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Abstract In this work we derive some general features of
the redshift measured by radially moving observers in the
black hole background. Let observer 1 cross the black hole
horizon emitting a photon, while observer 2 crossing the
same horizon later receives it. We show that if (i) the horizon
is the outer one (event horizon) and (ii) it is nonextremal,
the received frequency is redshifted. This generalizes recent
results in the literature. For the inner horizon (like in the
Reissner—Nordstrom metric) the frequency is blueshifted. If
the horizon is extremal, the frequency does not change. We
derive explicit formulas describing the frequency shiftin gen-
eralized Kruskal- and Lemaitre-like coordinates.

1 Introduction

Redshift is one of the well-known effects of gravity; it plays
an essential role in relativistic astrophysics. Its description
entered many textbooks. In particles, it concerns propagation
of light in the black hole background. Thus, much attention is
focused on the properties of light outside the event horizon.
Less these properties inside the horizon are discussed. Also,
strange as it may seem, the question of the redshift of a photon
moving along the horizon dropped out from consideration
almost completely. There is general discussion of this issue
in [1] for the Reissner—Nordstrom—de Sitter metric but the
relation between redshift or blueshift and the nature of the
horizon was not revealed there.

Meanwhile, there are several points that can serve as a
motivation for such a consideration.

(i) Recently, important methodic issues were discussed in
[2,3] concerning properties of the world visible by an
observer falling into the Schwarzschild black hole and
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(ii)

(iii)

(iv)

communicating by radio signals with another falling one.
In doing so, some incorrect statements were made in [2]
about “ghosts” of the first observer supposedly waiting
for the second one on the horizon. As was argued in
[3], there are no such ghosts at all, although the second
observer does receive a signal from the first one emit-
ted at the moment of crossing the horizon. This required
detailed calculation of the frequency shift for a photon
propagating along the horizon with the result that a finite
redshift occurs in this case.

In the present work, we generalize these observations,
demonstrate that such a redshift is present for any horizon
of a spherically symmetric nonextremal black hole and
find its value.

If the metric contains an inner horizon (say, for the
Reissner—Nordstrom black hole), the calculation of the
frequency shift for a photon emitted along such a horizon
is of special interest. We demonstrate that now, instead
of a redshift, a blueshift occurs. In the limit when a pho-
ton is received near the bifurcation point, the blueshift
becomes infinite. This establishes the connection of the
issue under discussion with the analog of the Bafiados—
Silk—West (BSW) effect [4]. It consists in the infinite
growth of the energy of colliding particles in the center
of mass frame. Originally, it was found near the event
horizon but, later on, it turned out that another similar
effect is valid also near the inner horizon (see [5] and the
references therein). On the other hand, the issue under
discussion can be considered as an effect supplemental
to a well-known instability of the inner horizon [6,7].
In addition to the propagation along the nonextremal hori-
zon, there is also the question of what happens in the
extremal case. We argue that, by contrast to the two pre-
vious ones, now the frequency shift is absent.

In Refs. [2,3] the Kruskal-Szekerez (KS) coordinate
system was used. We also exploit it. In addition, it is
of interest to compare the results using another pow-
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erful system—the Lemaitre one. We construct such a
system for a whole class of metrics that includes the
Schwarzchild one as a particular case.

In the present work, we restrict ourselves to the simplest case
of radially moving observers.

2 Motion outside the nonextremal event horizon

We consider the metric
2 2 dr? 2,402 .2 2
ds® = —fdr +7+r (d6“ + sin” 6do°). (D)

We suppose that the metric has the event horizonatr = ry,
so f(r+) = 0. (For simplicity, we assumed that ggog11 = —1
but this condition can be relaxed easily.) We consider now a
nonextremal black hole. Near the horizon,

frKk@r—ry), 2)
where k = £ <2r+) is the surface gravity.
Let an observer have the four-velocity u#* = %, where T

is the proper time. We restrict ourselves to the radial motion
of a massive particle (we call it “observer”). Then the four-
velocity u = (, 7). Here, a dot denotes the derivative with
respect to 7.

The geodesic equations of motion for such a particle read

=2 3
mt = —,

f
mr=—Z,Z =/E*— fm?, “)
E = —mu;, is the conserved energy of a particle.

