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Abstract

Background: Contamination of the environment with bioactive chemicals has emerged as a potential public
health risk. These substances that may cause distress or disease in humans can be found in air, water and
food supplies. An open question is whether these chemicals transform into potentially more active or toxic
derivatives via xenobiotic metabolizing enzymes expressed in the body. We present a new prediction tool,
which we call PROXIMAL (Prediction of Xenobiotic Metabolism) for identifying possible transformation products of
xenobiotic chemicals in the liver. Using reaction data from DrugBank and KEGG, PROXIMAL builds look-up tables that
catalog the sites and types of structural modifications performed by Phase I and Phase II enzymes. Given a compound
of interest, PROXIMAL searches for substructures that match the sites cataloged in the look-up tables, applies
the corresponding modifications to generate a panel of possible transformation products, and ranks the
products based on the activity and abundance of the enzymes involved.

Results: PROXIMAL generates transformations that are specific for the chemical of interest by analyzing the
chemical’s substructures. We evaluate the accuracy of PROXIMAL’s predictions through case studies on two
environmental chemicals with suspected endocrine disrupting activity, bisphenol A (BPA) and 4-chlorobiphenyl
(PCB3). Comparisons with published reports confirm 5 out of 7 and 17 out of 26 of the predicted derivatives
for BPA and PCB3, respectively. We also compare biotransformation predictions generated by PROXIMAL with
those generated by METEOR and Metaprint2D-react, two other prediction tools.

Conclusions: PROXIMAL can predict transformations of chemicals that contain substructures recognizable by
human liver enzymes. It also has the ability to rank the predicted metabolites based on the activity and abundance of
enzymes involved in xenobiotic transformation.
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Background
When ingested, drugs and other foreign chemicals can
be transformed by xenobiotic metabolizing enzymes,
which are expressed throughout the body, in particular
the liver and intestine. In mammals, including humans,
clearance of xenobiotic chemicals from the body in-
volves two to three phases, with the first two phases car-
rying out key structural modifications. Typically, Phase I
activates the chemical by introducing a reactive and
polar functional group, whereas Phase II conjugates the
activated chemical with a charged species, increasing the

molecular weight, reducing reactivity, and improving the
transport property. An additional Phase III step can fol-
low the conjugation step to eliminate the conjugated
chemical from the cell into the extracellular medium.
The enzymes mediating these reactions have broad spe-
cificity, and thus are capable of generating a variety of
metabolic products. Cytochrome P450 (CYP) enzymes
play an especially important role in Phase I modification,
which often involves oxidizing the substrate by introdu-
cing a hydroxyl group or oxygen atom. Depending on
the substrate, a CYP reaction can produce a highly react-
ive derivative that can bind and modify other molecules
in the cell, including macromolecules, and thus pose a
cytotoxicity risk [1].
In some cases, the products of xenobiotic transform-

ation can be biologically active, and interact with
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endogenous enzymes or regulator molecules to interfere
with critical physiological processes. An example where
this might be a concern is in the case of emerging con-
taminants. For example, diethylhexyl phthalate (DEHP)
is a widely used plasticizer that can be hydrolyzed in the
body to form monoethylhexyl phthalate (MEHP). In
vitro experiments using molecular and cellular assays
have shown that MEHP can selectively activate the
nuclear receptor peroxisome proliferator-activated
receptor-γ (PPAR-γ) to promote adipogenesis [2], and
thus could contribute to the development of obesity.
Hydroxylated derivatives of polychlorinated biphenyls
(PCBs) can inhibit the sulfation of thyroid [3] and
steroid hormones [4], and thereby disrupt an import-
ant mechanism for regulating the levels of these hor-
mones. In the case of PCBs, hydroxylation can also
enhance the toxicity of these chemicals [5], possibly
through a mechanism involving oxidative DNA damage
[6]. A similar increase in toxicity has also been reported to
result from hydroxylation of polybrominated diphenyl
ethers (PBDEs) [7].
One approach for identifying endogenously formed

xenobiotic transformation products is to experimentally
profile bodily fluids such as blood or urine for com-
pounds that are structurally related to the xenobiotic
chemical. For example, Dhakal et al. utilized mass spec-
trometry (MS) to identify several Phase I and Phase II
derivatives of a PCB in urine and fecal samples from
mice [8]. This metabolite profiling study utilized select-
ive ion monitoring, a MS method for targeted analysis.
While this targeted approach affords quantitative ana-
lysis, it may not be comprehensive. By definition, tar-
geted analysis requires a priori knowledge of the
chemicals of interest, and consequently is limited in its
potential for discovery. Ideally, investigation of xeno-
biotic transformation is sufficiently comprehensive to
characterize the breadth of metabolic products that can
be derived from a chemical of interest, while also fo-
cused enough to robustly identify and quantitate the
products. To this end, complementing experimental ana-
lysis with computational prediction of transformation
products could be a powerful strategy to enhance the
discovery potential of analytical experiments, as it has
been suggested by several previous studies on experi-
mental detection of biotransformation products [9–13].
Several computational approaches have been devel-

oped to predict xenobiotic transformations that result
in structural modifications to the chemical. Examples
of well-known approaches are UM-PPS [14–16], Meta
[17–19] and Meteor [20–22]. The University of Minnesota
Pathway Prediction System (UM-PPS) [14–16] is a rule-
based method specifically developed to predict microbial
catabolism of organic compounds. Based on curated infor-
mation on microbial reactions cataloged in the University

of Minnesota Biocatalysis/Biodegredation Database
(UM-BBD) [23] and documented in the published lit-
erature, UM-PPS generates a set of rules that specify
how predefined functional groups may be modified
through a metabolic reaction. These rules are ranked
based on their likelihood of occurring under aerobic
biodegradation conditions and applied to the matching
functional groups in the query compound to predict the
compound’s metabolic products. Meta, another rule-based
method, predicts xenobiotic transformations in mammals
by generating rules compiled from reviews and textbooks
[17, 19]. Given a query compound, Meta searches for a
molecular fragment in the compound that is recognized
by a specific enzyme and transforms it into a product frag-
ment. Meta uses a genetic algorithm to optimize the rules
based on experimental observations to improve the pre-
dictions [18]. For a given metabolite, Meteor predicts the
possible transformation steps using a reasoning engine
that has a knowledge base composed of generic rules
[20, 21]. Several hundred (841) rules are derived from
217 known biotransformation reactions. The rules are
assigned a rank according to the lipophilicity and mo-
lecular weight of the query metabolite [22]. Kirchmair
et al. provide a comprehensive review of computa-
tional approaches for predicting outcomes of xeno-
biotic transformations [24]. A drawback of rule-based
approaches is that they rely heavily on generic trans-
formation rules, leading to a large number of predic-
tions that may be difficult to evaluate and interpret.
MetaPrint2D-react is another tool for predicting bio-
transformations [25]. MetaPrint2D-react is based on
MetaPrint2D [25], which predicts site of xenobiotic
metabolism using ‘circular fingerprints’ of reactant-
product pairs. The circular fingerprint is determined
by counting the number of each atom type at each
depth or level (defined by covalent bonds) around the
reaction center. Libraries are created based on the
fingerprints, and each atom in the query molecule is
searched against these libraries. Any atom with a
match in the libraries is marked as a possible site of
metabolism. MetaPrint2D-react augments the rules
derived using the fingerprinting techniques with gen-
eric rules that are added manually. For example, the
specific rule for acetylation (the acetyl group is most
common acyl group to be added) is supplemented with a
generic rule that captures other cases of acylation.
We present in this paper a new method, termed

