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Abstract

In this work, we present a theoretical study of the transport properties of two finite and parallel armchair graphene
nanoribbons connected to two semi-infinite leads of the same material. Using a single π -band tight binding
Hamiltonian and based on Green’s function formalisms within a real space renormalization techniques, we have
calculated the density of states and the conductance of these systems considering the effects of the geometric
confinement and the presence of a uniform magnetic field applied perpendicularly to the heterostructure. Our results
exhibit a resonant tunneling behaviour and periodic modulations of the transport properties as a function of the
geometry of the considered conductors and as a function of the magnetic flux that crosses the heterostructure. We
have observed Aharonov-Bohm type of interference representing by periodic metal-semiconductor transitions in the
DOS and conductance curves of the nanostructures.
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Background
Graphene is a single layer of carbon atoms ordered in
a two-dimensional hexagonal lattice. In the literature, it
is possible to find different experimental techniques in
order to obtain graphene such as mechanical peeling,
epitaxial growth or assembled by atomic manipulation
of carbon monoxide molecules over a conventional two-
dimensional electron system at a copper surface [1-4]. The
physical properties of this crystal have been studied over
the last 70 years; however, the recent experimental break-
throughs have revealed that there are still a lot of open
questions, such as time-dependent transport properties of
graphene-based heterostructures, the thermoelectric and
thermal transport properties of graphene-based systems
in the presence of external perturbations, the thermal
transport properties of graphene under time-dependent
gradients of temperatures, etc.
On the other hand, graphene nanoribbons (GNRs) are

quasi one-dimensional systems based on graphene which
can be obtained by different experimental techniques
[5-8]. The electronic behaviour of these nanostructures
is determined by their geometric confinement which
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allows the observation of quantum effects. The controlled
manipulation of these effects, by applying external pertur-
bations to the nanostructures or bymodifying the geomet-
rical confinement [9-13], could be used to develop new
technological applications, such as graphene-based com-
posite materials [14], molecular sensor devices [15-17]
and nanotransistors [18].
One important aspect of the transport properties of

these quasi one-dimensional systems is the resonant tun-
neling behaviour which, for certain configurations of
conductors or external perturbations, appears into the
system. It is has been reported that in S- and U-shaped
ribbons, and due to quasi-bound states present in the het-
erostructure, it is possible to obtain a rich structure of
resonant tunneling peaks by tuning through the modifi-
cation of the geometrical confinement of the heterostruc-
ture [19]. Another way to obtain resonant tunneling in
graphene is considering a nanoring structure in the pres-
ence of external magnetic field. It has been reported that
these annular structures present resonance in the con-
ductance at defined energies, which can be tuned by
gate potentials, the intensity of the magnetic field or by
modifying their geometry [20]. From the experimental
side, the literature shows the possibility of modulating
the transport response as a function of the intensity of
the external magnetic field. In some configuration of gate
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potential applied to the rings, it has been observed that
the Aharonov-Bohm oscillations have good resolution
[21-23].
In this context, in this work, we present a theoretical

study of the transport properties of GNR-based con-
ductors composed of two finite and parallel armchair
nanoribbons (A-GNRs) of widths Nd and Nu, and length
L (measured in unit cell units), connected to two semi-
infinite contacts of width N made of the same material.
We have thought this system as two parallel ‘wires’ con-
nected to the same reservoirs, whether the the leads are
made of graphene or another material. This considera-
tion allows us to study the transport of a hypothetical
circuit made of graphene ‘wires’ in different scenarios.
A schematic view of a considered system is shown in
Figure 1. We have focused our analysis on the electronic
transport modulations due to the geometric confinement
and the presence of an external magnetic field. In this
sense, we have studied the transport response due to vari-
ations of the length and widths of the central ribbons,
considering symmetric and asymmetric configurations.
We have obtained interference effects at low energies due
to the extra spatial confinement, which is manifested by
the apparition of resonant states at this energy range, and
consequently, a resonant tunneling behaviour in the con-
ductance curves. On the other hand, we have considered
the interaction of electrons with a uniform external mag-
netic field applied perpendicular to the heterostructure.
We have observed periodic modulations of the trans-
port properties as function of the external field, obtaining
metal-semiconductor transitions as function of the mag-
netic flux.