For a photon having the wave vector k*, the equations of
motion are
w0

K== ©)
f
P l
k = (6)
8¢
12
K=-0,0=oj— =, ™
r
where wy = —ko is the conserved frequency, I = kg is the

conserved angular momentum.
Let a free falling observer emit or receive a photon. Its
frequency measured by this observer is equal to

w = —k,u*. 8)

Taking into account (3)—(7), we find after straightforward
calculation:
Ewy—¢ZQ
w=———.

f ©))
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Here, ¢ = +1 if both objects (the observer and the photon)
move in the same direction and ¢ = —1 if they do this in
opposite ones. If ¢ = —1, this corresponds to a head-on
collision between a massive and a massless particles and this
means that either an observer receives a photon emitted from
a smaller value of r or a falling observer emits a photon in
the backward direction.

Near the horizon, f « 1. Let ¢ = 41 and the observer
looks back. Near the horizon, he will see the frequency

1( EI*
o~ = S+ 27 (10)
2 \ mwory E
Ife =—1,
w 2F
2~ . (11)
wQ m fem

Here f.ny is the value of the metric function in the point
of emission. Let the observer emit in his frame a photon
having the frequency w, traveling to infinity. Then at infinity
it will be received with the frequency wgo having the order
fem- Equation (11) agrees with the standard result for the
Schwarzschild metric (see Sect. XII.102 of [8], especially
Eq. 102.10).

It is instructive to compare this with another situation
usually discussed in textbooks when the emitter is not free
falling but is static. In the latter case, the frequency at infinity
wy = w~/f (see, e.g. Eq. 88.6 of [8]) has the order / fom.
Obviously, the difference can be attributed to the motion of
an emitter (the Doppler effect makes the redshift stronger).

Some reservations are in order. Throughout the paper, we
assume that the geometric optics is a reasonable approxima-
tion for propagation of light waves. As usual, this implies that
the wavelength A satisfies the relations % < L, R, where
A is the wave length, £ is a typical scale characterizing a
wave packet and R~ is the typical component of the Rie-
mann tensor (see Eq. 22.23c in [9]). For the Schwarzschild
metric, this entails, in terms of the frequency, the condition
oM > 1; M isthe black hole mass. In the more general case
of, say, the Reissner—Nordstrom metric, this gives wry > 1,
where r is the radius of the horizon.

Also, we assume that backreaction of the photon on the
metric is negligible. This implies that, in any case, its energy
is much less than the ADM mass of a black hole, so in nat-
ural geometric units @ <« M. Thus we have the double
inequality r;l < w K M. As for the Reissner—Nordstr
om metric M < r; < 2M, the conditions of validity of
this approximation are practically the same for the Reissner—
Nordstrom and Schwarzschild metrics.
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3 Photon emitted at the horizon

We see from (11) that, as the point of emission of a photon is
approaching the horizon, the frequency measured at infinity
becomes smaller and smaller. However, this formula does
not describe what happens if the photon is emitted exactly
on the horizon. Then wy = 0 and I = 0, foy = O from the
very beginning (see also below), the photon does not reach
infinity at all and moves along the leg of the horizon. Here, the
original coordinates (1) are not applicable since the metric
becomes degenerate on the horizon. This can be remedied
with the use of standard KS coordinates or its generalization.
Let us introduce coordinates U and V, where

U = —exp(—ku), V =exp(kv), (12)

u=t—r* v=t+r% (13)

. "dr

= — (14)
f

is the tortoise coordinate. It is seen from (12) that
UV = —expkr™). (15)

Then the metric reads

ds? = FAUAV + r’de?. (16)
Here,
Fe—y du dv 17
- dudve
For the transformation (12),
f
= — 18
UVi? (18)

F # Oonthehorizon. Itis clear from (1), (15) that F = F(r).
For example, for the Schwarzschild metric,
4r_3,_ _r

F=——t¢ s, (19)
r

provided the constant of integration is chosen in (14) in such
away that7* =7 +ryIn %

We consider the vicinity of the future horizon, on which
U = 0. Along this horizon, V takes finite values.