PROXIMAL, for predicting the biotransformation of xe-
nobiotics by human enzymes. PROXIMAL analyzes
Phase I and Phase II xenobiotic transformations that are
cataloged in public databases (i.e. DrugBank [26–28] and
KEGG [29, 30]), and builds look-up tables linking spe-
cific molecular substructures with matching biotrans-
formation operations that modify these substructures.
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To achieve specificity, the look-up tables take into ac-
count molecular substructures that consist of a reaction
center and its two-level nearest neighbors. Given a query
compound, PROXIMAL applies a select set of transfor-
mations from the look-up tables at one or more match-
ing sites, or reaction centers, of the query compound.
PROXIMAL then ranks the transformation results based
on the activity and abundance of the enzymes involved
in the transformations. To evaluate the predictive power
of PROXIMAL, we investigate two case studies involving
bisphenol A (BPA) and 4-chlorobiphenyl (PCB3), two
environmental chemicals with suspected endocrine dis-
rupting activity.

Methods
The PROXIMAL method has three steps. The first
step catalogs known xenobiotic transformation reac-
tions (enzymes, substrates and products) recorded in
databases. In this study, we focused on CYP enzymes
(Phase I enzymes) and transferases (Phase II enzymes),
which account for the bulk of xenobiotic chemical modifi-
cations and conjugations in mammals. Specifically, CYP
enzymes catalyze about 75 % of these reactions [31]. The
cataloged information is used to build look-up tables that
associate a particular molecular substructure with a spe-
cific pattern of modification or conjugation. The second
step uses the look-up tables to apply a select set of trans-
formations to a matching substructure within the chem-
ical of interest. Depending on the chemical, this step may
generate a large number of possible transformation prod-
ucts due to the number of sites available for modification.
The third step ranks the predicted transformation prod-
ucts using available data on the activity and abundance of
the enzymes associated with the transformations.

Step 1: Creating look-up tables
The look-up tables are created in four steps. In step 1a,
we mine reaction databases to identify a list of relevant
CYP reactions. In step 1b, we analyze the structural
similarities between the reactants and products of the
CYP reactions. In step 1c, we extract one or more trans-
formation pattern and its neighborhood from each CYP
reaction. In step 1d, we store these transformations in
lookup tables. We explain each of the steps in detail
below.
In step 1a, the list of biotransformation reactions was

generated by mining DrugBank [26–28] and KEGG [29,
30]. Most of these reactions are catalyzed by CYP oxido-
reductases, which are representative of enzymes that
carry out Phase I reactions. In addition to CYP enzymes,
the list also included several transferases that play a
major role in Phase II metabolism. These enzymes are:
UDP-glucuronosyltransferase (UGT; EC 2.4.1.17), sulfo-
transferase (SULT; EC 2.8.2.1), N-acetyltransferase

(NAT; EC 2.3.1.5), glutathione S-transferase (GST; EC
2.5.1.18), thiopurine S-methyl transferase (TPMT; EC
2.1.1.67) and catechol O-methyl transferase (COMT; EC
2.1.1.6) [32]. At the time of completion of this work,
DrugBank held data on 409 Phase I enzymes and 70
Phase II enzymes. KEGG held data on 154 Phase I en-
zymes and 61 Phase II enzymes. Each reaction is speci-
fied using a reactant-product pair.
In step 1b, each reactant-product pair is examined,

and patterns that express how reactants are transformed
into products are identified. To analyze structural simi-
larity between a reactant and product, we use SIMP-
COMP [33]. SIMCOMP treats each molecule as a graph
consisting of vertices (atoms) and edges (covalent
bonds). Given a reactant and a product, SIMCOMP
searches for the largest subgraph common to the two
corresponding graphs, using heuristics to accelerate the
search. The matched atoms in the common subgraph
form the basis for aligning the reactant and product
molecules. The output of SIMCMOP is a list of aligned
atoms that comprise the subgraph. Figures 1a and b
illustrate how SIMPCOMP analyzes the structural simi-
larity between antipyrine and its CYP reaction product
3-hydroxymethylantipyrine. In Fig. 1a, each atom in the
reactant and product is designated a KEGG atom type
[34]. The atom type specifies the chemical element of
the atom and its adjacent atoms connected by a covalent
bond. For example, atom type C1a refers to a carbon
atom connected to a functional group and three hydro-
gen atoms (R-CH3). Atom type C1b refers to a carbon
atom connected to two functional groups and two
hydrogen atoms (R-CH2-R). With antipyrine and 3-
hydroxymethylantipyrine as inputs, SIMPCOMP returns
as the output a list of atoms that align across the react-
ant and product (Fig. 1b). Each row in the output table
holds an atom in the reactant and the corresponding
atom in the product as determined by SIMCOMP based
on the subgraph calculation. The ordering of the rows is
determined by the atom order (numbering) in input file
describing the reactant molecule. In the example of
Fig. 1, all aligned atoms in the reactant and product have
the same atom type, except atom number 9, which
changes from atom type C1a in the reactant to C1b in
the product.
In step 1c, the table of aligned atoms generated in

the previous step is utilized to characterize the neigh-
borhood of potential reaction centers. Each reactant
atom that aligns with a product atom of a different
atom type is a potential reaction center. The neigh-
borhood of a reaction center consists of the reaction
center atom’s adjacent and distant neighbors. An adja-
cent neighbor of an atom x is directly connected to
atom x by a covalent bond. A distant neighbor of
atom x is an adjacent neighbor of any one of atom
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x’s adjacent neighbors. From Fig. 1b, it can be seen
that atom number 9 is a potential reaction center.
This reaction center atom has only one adjacent
neighbor, atom number 4, which is of atom type C8y.
The distant neighbors are atom numbers 3, 7, and 9.
The set of distant neighbors always includes the reac-
tion center. Atoms 3 and 7 are type N4y and C8x, re-
spectively. The reaction center (shown in red in
Fig. 1a), its adjacent atom (shown in blue), and dis-
tant neighbors (shown in green) together comprise
the substructure where the CYP-mediated chemical
modification occurs.
In step 1d, information generated through steps 1a,

1b and 1c is entered into a lookup table, where infor-
mation is stored as a key-value pair. The key consists
of three fields: the atom type at the reaction center,
atom types of adjacent neighbors, and atom types of
distance neighbors. The value stores the correspond-
ing transformation in three fields: the atom type of
the product atom aligned with the reaction center,
atom types of adjacent neighbors, and functional
groups added to the product (atom types of any
atoms adjacent to the reaction center in the product
that are not present among the adjacent neighbors in
the reactant). Figure 1c shows the key and value asso-
ciated with the reaction center at atom number 9.
Separate tables are created for Phase I reactions and
Phase II reaction.

