi ⊗ bj are linearly independent, the
(α1, α2,⋯,αn), (b1,b2,⋯,bq) are both linearly independent.
The proofs of that process are as follows:

A ¼ a1; a2;…; anð Þ;A∈Cm�n ð2Þ

B ¼ b1; b2;…; bq
� �

;B∈Cp�q; ð3Þ

so we can get:

Rank A ¼ n;Rank B ¼ q ð4Þ

A⊗B ¼ a1⊗b1; a1⊗b2;……; a1⊗bq;……; an⊗b1; an⊗b2;……; an⊗bq
� �

ð5Þ
Rank A⊗Bð Þ ¼ Rank A� Rank B ¼ nq ð6Þ

As the size of the matrices αi ⊗ bj is mp ⊗ nq, the
matrix rank, which is the nq column vectors αi ⊗ bj of A
⊗ B is linearly independent. On the other hand, if αi ⊗
bj are linearly independent, then all the column vectors
of A ⊗ B are linearly independent, and the matrix rank
of A ⊗ B is nq = Rank (A ⊗ B) = Rank A × Rank B.
Finally, we can deduce that: Rank A = n, Rank B = q,

which means (α1, α2,⋯,αn) and (b1,b2,⋯,bq) are linearly
independent.
By the above properties, the high-dimensional orthog-

onal vector that we get by the Kronecker product is still
linearly independent just like the low-dimensional or-
thogonal base vector. To get the final high-dimensional
vector which is still linearly independent, we should
choose the appropriate orthogonal basis vector [4].
It can be seen that the times of Kronecker product op-
eration are related to the number of the dimensions n of
orthogonal basis vector and the number of the dimen-
sions N of high-dimensional column [5]. To achieve the
change from n to N, it often requires several Kronecker
product operations, and the value of n is smaller than N.
The times of Kronecker product operation can be

expressed as k = log n N. For the commonly used
Lena256.bmp image as an example, the dimensions N of
image column vector are N = 256. We pick two basis
vectors (n= 2) as the low-dimensional orthogonal vector,
so the times we need of the Kronecker product is k =
log n N = log 2 256 = 8. Namely, the constructing
process only needs eight Kronecker product operations.
So this method is simpler than commonly used meas-
urement matrice construction methods and has rela-
tively smaller amount of calculation [6,7].

2.2 Construction method of measurement matrix based
on Kronecker product
The process of measurement matrix construction based
on orthogonal matrix Kronecker product is as follows:

1. Choose orthogonal basis vectors. It is required that
the number of base vector dimensions and elements
are n; U is formed by the base vector matrix which
has the properties of orthogonal matrix, U × UΓ = E,
where E is the unit for matrix.

2. Calculate the times of Kronecker product operations
which are required. Based on orthogonal basis
vector dimensions n and N which are the dimension
numbers of the high-dimensional column vector
that we needed, we can calculate that the number of
Kronecker product operation is k and the calculation
method is k = log n N.

3. After k times Kronecker product operations, we get
the N order matrix Xk, which reserves base
properties of the basis matrix. According to matrix
analysis theory about matrix QR decomposition, the
orthogonal matrix and upper triangular matrix can
be obtained through QR decomposition, where the
orthogonal matrix is what we need.

4. Decide the M according to the actual required
compression ratio to form the measurement matrix
which is M × N, choose M row vectors from
orthogonal matrix U to form the measurement
matrix, which is the measurement matrix based on
orthogonal matrix Kronecker product. It can be
represented as:

Φ ¼ U c; :ð Þ ð7Þ
Where c is the set of the M row vectors selected from

U matrix. Φ is the final measurement matrix [8].
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Finally, we process the matrix orthogonal normaliza-
tion to make the matrix satisfy the conditions for RIP
approximately.

3 Simulation results and analysis
In order to analyze the performance and characteristics
of the Kronecker product measurement matrix, we apply
the measurement matrix to a 2-D image acquisition
simulation experiment and compare it with the Gaussian
random matrix, Fourier matrix, Bernoulli matrix,
Toeplitz matrix, polynomial matrix, and measurement
matrix which are commonly used.
The simulation environment using the ordinary PC

and Matlab7.0 simulation software, the 2-D image signal
is 256 × 256 Lena.bmp. The image sparse algorithm is
the wavelet transform [9], and the image reconstruction
algorithm is the OMP reconstruction algorithm.
Reference objects are divided into two categories,

namely, random matrice which contains Gaussian ran-
dom matrix, Fourier matrix, and Bernoulli matrix, and
the certain matrix which contains Toeplitz matrix, poly-
nomial matrix, and the rotation matrix.

3.1 Simulation experiments when the compression ratio is
constant
In the fixed compression ratio of 0.6 (M = 150, N = 256),
the image sparse algorithm is the wavelet transform, and
the image reconstruction algorithm is the OMP recon-
struction algorithm. We adopt various measurement
matrices to process the two-dimensional image signal
Lena.bmp images and the simulation of experiment peak-
to-noise ratio (PSNR) of the reconstructed image [10], the
measurement matrix construction, and image reconstruc-
tion time consumed, as shown in Table 1.
According to Table 1, when the target image, image

sparse algorithm, the reconstruction algorithm, and
other conditions are all the same and the compression
Table 1 Each measurement matrix reconstruction effect
and time consumed
The measurement matrices PSNR The time