Near the horizon

1 r—ryg

r*~ —In ~+ const, (20)
2k ry
(r—ry)
UV ~ —2C, (21)
F+

where C is a constant. In the Schwarzschild case, Cy = e. It
is instructive to rewrite the equations of motion for massive
particles outside the event horizon (3), (4) in terms of the
KS coordinates and take the horizon limit afterwards. For an
observer moving inward they read

E+Z7ZdUu
muV = 229 (22)
f du
E—-Zd
mu’ = a (23)
f dv
Taking also into account (12) and (17), we have
. E+ 7
mU = _(L)’ (24)
FVk
. (E-2)
my = ————. (25)
UFk

In a similar way, we have for a photon moving in the
outward direction

kU Q0 —wo
kY = —(0 —wy) = : 26
7 (Q —wo) eV (26)

KV wo + Q
KV = — = —. 27
7 (wo + Q) FUx 27
Let A be the affine parameter. On the future horizon U = 0,
KU o= % = 0 = ky, which agrees with (26) if we put

wyp = 0 = f = Q in the right hand side. Thus only k"
remains nonzero. It follows from the geodesic equations that
on the horizon

dk v (V)
= =T ()" (28)
Here the Christoffel symbol '}, ~ 9L ~ 3500~ r =0

on the horizon. Therefore, k¥ = const along the horizon
generator. We have from (8), (24) on the horizon

1
w = —EFkVuU, (29)
and we have

w= 2VkaV. (30)

Let observer 1 cross the horizon at some V = V; and the
same for observer 2 but later, at V = V,. It follows from (12),
(13) that V, > V. Assuming that observers are identical in

that they have the same values of E and m, we obtain

V
@2 _ 11y 31)
w1 W

This agrees with Eq. (A16) of [3] obtained for the
Schwarzschild metric by another method.

It is also instructive to check that indeed wg = 0. By
definition, wy is a constant Killing frequency,

wo = —kuE", (32)

where £ is the Killing vector. In the original coordinates
(D,

é“ = (17 O, 07 O)’ éll. = (_fv O? O’ O) (33)
Passing to KS coordinates, one obtains

£V = —U, gV =xV. (34)

@ Springer
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Then we see from (32) that
wo=—-FKk"EY + kYY) = Fe kU — kY V). (35)

On the future horizon, kXY = 0 and U = 0, so we see that
indeed wo = 0.

Also, itis easy to check that for a photon propagating along
the horizon [ = 0. Indeed, if we write down the condition
ky k" = 0 on the future horizon, we obtain ks = 0. This
agrees with previous observations concerning the properties
of trajectories on the horizon [10,11].

4 Generalized Lemaitre frame
4.1 Form of metric

It is instructive to reformulate the redshift value in the
Lemaitre-like coordinates p, t. In contrast to the Kruskal
ones, this frame is based on free falling particles. The
Lemaitre frame is well known for the Schwarzschild met-
ric. Now, we suggest its generalization valid for the metric
(1).

The general theory of transformations that make the metric
of a spherically symmetric black hole regular, was developed
in [12]. For our goals, it is sufficient to find a particular class
of transformations that (i) makes the metric regular on the
horizon, (ii) generalize the Lemaitre metric (in particular, the
metric should have g;; = —1). We make the transformation

dr*
JI=F
T =r+/dr*,/1 — 7, (37)

where r* is given by (14). Equations (36), (37) are direct
generalizations of Eqs. 102.1 of [8]. Then it is easy to check
that

p=1t+ (36)

ds? = —dr? + (1 — f)dp® + r’(p, T)(d6? + sin® Hd¢?).
(38)

On the horizon, f = 0, the metric coefficient is regular,
gpp = 1. In the particular case of the Schwarzschild metric,
f=1- r7+ and we return to the standard formula for the
Lemaitre metric, when r is expressed in terms of p and 7.
The coordinates (36), (37) are suitable for the description
of a black hole including both the outer R region and the
contracting T one [13]. In a similar way, one can use the
expanding version that would result in a changing sign at 7.

Now, we want to pay attention to some nice properties
of the metric (38). The proper distance between points 1
and 2 calculated for a given 7 is equal to / = [dp/T— f.
Requiring dr = 0 in (37) and substituting d¢ into (36), we
obtain from (14), (36)

@ Springer

l=ry—ry. (39)

Itis also instructive to calculate the velocity. Let, say, point

1 be fixed and let us focus on the velocity of free fall v = %

of a particle with E = m, where o = r changes depending
on time. Then it is easy to find from (4), (39) that

v=—JI- 7. (40)

1 _df
2 /1=7 dr-

Taking the derivative once more, we obtain g—'r’ =
On the horizon, this gives us

vy 41
(&), 0

where we took into account that for our metric the surface
gravity k = % % . The subscript “H” means that the
corresponding quantity is calculated on the horizon. Equation
(41) will be used below. It is worth noting that for the extremal

horizon (x = 0) we have also (%)H =0.