Step 2: Generating potential products
Given a chemical of interest, PROXIMAL applies the
transformation patterns represented in the look-up tables
to generate possible products of Phase I and/or Phase II
reactions. The chemical of interest is specified using an in-
put .mol file. PROXIMAL processes this input file to rep-
resent the chemical in KEGG atom type format [34] using
the KEGG API (Application Programming Interface).
PROXIMAL treats all atoms in the chemical as possible
reaction centers, and builds corresponding lists of adjacent
and distant neighbors. A query is performed to identify
any substructures that match to a key in the look-up ta-
bles. If there is a match, then the key’s value is applied to
generate a biotransformation product. Depending on the
number of matches, PROXIMAL may generate multiple
products for a given chemical.
The use of the look-up table in predicting xenobiotic

transformation products is illustrated through an ex-
ample involving acetaminophen (Fig. 2). After converting
the drug’s .mol file to the KEGG atom type format
(Fig. 2a), PROXIMAL generates a list of potential reac-
tion center atoms and their neighbors (Fig. 2b). Each
row in the list is compared with keys in the Phase I and
II look-up tables. In this example, we find matching keys
for the 11th row (reaction center: O1a; adjacent neigh-
bor: C8y; distant neighbors: C8x, C8x, O1a). Applying
the corresponding value from the Phase I look-up table
generates N-acetyl-p-benzoquinone imine. Applying the

a Reactant Product

Atom
no.

Atom 
type

Atom 
no.

Atom 
type

1 O5x 1 O5x

2 N4y 2 N4y

3 N4y 3 N4y

4 C8y 4 C8y

5 C8y 5 C8y

6 C8y 6 C8y

7 C8x 7 C8x

8 C1a 8 C1a

9 C1a 9 C1b

10 C8x 10 C8x

11 C8x 11 C8x

12 C8x 12 C8x

13 C8x 13 C8x

14 C8x 14 C8x

b

O5x: Ring-C(=O)-Ring
N4y: Ring-N(-R)-Ring
C8y: Ring-C(-R)=Ring
C8x: Ring-CH=Ring
C1a: R-CH3
C1b: R-CH2-R

Reaction 
center

Adjacent 
neighbor

Distant 
neighbors

C1a C8y C1a, C8y, N4y

Reaction 
center

Adjacent 
neighbor

Added 
functional group

C1b C8y O1a

Key

Value

c

Antipyrine 3-Hydroxymethylantipyrine

8

3
4

7

9

1

6
25

10
12

14

13

11
13

11

5

10
12

14

2
6

1

7

4
3

8

9
15

Fig. 1 Schematic illustration of look-up table construction (PROXIMAL step 1). a A CYP reaction transforms the drug antipyrine to 3-
hydroxymethylantipyrine, both represented in KEGG atom type format. Red, blue and green atoms are the reaction centers, adjacent
neighbors and distant neighbors, respectively. The .mol files were downloaded from DrugBank. b List of matched atoms for the reactant
and product. c The transformation look-up table has two parts, consisting of a key that specifies the modified reactant substructure and
a corresponding value that describes the modifications resulting in the product
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values from the Phase II look-up table generates two
additional products, acetaminophen glucuronide and
acetaminophen sulfate. All three predicted products have
been experimentally confirmed in published studies [35,
36]. Figure 2c shows transformations pertaining to reac-
tion center at atom number 11. Additional transforma-
tions are possible at other reaction center atoms, but are
not shown in the figure.

Step 3: Ranking the predicted metabolites
Several factors influence the likelihood that a particular
transformation occurs. Two important, related factors
are the enzyme’s (catalytic) activity and abundance [37].
Another factor is whether multiple enzymes can catalyze

the same transformation. In ranking the predicted prod-
ucts, we assume that a transformation is more likely to
occur if there are many different enzymes that can
catalyze the reaction, and if the enzymes are highly
abundant and active. Based on this assumption, we com-
pute the following score for each predicted transform-
ation product.

score ¼
X

k
average activityð Þ average abundanceð Þ

ð1Þ
Equation (1) sums the product of average activity and

abundance for each enzyme that can catalyze the forma-
tion of the transformation product, with the relevant

a

b

c

Atom
no.

Reaction 
center

Adjacent
neighbor

Distant neighbors Adjacent
neighbor

Distant neighbors Adjacent
neighbor

Distant
neighbors

1 C8y C8x C8x, C8y C8x C1a, C8y N1b C5a, C8y

2 C8x C8x C8x, C8y C8y C8x, C8x, N1b

3 C8x C8x C8x, C8y C8y C8x, C8x, N1b

4 N1b C5a C1a, N1b, O5a C8y C8x, C8x, N1b

5 C8x C8x C8x, C8y C8y C8x, C8x, O1a

6 C8x C8x C8x, C8y C8y C8x, C8x, O1a

7 C5a C1a C5a N1b C5a, C8y O5a C5a

8 C8y C8x C8x, C8y C8x C8x, C8y O1a C8y

9 C1a C5a C1a, N1b, O5a

10 O5a C5a C1a, N1b, O5a

11 O1a C8y C8x, C8x, O1a

11

8

5

6

3

2

1

4

7

10

9

N-acetyl-p-benzoquinone imine

Acetaminophen glucuronide

Acetaminophen sulfate

Fig. 2 Schematic illustration of generating the transformation products (PROXIMAL step 2). a The example drug, acetaminophen, is shown
represented in KEGG atom type format. The .mol file was downloaded from KEGG. b A list of atoms comprising acetaminophen and their
adjacent and distant neighbors. c The products predicted to result from modifications of the reaction center at atom number 11 are
N-acetyl-p-benzoquinone imine, acetaminophen glucuronide and acetaminophen sulfate
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enzymes (index k) determined from the look-up tables.
Values for average activity and abundance were obtained
by analyzing published data. For this analysis, we focused
on a subset of major Phase I (CYP) enzymes, as they play
a quantitatively dominant role in human drug metabolism
[38–40]. Specifically, we collected data on the following 9
CYP enzymes expressed in the human liver: 1A2, 2A6,
2B6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4. Both abundance
[38, 39, 41–43] and activity [44–48] data were obtained
from multiple studies involving primary hepatocytes from
human donors. The studies were carefully selected such
that the substrates used to characterize activity were simi-
lar in structure (Additional file 1).
To afford quantitative comparisons of data taken from

different studies, we accounted for missing values and
normalized the data as follows. The activity and abun-
dance datasets were each organized into a matrix, with
rows corresponding to enzymes and columns corre-
sponding to studies. All activity data were expressed in
terms of pmol substrate converted/min/mg protein, and
all abundance data were expressed in terms of pmol
CYP/mg protein. In the case a study did not report the
abundance or activity of an enzyme, the missing value
was imputed based on the row average for the enzyme.
As the imputed value affects the average, this value was
later iteratively recalculated during our normalization
routine until it converged within a reasonable tolerance
(0.1 %). After estimating initial values for the missing
data, each column in the activity or abundance matrix
was scaled to vary from 0 to 1 by subtracting the mini-
mum value from each column entry and dividing by the
maximal range in the column.

anew ¼ aij−aj;min

aj;max−aj;min
ð2Þ

In equation (2), anew is the scaled activity or abundance,
and the subscripts i and j refer to the enzyme and refer-
enced study, respectively. Next, quantile normalization
was performed on both abundance and activity matrices
to normalize the distribution of data across studies. An it-
erative procedure was then applied using the results of the
quantile normalization to recalculate the missing values
initially estimated by averaging the values reported in the
different studies. Once the values converged, a final value
for CYP abundance or activity was calculated by taking a
row average. These final, averaged values for each CYP
were then normalized with respect to the sum of the final
activity or abundance values for all 9 CYPs (Table 1).