Methods
All considered systems have been described using a
single π-band tight binding Hamiltonian, taking into
account only the nearest neighbour interactions with a
hopping γ0 = 2.75 eV [24]. We have described the

Figure 1 Schematic view of the conductor. Two finite armchair
graphene ribbons (red lines). The length L of the conductor is
measured in unitary cell units.

heterostructures using surface Green’s function formalism
within a renormalization scheme [16,17,25]. In the linear
response approach, the conductance is calculated using
the Landauer formula. In terms of the conductor Green’s
function, it can be written as [26]:

G = 2e2

h
T̄ (E) = 2e2

h
Tr

[
�LGR

C�RGA
C

]
, (1)

where T̄ (E), is the transmission function of an electron
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†
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where yn is the carbon atom position in the transverse
direction of the ribbons. In what follows, the Fermi energy
is taken as the zero energy level, and all energies are
written in units of γ0.

Results and discussion
Unperturbed systems
Let us begin the analysis by considering the effects of the
geometrical confinement. In Figure 2, we present results
of (a) Local density of sates (LDOS) and (b) conduc-
tance for a conductor composed of two A-GNRs of widths
Nd = Nu = 5 connected to two leads of width N= 17 for
different conductor lengths (L = 5,10 and 20 unit cells).
The most evident result is reflected in the LDOS curves
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Figure 2 LDOS and conductance for different geometries. (a)
LDOS (black line) and (b) conductance of two A-GRNs (red line) of
widths Nd = Nu = 5, connected to two leads of widths N = 17 for
different conductor lengths: L = 5, 10, 20 u.c. (c) Conductance of a
system composed of two parallel Nd = 5 and Nu = 7 A-GNRs of
lengths L = 15. As a comparison, we have included the pristine cases
(black and blue curves, respectively).

at energies near the Fermi level. There are several sharp
states at defined energies, which increase in number and
intensity as the conductor length L is increased. These
states that appear in the energy range corresponding to
the gap of a pristine N = 5 A-GNRs [24,32] correspond
to a constructive interference of the electron wavefunc-
tions inside the heterostructure, which can travel forth
and back generating stationary (well-like) states. In this
sense, the finite length of the central ribbons imposes an

extra spatial confinement to electrons, as analogy of what
happens in open quantum dot systems [16,17,19,33,34].
Independently of their sharp line shape, these discrete
levels behave as resonances in the system allowing the
conduction of electrons at these energies, as it is shown in
the corresponding conductance curves of Figure 2b. It is
clear that as the conductor length is increased, the num-
ber of conductance peaks around the Fermi level is also
increased, tending to form a plateau of one quantum of
conductance (G0 = 2e2/h) at this energy range. These
conductance peaks could be modulated by the external
perturbations, as we will show further in this work.
At higher energies, the conductance plateaus appear

each as 2G0, which is explained by the definition of
the transmission probability T(E) of an electron passing
through the conductor. In these types of heterostruc-
tures, if the conductor is symmetric (Nu = Nd), the
number of allowed transverse channels are duplicated;
therefore, electrons can be conduced with the same prob-
ability through both finite ribbons. On the other hand, in
Figure 2c, we present results of conductance for a con-
ductor of length L = 15 and composed of two A-GNRs
of widths Nd = 5 and Nu = 7, connected to two leads
of widths N = 17. As a comparison, we have included
the corresponding pristine cases. As it is expected, the
conductance for an asymmetric configuration (red curve)
reflects the exact addition of the transverse channels of the
constituent ribbons, with the consequent enhancement of
the conductance of the systems. Nevertheless, there is still
only one quantum of conductance near the Fermi energy
due to the resonant states of the finite system, whether
the constituent ribbons are semiconductor or semimetal.
We have obtained these behaviours for different configu-
rations of conductor, considering variations in length and
widths of the finite ribbons and leads.

Magnetic field effects
In what follows, we will include the interaction of a uni-
form external magnetic field applied perpendicularly to
the conductor region. We have considered in our calcula-
tions that the magnetic field could affect the ends of the
leads, forming an effective ring of conductor. The results
of LDOS and conductance as a function of the Fermi
energy and the normalized magnetic flux (φ/φ0) for three
different conductor configurations are displayed in the
contour plots of Figure 3. The left panels correspond to
a symmetric system composed of two metallic A-GNRs
of widths Nu = Nd = 5. The central panels correspond
to an asymmetric conductor composed of two A-GNRs
of widths Nd = 5 (metallic) and Nu = 7 (semiconduc-
tor). The right panels correspond to a symmetric system
composed of two semiconductor A-GNRs of widthsNu =
Nd = 7. All configurations have been considered of the
same length L = 10 and connected to the same leads
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Figure 3Magnetic field effects on LDOS and conductance. Contour plots of LDOS (lower panels) and conductance (upper panels) as a function
of the Fermi energy and the magnetic flux crossing the hexagonal lattice for three different configurations of conductor. As a comparison, we have
included the LDOS curves of the corresponding system without the magnetic field (bottom plots).