4.2 Redshift: from Kruskal coordinates to Lemaitre ones

The above frame is especially useful for the presentation of
the redshift (31). On the horizon, f = 0. Then, in its vicinity,
we obtain from (13), (36), (37) that on the horizon

v=1+4+C|=p+Ca, (42)

where C » are constants. As a result, we obtain from (31)

b = expli (11 — 12)) = explk (o1 — ). (43)

Thus the Lemaitre frame allows us to present the resulting
redshift along the horizon in a simple and intuitively clear
picture—the redshift grows (and, consequently, the emitter
looks dimmer) exponentially with respect to Lemaitre time
that passes from emitting to observation.

In the last paragraph of Sect. 2, we listed the general con-
dition for the geometrical optic to be valid. Now, we can
express it in another way. Since a physical wave packet has
a finite length, parts of it will move away from the black
hole horizon even if its center is located exactly on the hori-
zon. Since the equations of light geodesics in the generalized
Lemaitre frame reads dr/dt = 1 — /T — f for outward
propagation, the Lemaitre time needed to leave the vicinity
of the horizon r = ry diverges as |In(r/r+ — 1)|. Suppose,
the emitter radiates light with the wavelength A. Since in
any case the wave packets cannot be smaller than A, we can
roughly estimate initial scale as r — ry ~ A. Then we find
that after the Lemaitre time t/ry ~ Inry /A ~ Inwory the
wave packet will reach the scale of black hole horizon, the
geometric optic approximation fails and, in particular, Eq.
(43) evidently breaks down.
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5 Photon emitted at the inner horizon

Let us consider a situation similar to that considered
above. An observer moves beyond the event horizon rand
approaches the inner horizon r— < r4. When he crosses it,
he emits a photon. Another observer who also crosses the
inner horizon later, receives this very photon. What can be
said about its frequency?

5.1 The coordinates and metric

The metric between the outer and inner horizons represents
so-called T region [13]. For definiteness, we consider the 7~
region that corresponds to a black hole, but similar formulas
are valid for the T regions (white holes). Now, the metric
can be formally obtained from (1) if one takes into account
that forr < r < r4 the metric function f < 0, so spacelike
and timelike coordinates mutually interchange. We can write

f =—-8
y=t, T=-—r (44)

Then the metric can be rewritten in the form
dr?
ds? = ——— + gdy? + T?do’. (45)
8

The equations of motion for a massive particle have the
form

my = —, (46)

mT =z = /P2 +m2g, 47

where P = mu, is the conserved momentum.
Now, the KS transformation somewhat changes and reads

x|~

U = exp(—«k_u), (48)
V = exp(k_v), 49)
where r* is given by the formula

d
e (50)

8
The metric takes the form (16) with

8
F=——"-, 51
UVi? Gb

where x_ is the surface gravity associated with the inner
horizon and F # 0 is finite there.

Repeating the calculations step by step, we arrive at the
same formula (31),

wr Vi

o Va
Now, we would like to pay attention to the fact that, according
to (12), V is a monotonically increasing function of v. It is

(52)

seen from (13), (14) that, for a fixed u, g—f > 0. However,
it is seen from (44) that event 2, which takes place after 1,
has r) < ry. As aresult, v, < vy and Vo < V. Therefore,
wy > w; and now we have a blueshift. Thus this is related to
the fact that r and r coordinates change their character in the
region under discussion.

The results (43) and (52) can be united in one formula,
) dv dv
— =exp [(*) (p1 — Pz)] =exp [(*) (r1 — Tz)} ;
] dr ) g dr ) g
(53)

where 75 > 71, p2 > p1. For the outer horizon we can use
Eq. (41), which gives us (43) and we have a redshift. For the

inner horizon, the counterpart of (41) gives us (§£) ,, = —k—,
where now k_ = % % is the surface gravity of the inner
H

horizon (where (%)H < 0). As a result, we obtain here a

blueshift.

In a similar way, the procedure under discussion gives
the same result when an observer crosses the event hori-
zon of a white hole moving outward from the T to the
R region. Then he will find all photons propagating along
this horizon to be blueshifted. In particular, this holds for
the Schwarzschild metric. Analogously, an observer entering
T region from the inner R one (say, like in the Reissner—
Nordstrom metric) will see a redshift at the inner horizon. In
other words, in both situations (either black or white hole)
an observer crossing a horizon from the 7' to R region will
see a blueshift, while from the R to T region he will see a
redshift.