Results
To evaluate the effectiveness of PROXIMAL in predict-
ing xenobiotic metabolism, we investigated two test
cases involving the environmental chemicals bisphenol

A (BPA) and 4- chlorobiphenyl (PCB3). BPA is a syn-
thetic chemical that has been widely used as a plasticizer,
and is present in numerous commercial and household
products. The primary exposure route for humans is
through ingestion of food and drink, as BPA leaches
from plastic containers [49]. PCB3 is a persistent organic
pollutant found in old electronic equipment, paints,
plastics, glues and pesticides. Humans can be exposed to
PCB3 through air, water or soil since the degradation
rate in the environment is slow. Both chemicals can
elicit biological effects in mammals that could pose po-
tential health risks [3, 4, 6, 50]. However, it is an open
question whether the observed effects are due to the
parent chemical or the metabolic derivatives.

BPA transformations
PROXIMAL identified a total of 17 molecular substruc-
tures in BPA (Fig. 3a). Due to the symmetries present in
the molecule, only seven of these substructures are
unique (Fig. 3b). All seven of these unique substructures
have matching keys in the look-up tables generated
using the Phase I and II reaction data from DrugBank
and KEGG. Figure 4 shows only the predicted trans-
formation products corresponding to the unique mo-
lecular structures that are unrelated to any others by
symmetry. Five of the predicted derivatives (5-hydroxy
BPA, BPA glucuronide, BPA sulfate, epoxide BPA, and
bisphenol-o-quinone) have been experimentally verified
in published reports.
Four of the seven predicted BPA derivatives result

from modifications of the reaction center at atom 1
(first molecular substructure listed in Fig. 3b). This sub-
structure consists of a reaction center in the aromatic
ring (atom type C8x) and its neighbors (atom types C8x

Table 1 Abundance and activity values for CYP subfamilies after
normalization

CYP Abundance Activity

Average min max Average min max

1A2 0.0895 0.0089 0.1232 0.0414 0.0000 0.0773

2A6 0.1245 0.0906 0.1888 0.1393 0.1189 0.1664

2B6 0.0177 0.0000 0.0906 0.0814 0.0450 0.0976

2C8 0.1003 0.0906 0.1232 0.1441 0.0976 0.1664

2C9 0.2226 0.1888 0.2498 0.1198 0.0000 0.1541

2C19 0.0114 0.0000 0.0154 0.0580 0.0000 0.1541

2D6 0.0069 0.0000 0.0154 0.0985 0.0450 0.1664

2E1 0.1898 0.0994 0.2498 0.1669 0.1389 0.2018

3A4 0.2374 0.1888 0.2498 0.1506 0.0000 0.2018

Columns 2, 3 and 4 represent the normalized average, minimum and
maximum CYP abundance values estimated from experimental data across
multiple studies [38, 39, 41–43]. Columns 5, 6, and 7 represent the normalized
average, minimum and maximum CYP activities estimated from experimental
data across multiple studies [44–48]
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and C8y). Applying the matching key and value adds a
hydroxyl group to the reaction center (Fig. 4, BPAI

1).
Studies by Schmidt et al. [51] and Jaeg et al. [52] de-
tected the presence of 5-hydroxy BPA in liver micro-
somes and S9 fractions prepared from mice fed BPA.
Applying matching Phase II transformations to the hy-
droxyl group reaction center resulting from the Phase I
modification generates two additional derivatives (Fig. 4,
BPAII

3 and BPAII
4 ). In addition to hydroxylation, another

matching value adds an oxygen atom into the aromatic
ring (Fig. 4, BPAI

3). The resulting arene epoxide is es-
sentially identical to a previously reported BPA deriva-
tive [51], except for the position of the epoxide group.
Another molecular substructure recognized as a key is

the hydroxyl group (atom number 7) attached to the
aromatic ring (5th molecular substructure listed in
Fig. 3b). This key has one value in the Phase I look-up
table. The modification specified by this value is to
change the hydroxyl group into a carbonyl group (Fig. 4
BPAI

2). The resulting derivative is similar to a previously
detected quinol product [53], only differing by a missing
hydroxyl group on the ipso carbon. Applying Phase II
transformations directly on the hydroxyl group generates
two conjugation products, BPA glucuronide and sulfate
(Fig. 4, BPAII

1 and BPAII
2 ). Several studies have shown

that BPA extensively metabolizes into BPA glucuronide
and BPA sulfate in humans, rats, and mice [54–57].
After identifying the possible transformation products,

we rank each predicted metabolite by computing a score
that reflects the number of different enzymes that can

carry out the predicted transformation as well as pub-
lished data on the activity and abundance of these en-
zymes. As published data were more extensive for
CYP enzymes compared to conjugation enzymes, we
restricted the analysis to ranking only the Phase I
products. The enzyme activity and abundance values
used for this analysis are shown in Table 1. The min
and max values represent the minimum and max-
imum of each row of the activity or abundance
matrix obtained after the normalization iteration was
completed. These values illustrate the possible range
of normalized CYP activities/abundances, for each
CYP, reported across different studies. The scores and
rankings for the Phase I derivatives of BPA are shown
in Table 2. The first and second columns of the table
show the names of the derivatives using the nomen-
clature from Fig. 4 and the CYP enzyme families re-
sponsible for the transformation. We demonstrate the
score calculation with an example. The transformation
to 5-hydroxy BPA (BPAI

1) can be catalyzed by any
one of four CYP enzymes, namely 1A1, 1A2, 1B1,
and 3A4. The average scores for the enzyme activity
of 1A2 and 3A4 are 0.0414 and 0.1506, respectively
(Table 1). Their corresponding enzyme abundance
scores are 0.0895 and 0.2374. We calculated the score
for BPAI

1 as (0.0414×0.0895 + 0.1506×0.2374) = 0.0395.
We did not include CYP 1A1 and 1B1 in the calcula-
tion since data for these enzymes were unavailable.
The scores in Table 2 indicate that hydroxylated BPA
is likely the dominant derivative with respect to the

a

b Atom
no.