of widths N = 17. Finally, we have included as a refer-
ence, the plots of LDOS versus Fermi energy for the three
configurations.
From the observation of these plots, it is clear that the

magnetic field strongly affects the electronic and transport
properties of the considered heterostructures, defining
and modelling the electrical response of the conductor.
In this sense, we have observed that in all considered
systems, periodic metal-semiconductor electronic tran-
sitions for different values of magnetic flux ratio φ/φ0,
which are qualitatively in agreement with the experimen-
tal reports of similar heterosructures [21-23]. Although
the periodic electronic transitions are more evident in
symmetric heterostructures (left and right panels), it is
possible to obtain a similar effect in the asymmetric con-
figurations. These behaviours are direct consequences of
the quantum interference of the electronic wave function
inside this kind of annular conductors, which in general
present an Aharonov-Bohm period as a function of the
magnetic flux.
The evolution of the electronic levels of the system,

depending of their energy, exhibits a rich variety of
behaviours as a function of the external field. In all con-
sidered cases, the LDOS curves exhibit electronic states
pinned at the Fermi Level, at certain magnetic flux values.

This state corresponds to a non-dispersive band, equiva-
lent with the supersymmetric Landau level of the infinite
two-dimensional graphene crystal [30,35]. At low energy
region and for low magnetic field, it is possible to observe
the typical square-root evolution of the relativistic Landau
levels [36]. The electronic levels at highest energies of the
system evolve linearly with the magnetic flux, like regular
Landau levels. This kind of evolution is originated by the
massive bands in graphene, which is expected for these
kinds of states in graphene-based systems [37,38].
By comparing the LDOS curves and the correspond-

ing conductance curves, it is possible to understand and
define which states contribute to the transport of the sys-
tems (resonant tunneling peaks), and which ones only
evolve with the magnetic flux but remain as localized
states (quasi-bond states) of the conductor. These kind
of behaviour has been reported before in similar sys-
tems [19,20]. This fact is more evident in the symmetric
cases, where there are several states in the ranges φ/φ0 ∈
[ 0.1, 0.9] and E(γ0) ∈[−1.0, 1.0] of the LDOS curves
which evolve linearly with the magnetic flux, but are
not reflected in the conductance curves. In fact, at these
ranges, the conductance curves exhibit marked gaps with
linear evolution as a function of the magnetic flux. For the
asymmetric case, it is more difficult to define which states
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behave similarly; however, there are still some regions at
which the conductance exhibits gaps with linear evolu-
tion as a function of the magnetic flux. All these electronic
modulations could be useful to generate on/off switches
in electronic devices, by changing in a controlled way the
magnetic field intensity applied to the heterostructures.
We have obtained these behaviours for different configu-
rations of conductor, considering variations in length and
widths of the finite ribbons and leads.

Conclusions
In this work, we have analysed the electronic and trans-
port properties of a conductor composed of two parallel
and finite A-GNRs, connected to two semi-infinite lead, in
the presence of an external perturbation.We have thought
these systems as two parallel wires of an hypothetical cir-
cuit made of graphene, and we have studied the transport
properties as a function of the separation and the geom-
etry of these ‘wires’, considering the isolated case and the
presence of an external magnetic field applied to the sys-
tem. We have observed resonant tunneling behaviour as a
function of the geometrical confinement and a complete
Aharonov-Bohm type of modulation as a function of the
magnetic flux. These two behaviours are observed even
when the two A-GNRs have different widths, and conse-
quently, different transverse electronic states. Besides, the
magnetic field generates a periodic metal-semiconductor
transition of the conductor, which can be used in elec-
tronics applications. We want to note that our results are
valid only in low temperature limits and in the absence
of strong disorder into the systems. In the case of non-
zero temperature, it is expected that the resonances in the
conductance curves will become broad and will gradually
vanish at room temperature [20].
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