5.2 Relation to other effects

In the previous subsection we have shown that the blueshift
at the inner horizon (and, consequently, the energy absorbed
by the observer) grows exponentially with the Lemaitre time
between the moments of emission and observation. Here we
compare this interesting effect with others known in the lit-
erature.

If two particles collide, their energy E. . in the center of
mass frame can be defined on the point of collision according
to

E?, = —P,P" (54)

PH = p’f + p’ZL being the total momentum of two particles.
If particle 1 is massive and particle 2 is massless, pi‘ = mut
and pg = k", where we put the Planck constant to unity. As
a result,

E:  =m?+ 2mo. (55)

In the example under discussion, if V| = O(1) and V, —
0, the frequency w» — oo according to (52). Then E¢ . —

@ Springer
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oo as well and we encounter a counterpart of the BSW effect
near the inner horizon. But V. = 0 on the future horizon
U = 0 is nothing else than the bifurcation point [5] (see
also below for more details). Thus the present results for the
blueshift agree with the previous ones in the limit when the
bifurcation point is reached.

There is also another issue to which we can compare
the present consideration. As is well known, near the inner
(Cauchy) horizon an instability develops inside black holes.
This happens when a decaying flux of radiation coming from
infinity crosses the event horizon and concentrates near the
inner one—see, e.g. Chapter 14.3.1 in [6]. (For a modern
review of the subject see [7].) However, now we consider
radiation which is not coming from infinity but is emitted
by an observer who crosses the inner horizon. The resulting
energy flux from an emitter at the inner horizon appears to
be finite, though it is not restricted from above if V. — 0.

Thus as far as the radiation near the inner horizon is con-
cerned, we have three situations: (i) the analog of the BSW
effect (relevant near the bifurcation point), (ii) blueshift of a
photon in the situation under discussion (relevant near any
point of the inner horizon, the blueshift is in general finite),
(iii) the instability of the inner horizon (infinite blueshift due
to concentration of radiation along the horizon). Cases (i) and
(ii) are closely related in the sense that in the limit when the
point where a photon is absorbed approaches the bifurcation
point, one obtains (i) from (ii). Meanwhile, in case (iii) the
effect is unbounded and this points to a potential pathology
connected with the nature of the inner horizon.

6 Special case: emission at the bifurcation point

In Sect. 5, we discussed briefly spacetimes that contain T+
regions (white holes). Then the intersection between the
future and past horizons forms the so-called bifurcation point
(sphere, if the angle variables are taken into account), where
it is possible to pass from the white hole region to the black
one. White holes and bifurcation points do not arise in the
situation when a black hole is formed due to gravitational
collapse and in this sense they are not feasible astrophysi-
cally. However, they are inevitably present in the full picture
of an eternal black—white hole. Therefore, we consider such
objects for theoretical reasons and for completeness. In par-
ticular, in Sect. 5, we saw that accounting for the bifurcation
point arises naturally in the connection between our problem
and the BSW effect. In doing so, it is a receiver that passes
near the bifurcation point.

In the present section, we consider another case, when it
is an emitter that passes through this point at the moment
of radiation. Consideration of the frequency shift when a
photon emitted from the bifurcation point is a separate case
that does not follow directly from the previous formulas.

@ Springer

For the Reissner—Nordstrom—de Sitter metric, such a prob-
lem was considered in Sect. IV b of [1]. It follows from the
corresponding results that different cases are possible here:
wr < w1, Wy = w1, w2 > wi. On the first glance, this dis-
agrees with our results described above since we obtained
either a redshift (for the event horizon of black hole or inner
horizon of a white hole) or a blueshift (for the inner one in a
black hole or event horizon of a white hole). Fortunately, this
contradiction is illusory. Now, we will explain how one can
obtain the results for the bifurcation point from ours. To this
end, we compare (i) the generic situation and (ii) that with
crossing the bifurcation point and trace how (ii) arises from
(i) within the limiting transition.

For our purposes, it is sufficient to discuss the simplest
metric that possesses the bifurcation point, so we can imply
it to be, say, the Schwarzschild one. We assume that emitter 1
moves from the inner expanding 7 region (i.e. white hole)
[13], crosses the past horizon and enters the R region. After-
wards, it crosses the event horizon falling into a black hole.
Let, as before, the emitter and receiver have equal masses
m1 = my = m. However, now we cannot put E1 = E3. This
is because a particle with E = m would escape to infinity
instead of falling into a black hole. We remind the reader
that, up to now, in all our considerations an emitter and an
observer are set to be at rest in infinity. However, the most
general case can easily be obtained by adding correspond-
ing Lorentz boosts. In the present subsection we meet the
situation where this procedure is needed.