Reaction 
center

Adjacent
neighbor

Distant
neighbors

Adjacent
neighbor

Distant
neighbors

Adjacent
neighbor

Distant
neighbors

Adjacent
neighbor

Distant
neighbors

1 C8x C8x C8x, C8y C8y C8x, C8x,
O1a

2 C8y C8x C8x, C8y C8x C8x, C8y O1a C8y

4 C8x C8x C8x, C8y C8y C1d, C8x,
C8x

5 C8y C1d C1a, C1a, 
C8y, C8y

7 O1a C8y C8x, C8y, 
O1a

8 C1d C1a C1d C1a C1d C8y C1d, 
C8x, C8x

C8y C1d, C8x, 
C8x

10 C1a C1a C1a, C8y, 
C8y

7 3

2

1
6

5

4

8

1110

9
16

15

14

1713
12

Fig. 3 a Representation of BPA in KEGG atom type format. Each atom is represented by a number, which corresponds to the atom order in the
.mol file (downloaded from KEGG), and its KEGG atom type. b Unique BPA atoms and their adjacent and distant neighbors are listed. Each atom
of BPA is considered a reaction center, which can have up to four adjacent neighbors
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rate of formation via CYP enzymes. This ranking is
consistent with a study by Schmidt et al. [51], which
found that hydroxylated forms of BPA were the most
abundant in liver microsomes. However, it is import-
ant to note that the abundance of a biotransformation

product depends not only on its rate of formation, but
also a number of other factors such as the product’s re-
activity and availability of conjugation substrates involved
in further biotransformation. Moreover, whether a metab-
olite is detected or not also depends on the sensitivity of
the analytical method with respect to the chemical. In this
light, the enzyme-based ranking should be interpreted as
an estimate of one factor that influences the relative abun-
dance of a biotransformation product.
Nakamura et al. [53] reported observing hydroxycu-

myl alcohol (HCA) and isopropenylphenol (IPP) as
the degradation products from BPA in both humans
and mice. These two metabolites are produced
through C-C bond scission via ipso-substitution [53].
However, PROXIMAL did not find HCA and IPP as
derivatives of BPA. This is because PROXIMAL relies
heavily on the transformations available in the data-
base; therefore incompleteness of the databases dir-
ectly affects its performance.

BPA

BPAI
(2) *

BPAII
(4) BPAII

(3)

BPAII
(2) †

BPAI
(1) †

BPAII
(1) †BPAI

(3) *

Fig. 4 Predicted biotransformation products for BPA. The solid and dashed lines represent biotransformation through Phase I and Phase II,
respectively. The symbol † indicates that the exact predicted compound has been verified by experimental data, whereas the symbol * indicates
the predicted compound is similar to but not exactly the same as the structure reported in literature. The numeric subscripts identify the
metabolites in the text

Table 2 Score and ranking for the predicted products of Phase
I biotransformation of BPA

Metabolites CYPs Score Rank Reference

BPAI1 1A1ˣ, 1A2, 1B1ˣ, 3A4 0.0395 1 [51, 52]

BPAI2 1A2, 2D6, 2E1 0.0361 2 [53]*

BPAI3 2E1 0.0317 3 [51]*

The first column shows the predicted compounds resulting from Phase I
biotransformation. The notation is same as in Fig. 4. The second column
indicates the CYP families responsible for the biotransformations. The
superscript ˣ is added to enzymes for which activity/abundance data in human
liver samples were unavailable, and the enzymes were thus not included in
the score calculation. The 3rd and 4th columns show the calculated scores
and rank. The last column lists the references reporting the predicted
compound. The superscript * indicates that the predicted compound is similar
to but not exactly the same as the reported structure
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PCB3 transformations
The second case study analyzed the modification and
conjugation of PCB3 via Phase I and II reactions.
Figure 5 shows the atom numbers and atom types
for PCB3. PROXIMAL identifies a total of 13 mo-
lecular substructures in PCB3 where only 8 of these
substructures are unique. In total, PROXIMAL pre-
dicts 26 derivatives (Fig. 6).
Four of predicted PCB3 derivatives result from

modifications of the substructure around atom num-
ber 12 (Fig. 5), which consists of a reaction center in
the aromatic ring (atom type C8x) and its neighbors
(atom types C8x and C8x). The derivatives are 4-
hydroxy-PCB3 (Fig. 6, PCBI

2), 3,4-dihydroxy-PCB3
(PCBI

5), epoxide PCB3 (PCBI
6) and cis-3,4-dihydro-3,4-

dihydroxy-PCB3 (PCBI
8). Each of these derivatives can

be further transformed by applying matching conjuga-
tion steps identified from the Phase II look-up table.
The hydroxyl group reaction center added via Phase I
modification in 4-hydroxy-PCB3 (Fig. 6, PCBI

2) gener-
ates 4-PCB3-sulfate (PCBII

3 ) and 4-PCB3-glucuronide
(PCBII

4 ). Phase II derivatives of 3,4-diOH-PCB3 (PCBI
5)

include its glucuronated (PCBII
9 ) and methylated con-

jugates (PCBII
8 ). The epoxide group on the non-

chlorinated aromatic ring of PCB3 (PCBI
6) can be re-

duced and conjugated through Phase II enzymes to
form PCB3 glutathione (Fig. 6, PCBII

10 and PCBII
11).

Applying a Phase II transformation to cis-3,4-dihydro-
3,4-dihydroxy-PCB3 (Fig. 6, PCBI

8) generates a glucur-
onic acid conjugate.
Another major reaction center is one of the aro-

matic ring carbons (atom number 9). Applying Phase
I modifications on this substructure generates an ar-
ene oxide PCB3 (PCBI

1) and 3-hydroxy-PCB3 (Fig. 6
PCBI

4). Like 4-hydroxy-PCB3 (PCBI
2), 3-hydroxy-PCB3

can be further conjugated with a sulfate (PCBII
6 ) or

glucuronide group (PCBII
7 ). Similarly, the arene oxide

product (PCBI
1) can also be conjugated with glutathi-

one (PCBII
1 and PCBII

2 ) through Phase II enzymes.
The third Phase I reaction center is located at atom

number 7. Modification of the corresponding substructure
again produces a hydroxylated PCB3 (PCBI7) as well as 3,4-

dichlorobiphenyl (PCBI9). Phase II transformation of the
hydroxylated derivative can generate a methylated (PCBII12)
or mono-glucuronide conjugate (PCBII13). The remaining
Phase I transformation products, an epoxide (PCBI