consumed in
constructing
the matrices

The time
consumed in
reconstructing
the image

Gaussian random matrix 28.4385 dB 2.4736 s 13.7541 s

Fourier matrix 27.9497 dB 2.3340 s 13.9357 s

Bernoulli matrix 28.0258 dB 1.8945 s 11.0960 s

polynomial matrix 22.0542 dB 1.2883 s 13.0644 s

Toeplitz matrix 21.3743 dB 0.2573 s 7.8477 s

Rotation matrix 22.4629 dB 0.0675 s 7.2542 s

Kronecker product-based
measurement matrix

26.2274 dB 0.0972 s 7.5738 s
ratio is fixed, the Kronecker product matrix based on or-
thogonal basis performs better than the commonly used
certain measurement matrice in the image reconstruction
effect of PSNR (4 to 5 dB higher) [11]. The difference in
the image reconstruction effect is relatively small when
compared with random measurement matrix which has
impressive reconstruction effect [12]; the PSNR gap is only
1 to 2 dB. From the PSNR, the measurement matrix based
on Kronecker product matrix is significantly better than
the commonly used certain measurement matrice and is
quite close to random matrix.
According to Table 1, when the target image, image

sparse algorithm, the reconstruction algorithm, and
other conditions are all the same and the compression
ratio is fixed, the time consumed of the Kronecker prod-
uct matrix n is quite close to certain matrix, only half of
the random measurement matrix [13].
In general, the measurement matrix based on orthog-

onal matrix Kronecker product has the same image re-
construction accuracy of random measurement matrix
and are as fast as the certainty measurement matrix.

3.2 The simulation results under different compression ratios
Under the condition that the sparse algorithm is the
wavelet transform and reconstruction algorithm for
reconstructing is OMP algorithm, the simulation of each
measurement matrix under different compression ratios
to reconstruct the 2-D image Lena.bmp has been made.
The experimental data are shown in Table 2 of 256 ×
256 Lena.bmp 2-D image.
It can be seen from Table 2 that, with the increase of

compression ratio, the image reconstruction precision of
the measurement matrix is improving [14] which can be
told from the increasing PSNR of the reconstructed
image. The tendency and the image reconstruction ac-
curacy comparison between each matrix under different
compression ratios are shown in Figure 1.
According to Figure 1, using the different compression

ratios, we can see that the PSNR of the reconstructed
image of the Gaussian random measurement matrix is
better than the other measurement matrix. However, be-
cause the matrix is generated randomly according to a
certain distribution way, the matrix structure process
can be a large amount of calculation, and it needs to call
the special function library. So it is not easy to be ap-
plied in the embedded hardware implementation [15].
Being similar to Gaussian random matrix, Fourier matrix
and Bernoulli matrix are also the random matrix; al-
though they perform well in the image reconstruction,
there is also a difficult problem in the embedded hard-
ware implementation [16]. Belonging to deterministic
matrix, the polynomial matrix construction only needs a
small amount of parameters on the embedded hardware
implementation, but it can be seen from the simulation



Table 2 Each measurement matrix under different compression ratios of reconstructed image PSNR values

M/N Gaus (dB) Four (dB) Bern (dB) Poly (dB) Tope (dB) Rota (dB) Kron (dB)

0.4 24.2485 24.0759 23.4901 17.9578 18.3825 18.9907 22.7438

0.5 26.0892 26.2761 25.8639 19.7633 19.6377 20.0713 23.5763

0.55 27.5921 27.3359 26.9858 20.4652 20.5625 20.9537 24.6491

0.6 28.4385 27.9497 28.0258 22.0542 21.3743 22.4629 26.2274

0.65 29.4191 28.5304 28.2873 22.7531 23.0548 23.0672 26.9592

0.7 29.9208 28.7732 29.3375 23.5479 23.6343 23.5233 27.7758

0.8 31.3538 30.1493 30.5902 24.7167 25.0692 25.2591 29.0746

Gaus, Gaussian random matrix; Four, random matrix; Bern, Bernoulli matrix; Poly, polynomial matrix; Tope, Toeplitz matrix; Rota, rotation matrix; Kron, based on
orthogonal basis Kronecker product of matrix.
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result that the reconstruction effect is not ideal. Toeplitz
matrix and rotation matrix belong to the uncertainty
matrix and have some advantages of small time con-
sumed in matrix construction, small amount of calcula-
tion, and small need for ram space, which mean an easy
embedded hardware implementation; but compared with
the random matrix, there is an obvious difference in the
PSNR of the reconstructed image.
The matrix based on Kronecker product is formed by

Gaussian orthogonal basis through the Kronecker prod-
uct operation. It is processed in the way of the QR de-
composition of matrix and the orthogonal normalized
processing which makes the matrix perform better [17].
It can be seen from the PSNR of the reconstructed
image that the matrix's performance tends to be random
measurement matrix's, and it is better than the common
certainty measurement matrix. The calculation aims to
construct the matrix computation which is small so it is
easy to be embedded in the hardware.
Overall, Kronecker product measurement matrix

based on orthogonal matrix performs well not only in
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Figure 1 The tendency and image reconstruction accuracy of each m
accuracy but also in time consumed which means this
novel measurement matrix offers great potential for
hardware implementation of compressive sensing in
image and high-dimensional signal.

4 Conclusions
In this research, we use the basic properties of
Kronecker product operation and low-dimensional or-
thogonal basis to get higher dimensional column vector,
Kronecker product, and construct the Kronecker prod-
uct measurement matrix based on orthogonal basis.
In this research, we have proved that the novel matrix

is linearly independent and occupies less storage space
with less calculation. It also has the advantage of shorter
construction time. At the same time, it also performs
pretty well in image reconstruction effect. So, the
Kronecker product measurement matrix based on or-
thogonal basis that we have constructed is suitable in
the embedded hardware implementation and offers great
potential for hardware implementation of compressive
sensing in image and high-dimensional signal.
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