Therefore, we must use a more general formula based on
(30),

@ _BEhn (56)
o E1V

The first factor can be interpreted as a Lorentz boost respon-
sible for the Doppler effect. For E; = E» we return to the
case considered by us above but now the first factor is not
equal to 1 and plays now a crucial role.

If, by assumption, particle 1 falls into a black hole, this
means that it must bounce from the potential barrier in the
turning point r = rp. According to the equation of motion
(4), this means that

E =my/ f(rg). (57

If ro > ry, f(ro) = 0,50 E — 0 as well. More pre-
cisely, it is seen from (2), (21) that

E~\ro—ry ~/IU|V. (58)

As a result,

E \%
@ of o _ [V (59)
w1 %) U

In the limit when the trajectory of particle 1 passes closer
and closer to the bifurcation point U = 0 = V, o remains



Eur. Phys. J. C (2017) 77:179

Page 70f 8 179

finite. Using the equations of motion in the T region (see the
previous section), it is easy to show that in the limit V. — 0,
U — 0, the component of the velocity Y contains just this
factor «.

Thus depending on the relation between « and V; one can
obtain any result for w, (redshift, blueshift, the absence of
the frequency shift). In this sense, the general formula (56)
reproduces both the “standard” fall of the emitter in a black
hole and the behavior of the emitter that passes through the
bifurcation point.

7 Extremal horizon

Let an observer cross the (ultra) extremal horizon r4. By
definition, this means that near it the metric function is

[~ =r)t (60)

where n = 2 in the extremal case and n = 3,4... in the
ultraextremal one. The difference from the nonextremal case
consists in a different nature of the transformation making
the metric regular. Let the two-dimensional part of the metric
have the same form as in (1). The subsequent procedure is
well known—see, e.g., [14, 15] (Sect. 3.5.1). We use the same
coordinates u, v and want to find appropriate coordinates U,
v,

V=Vw), U=U). (61)

Now, we are interested in the situation with emission of a
photon exactly along the horizon. Near the horizon it follows
for the tortoise coordinate (14) that

r—r+~‘r*|ﬁ, (62)
£l (63)

We consider the metric near the future horizon where v is
finite, r* — —o0, u = v — 2r* — +o00. We have

f~ut, (64)
We try a transformation that behaves like
U~u i, (65)

sothat U — 0. Thenitis easy to check that the metric has the
form (16) where F # 0 is finite on the horizon. To find the
frequency, we must use the expression for uV (22) in which
now (65) is valid, so ”é—‘uj ~ T It is seen from (64) that
uY — const on the horizon and it does not contain V. Taking
into account that k" is a constant along the horizon generator
as before, we come to the conclusion that V drops out and
g—f = const. We see that in the horizon limit the quantity
V' does not enter the frequency. In this sense, % does not

change along the horizon, so redshift or blueshift is absent.

In a sense, this is quite natural. Indeed, the extremal hori-
zon is the double one. The inner and outer horizons merge.
But for an inner horizon we had a blueshift, for the outer
one we had a redshift. Together, they mutually cancel and
produce no effect.

The absence of the redshift or blueshift formally agrees
with (43)if one puts k = 0 there. However, for (ultra)extremal
black holes the Kruskal-like transformation looks very dif-
ferent, so we could not use Eq. (43) directly. Therefore, it
was not obvious in advance whether or not the redshift for
the extremal horizon can be obtained as the extremal limit of
a nonextremal one. Now, we see that this is the case.

8 Summary

Thus we showed that for emission along the outer horizon
redshift occurs and we derived a simple formula that gen-
eralized the one previously found in the literature. We also
showed that along the inner horizon blueshift occurs and
found its relation with the BSW effect. We also showed how
the previously known results for the emission at the bifurca-
tion point are reproduced from a general formula and lead
to a diversity of situations (redshift, blueshift or the absence
of frequency shift). For (ultra)extremal horizons the effect is
absent.

These observations have a quite general character in agree-
ment with the universality of black hole physics. We also
generalized the Lemaitre frame and in this frame derived a
simple and instructive formula for a redshift along the hori-
zon in terms of the Lemaitre time and the surface gravity.
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