3) and
2-hydroxy-PCB3 (PCBI

10), derive from modifications of
reaction centers at atom numbers 3 and 5. The corre-
sponding Phase II derivatives include a glutathione (PCBII5),
glucuronide (PCBII15) and methylated conjugate (PCBII16).
In corroborating our predictions on PCB transforma-

tions with published reports, we expanded the literature
search to include studies involving rodents, as there have
been only few studies involving primary human liver
cells. A recent study by Dhakal et al. [8] examined the
metabolism and toxicity of PCB3 in male rats by analyz-
ing urine samples collected following a bolus intra-
peritoneal injection of the chemical. Using MS analysis,
the authors identified several Phase I and Phase II prod-
ucts, including 2-, 3-, 4-hydroxy-PCB3, and their corre-
sponding sulfate and glucuronide conjugates. With the
exception of 2-PCB3-sulfate, these derivatives were also
identified by our prediction method (Fig. 6). The same
study [8] also reported the amount of 4-hydroxy-PCB3
(Fig. 6, PCBI

2) in the urine samples was approximately 10
times greater than 3-hydroxy PCB3 (PCBI4). A separate
study analyzing the distribution of hydroxylated PCB3
derivatives in rat liver microsomes found that the most
abundant forms were, in decreasing order, 4-OH-PCB3,
3-OH-PCB3, and 2-OH-PCB3 [58]. This is in good
agreement with the relative ranking of these three deriv-
atives computed from enzyme activity and abundance
data (Table 3).
Additional derivatives predicted by PROXIMAL and

experimentally confirmed in the study by Dhakal et al.
include dihydrodiol (Fig. 6, PCBI8), dihydrodiol glucu-
ronide (PCBII

14) and 3,4-dihydroxy-PCB3 (PCBI
5). Dhakal

et al. also reported detecting molecules with mass sig-
natures that correspond to the arene epoxide derivatives
(Fig. 6, PCBI1 and PCBI6) and their glutathione conjugates
(PCBII1 , PCBII2 , PCBII10 and PCBII11) predicted by PROX-
IMAL; however, these compounds could not be confirmed
due to lack of pure chemical standards. Dhakal et al. [8]
identified PCB3-mercapturic acid as a derivative product
formed via degradation of PCB3-glutathione. While
PROXIMAL correctly generated the glutathione conjugate
(Fig. 6, PCBII

9 ) as a transformation product, it was unable
to predict further degradation of PCBII9 into PCB3-
mercapturic acid, as KEGG or DrugBank did not include
a CYP substrate with this type of reaction center.
In a separate study involving rat livers, Lehmann et

al. [59] showed that PCB3 can be transformed into
several active electrophiles, including arene oxides,
which may bind to DNA, RNA and/or hemoglobin to
cause cellular damage and increase the frequency of
mutations. Transformation of PCB3 into arene oxide

C8x
33

C8x
77

C8y 1111

C8x
88

C8x
44

C8y
11

C8x
99

C8x
55

C8y 22

C8x
66

C8x
1010

C8x 1212X1313

Fig. 5 PCB3 representation in KEGG atom type format. Each atom is
represented by a number, which corresponds to the atom order in
the .mol file (from KEGG), and its KEGG atom type
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derivatives has also been observed in a study by
McLean et al. [58] involving rat liver microsomes.
Altogether, we were able to confirm 17 out of the 26
predicted PCB3 derivatives based on experimental
data published in other studies.

Comparing PROXIMAL with Other Tools for Metabolite
Biotransformation
We provide two comparative studies of PROXIMAL with
two tools, each presenting a different method for deriving
biotransformation rules. The first tool, METEOR [20–22],

PCB3

PCBI
(1) †

PCBI
(2) †

PCBI
(3)

PCBI
(4) †

PCBI
(5) †

PCBI
(6) †

PCBI
(7)

PCBI
(8) †

PCBI
(9)

PCBI
(10) †

PCBII
(1) †

PCBII
(2) †

PCBII
(3) †

PCBII
(4) †

PCBII
(5)

PCBII
(6) †

PCBII
(7) †

PCBII
(8)

PCBII
(9)

PCBII
(10) †

PCBII
(11) †

PCBII
(12)

PCBII
(13)

PCBII
(14) †

PCBII
(15) †

PCB3II
(16)

Fig. 6 Predicted biotransformation products for PCB3. The solid and dashed lines represent the biotransformation reactions mediated by Phase I
and Phase II enzymes, respectively. The symbol † indicates that the exact compound has been experimentally observed
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utilizes a collection of knowledge-based biotransform-
ation rules. The second tool, Metaprint2D-react [25],
utilizes a data mining approach to characterize a spe-
cific atom environment followed by extensive manual
curation of the data to organize the observed reactions
into various categories (e.g., hydroxylation, expoxida-
tion, methoxylation, etc.). Metaprint2D-react was
selected for comparison, as it is most similar to PROX-
IMAL; although it differs from our method in that it re-
quires manual curation to generate the transformation
rules.
To compare PROXIMAL against METEOR, we applied

PROXIMAL to the test cases reported in Button et al. [22].
The four test cases are Venlafaxine (antidepressant drug),
Mianserin (antidepressant drug), Sulforidazine (anti-
psychotic drug) and Naltrexone (opioid antagonist). We
compared the N-dealkylation products of these metabolites
predicted by PROXIMAL, METEOR and reported in lit-
erature. Table 4 shows a summary of this comparison.
As evident from the table, for the Venlafaxine case,

PROXIMAL predicts two metabolites where one or both
methyl group connected to the nitrogen is lost. Re-
applying PROXIMAL on these derivatives also removes
the methyl group from the ether group. Both of these
derivatives are reported in mice and monkeys [60]. In
contrast, METEOR only predicts the removal of one me-
thyl group from the nitrogen atom. It does not predict
removal of two methyl group from the nitrogen or re-
moval of the methyl group from the ether group.
In the case of Mianserine, PROXIMAL predicts the

formation of an N-desmethyl analog, similar to the re-
sult of METEOR. However, re-applying PROXIMAL to
this derivative generates a product with an added hy-
droxyl group. This metabolite has been reported as a by-
product of Mianserine in mice, rats, guine pigs, rabbits
and humans [61].

In the case of Sulforidazine, PROXIMAL predicts the
loss of an N-methyl group after applying human CYP
enzymes to Sulforidazine. METEOR predicts the same
metabolite. The removal of methyl group has been re-
ported in literature as well [62], however, none of
PROXIMAL and METEOR predicts the oxidation of sul-
fate which has been reported in rats [62].
For the last test case, naltrexonium, PROXIMAL pre-

dicts two metabolites, 7,8-dihydro-14-hydroxynormorphi-
none and 7,8-dihydro-14-hydroxynormorphine, generated
by the cleavage of exocyclic nitrogen carbon bond and the
loss of cyclopropylmethyl. Both of these metabolites are
reported in literature [63] as derivatives of naltrexonium.
METEOR predicts one of these metabolites.
To compare PROXIMAL with MetaPrint2D-react,

we applied MetaPrint2D-react to the two cases BPA
and PCB3. We utilized the suggested three different
levels for fingerprint matching: Loose (matching
exactly at 2 levels), Default (matching exactly at 3
levels), and Strict (matching exactly at 4 levels). In
the case of BPA, MetaPrint2D-react generates 22
unique predictions when considering all levels, of
which ten are uniquely generated at level 2, none
uniquely generated at level 3, and three generated
uniquely at level 4. PROXIMAL generates all level 4
predictions generated by MetaPrint2D-react, and two
of the predictions that are generated using levels 2, 3,
and 4. Metaprint2D-react does not predict BPAII

3 in
Fig. 4, which PRIXMAL predicts as the product of
Phase II biotransformation. In the case of PCB3,
MetaPrint2D-react generates over 100 predictions
using the Loose prediction level, and over 32 predic-
tions for the Strict prediction level. At level 2,
MetaPrint2D-react identifies all derivatives predicted
by PROXIMAL with the exception of PCBII

13 and
PCBII

15 in Fig. 6.

Table 3 Score and ranking for the predicted products of Phase I biotransformation of PCB3

Metabolites CYPs Score Rank Literature

PCBI1 1A1ˣ, 1B1ˣ, 1A2, 2A6, 2B6, 2C9, 2C19, 2E1, 3A4 0.1172 1 [8, 58, 59]

PCBI2 1B1ˣ, 2B6, 2C8, 2C9, 2C18ˣ, 2C19, 2D6, 2E1, 3A4, 3A5ˣ 0.1113 2 [8, 58]

PCBI3 1A1ˣ, 1B1ˣ, 2C8, 2C9, 2E1, 3A4 0.1086 3

PCBI4 2B6, 3A4 0.0372 4 [8, 58]

PCBI5 3A4 0.0358 5 [8]

PCBI6 2E1 0.0317 6 [8, 58, 59]

PCBI7 2E1 0.0317 7

PCBI8 2C9, 2C19 0.0273 8 [8]

PCBI9 1A2 0.0037 9

PCBI10 2D6 0.0007 10 [8, 58]

The first column shows the predicted compounds resulting from Phase I biotransformation. The notation is the same as in Fig. 5. The second column indicates the
CYP families responsible for the biotransformations. The superscript ˣ is added to enzymes for which activity/abundance data in human liver samples were
unavailable, and the enzymes were thus not included in the score calculation. The 3rd and 4th columns show the calculated scores and rank. The last column lists
the references reporting the predicted compound
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Table 4 Comparing PROXIMAL and METEOR

Test metabolite PROXIMAL predictions METEOR predictions [22] Observed metabolites

Venlafaxine

[60]

Mianserine

[61]

Sulforidazine

[62]

Naltrexone

[63]

The first column shows the test metabolite. The second column shows predictions generated by PROXIMAL. The third column shows predictions generated by METEOR.
The final column shows metabolites reported in the literature
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Discussion
In this work, we present a computational method,
termed PROXIMAL, for predicting the transformation
of xenobiotic chemicals by human CYP oxidoreductases
and transferases. We evaluated the predictive power of
the method by investigating case studies involving two
prevalent environmental contaminants, BPA and PCB3,
which are increasingly associated with developmental
disorders and metabolic diseases. Overall, we found
strong corroborating evidences in the literature for the
predicted transformations of these two chemicals. In the
case of BPA, we could confirm five of the seven pre-
dicted derivatives. In the case of PCB3, we confirmed 17
out of the 26 predictive derivatives, although we should
note that the literature comparisons were based on stud-
ies that used animal models. Additional studies on PCB3
transformations in humans would be needed to further
validate the predictions.
PROXIMAL uses information on the chemical neigh-

borhood (atom types of two-level nearest neighbors)
around the reaction center in constructing look-up ta-
bles as well as predicting the transformations. This con-
fers a higher degree of specificity compared to generic
rule based methods. On the other hand, this also limits
the scope of products that can be predicted, as the pre-
dicted transformation will be similar to the reactions cat-
aloged in the databases used to build the look-up tables.
One potential consequence is that PROXIMAL could
under-predict the true scope of products, resulting in
more false negatives compared to a generic rule based
method. For example, a comparison of PROXIMAL’s
and MetaPrint2D’s outputs for BPA and PCB3 showed
that PROXIMAL generates a significantly smaller num-
ber of predictions. Whether the use of specific rules
leading to fewer predictions necessarily implies more
false negatives is unclear, however, as rules that are too
generic could over-predict the true scope of products
and increase the risk of false positives. Of course, in-
creasing the specificity does not abrogate the problem of
false positives. Even with the specificity afforded by
matching two-level nearest neighbors, PROXIMAL gen-
erated a large number of predictions for PCB3. For this
reason, PROXIMAL includes an added ranking step that
utilizes experimental (CYP abundance and activity) data
drawn from outside of the databases used to build the
look-up tables. The use of such orthogonal data is a dis-
tinctive feature, and differentiates this ranking method
from other methods that rely on information contained
in the databases used to develop the transformation
rules (e.g., frequency of a particular transformation
among a set of reactions within a database). The goal of
the ranking is to estimate the likelihood of forming a
particular predicted product relative to the other pre-
dicted products. Given a large number of possible

products, it should be useful to guide the experimental
validation by differentiating between predictions that are
more or less likely to form via CYP reactions. Clearly,
this ranking system cannot provide an estimate of the
absolute probability a predicted product is indeed
present in vivo, as this is influenced by other factors
such as product reactivity, concentration of the source
chemical, etc. Experimental data is necessary to train the
ranking system and determine a threshold (cut-off ) value
that can be used as a reliable indicator of whether a pre-
dicted product will actually form at all. While PROX-
IMAL distinguishes itself from other tools in its level of
specificity and in its ranking system, the comparison of
PROXIMAL with other methods was based on a small
set of experimentally verified test cases. The community
would benefit tremendously from establishing a set of
benchmarks that can be used to evaluate biotransform-
ation prediction algorithms. Additionally, it is important
to create a standard way of reporting the results.
It is important to point out that the lack of literature

evidence does not necessarily imply that a prediction is
false. It is possible that certain metabolic transforma-
tions of BPA and PCB3 have not yet been observed due
to the instability of the products or some other difficulty
in detecting these derivatives. Another reason could be
that these products were outside the scope of a targeted
analysis. One way to validate computational predictions
is to perform untargeted metabolomics studies, for ex-
ample using high-resolution MS. However, assigning a
chemical identity to every ion detected in a full scan MS
experiment remains a difficult task. In this regard,
pairing experimental investigation of xenobiotic trans-
formation with computational exploration would be ex-
tremely useful. Previously, several groups have utilized
computational predictions of metabolite biotransform-
ation to facilitate compound identification from MS data
[10, 12, 13]. In these studies, the predicted chemical
structures were used to calculate the expected mass sig-
natures (accurate masses), which were then queried
against experimentally obtained MS spectra. In addition
to streamlining the data processing, computational pre-
dictions could also help avoid false negatives that result
from relying on metabolite databases that may contain
only a small, well-known subset of xenobiotic transform-
ation products. For example, Ridder et al. [11] used
computational predictions to generate an in silico library
of biotransformation products resulting from human
metabolism of polyphenols in tea, and found that only
23 % of the predicted products had entries in the Pub-
chem database. The predicted chemical structures can
also be used to calculate isotope patterns and MS/MS
fragmentation patterns, which are crucial in confirming
the identity of detected ions, particularly when high-
purity standards are unavailable for the chemicals of
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interest. For example, Pelander et al. utilized a predic-
tion tool for biotransformation in conjunction with a
prediction tool for ion fragmentation (ACD/MS Frag-
menter) to discriminate between isobaric precursor ions
of quetiapine products in human urine [10]. Finally, hav-
ing a priori knowledge of the expected derivatives can
guide the experimental workflow, including the choice
of solvent for sample extraction and the method for
chromatographic separation.
The present study focused on environmental pollut-

ants to illustrate and evaluate our prediction method. In
addition to organic pollutants, PROXIMAL could also
be used for predicting transformations of other types of
chemicals that contain substructures recognizable by
Phase I and Phase II enzymes. Examples include drugs
as well as various phytochemicals, e.g. phenolic com-
pounds. Drug toxicity often arises from metabolic activa-
tion; i.e. the derivatives of a drug can be more toxic than
the drug [64]. In this light, PROXIMAL could be used in
conjunction with toxicity prediction software such as
ADMET Predictor [65] and Derek Nexus [66] to assess
the toxic potential of a drug compound’s possible deriva-
tives that could form endogenously following the drug’s
administration. Prospectively, this type of analysis could
become part of an in silico screen designed to ultimately
reduce the chance of drug-induced liver injury, which is
a leading concern during drug development and testing
[67, 68].
In addition to predicting the chemical structures of

potential biotransformation products, PROXIMAL also
provides a relative ranking of these products in terms of
their likely occurrence. The ability to predict quantita-
tively dominant derivatives for a given chemical could
complement experimental approaches, for example by
informing the selection of metabolites for targeted ana-
lysis. For the two chemicals examined in our study, the
predicted products with the highest ranking were also
the derivatives that were frequently reported in the lit-
erature. This suggests that our ranking scheme could be
biologically relevant. The caveat here is that the litera-
ture reports could reflect not only the prevalence of
these derivatives, but also the level of interest in these
compounds by the researchers. Clearly, a more thorough
validation, for example using untargeted analysis, will be
needed to evaluate the accuracy of the rankings.
An implicit assumption of our ranking scheme is that

the likelihood of forming a particular derivative depends
primarily on the kinetics of the biotransformation. We
further assumed that the kinetics depends on the total
abundance and activity of the enzymes involved. For ex-
ample, we predicted that the hydroxylated forms of BPA
are more likely to occur compared to other derivative
forms. This result reflects the relatively large number
(hence total abundance and activity) of CYP enzymes

that can mediate the hydroxylation reaction. This predic-
tion is consistent with experimental measurements on mi-
crosomes collected from pooled human liver samples [51].
Our ranking scheme does not take into account

whether a particular transformation reaction is energet-
ically more favorable, i.e. yields a more negative change
in free energy, than other possible transformation reac-
tions. Consequently, derivatives that are formed by the
same set of enzymes will have the same rank. In con-
trast, derivatives formed by different sets of enzymes,
including structural isomers, will have different rank.
For example, our ranking scheme predicted that differ-
ent hydroxyl isomers of PCB3 would be formed with
different likelihoods. Specifically, we predicted that 4-
OH-PCB3 is the most abundant derivative, followed by
3-OH-PCB3 and 2-OH-PCB3, in order. Interestingly, this
prediction is consistent with experimental data [8, 58]. As
shown in Table 3, CYP1B1 can catalyze the formation of
4-OH-PCB3 (PCBI2) but not the formation of 3-OH-PCB3
(PCBI4), whereas CYP3A4 can catalyze the formation of
both isoforms. These differences between the two CYP
enzymes reflect the reaction pattern information in the
lookup tables, and imply that the extent of substrate flexi-
bility varies from one CYP enzymes to another. It has
been shown that CYP3A4 exhibits a large degree of flexi-
bility, and can add a hydroxyl group to several different
carbon atoms in a substrate molecule [69].
A limitation of our ranking method is that it does not

include Phase II products. This was primarily due to in-
sufficient information regarding Phase II enzymes. After
an extensive literature search, we found only one study
[48] that reported the specific activities of all six conju-
gation enzymes considered in the present work. As data
become available, a ranking analysis could be performed
based on relative enzyme activity and abundance similar
to the analysis of Phase I enzymes. An additional factor
to consider is that formation of the conjugation products
depends on Phase I modification, as the atoms intro-
duced in this step form the reaction centers for Phase II
conjugation. As such, Phase I rankings may also need to
be considered in ranking conjugation products. Yet an-
other factor to consider is the availability of cofactors
and conjugation substrates. For example, glutathione is a
major antioxidant in the liver, and can become a limiting
reactant under oxidative stress conditions.
Lastly, our ranking scheme did not include regulatory

effects such as induction or inhibition of CYPs by the
xenobiotic chemicals. It is well known that BPA can se-
lectively induce or inhibit metabolic activity of certain
CYPs. For example, Cannon et al. [14] reported on both
inhibition and induction of BPA on CYP activity in hu-
man liver S9 fractions. One way to improve our ranking
scheme is to include enzyme regulation to introduce an
activity adjustment factor. For a given xenobiotic of
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interest, this factor would adjust the baseline CYP ac-
tivities used in the present study to account for the
inhibitory or inducing effects of the xenobiotic and
its predicted derivatives. Clearly, this approach would
require a substantial amount of additional information
on the regulatory effects of xenobiotic chemicals. For
the present study, we did not find sufficient data to
confidently determine the inhibitory or inducing ef-
fects of BPA or PCB3 on the relevant CYP enzymes.
As is the case for predicting the structural modifica-
tions resulting from biotransformation, a purely ex-
perimental approach will likely be intractable to
determine the regulatory effects of xenobiotic chemi-
cals on CYP enzymes, which may be mediated by
ligand-activated nuclear receptors [70] controlling the
expression of the enzymes. In this regard, computa-
tional approaches are warranted, for example to iden-
tify patterns in the chemical structures of known
ligands for the regulatory molecules.

Conclusions
We present in this paper a method to predict xeno-
biotic metabolism. To demonstrate the method, we
applied the method to two case studies of endocrine
disrupting environmental chemicals, and successfully
predicted biotransformation products reported in the
literature. We found experimental evidence for 71
and 65 % of the predicted BPA and PCB3 metabo-
lites, respectively. Our method uses known chemical
modifications found in reaction databases such as
DrugBank and KEGG in conjunction with SIMCOMP
to predict xenobiotic transformations for a given com-
pound of interest. A novel aspect is the ability to rank the
predicted metabolites based on available information re-
garding the activity and abundance of CYP enzymes.
While the scope of this ranking was limited, we
found good agreement between the predictions and
findings reported in the published literature. In the
discussion, we identify several limitations of the
present prediction method that reflect the relative
scarcity of information on Phase II enzymes and the
regulation of xenobiotic metabolizing enzymes. Fur-
ther studies, preferably in human cells, are warranted
to further improve the predictive power and physio-
logical relevance of PROXIMAL.
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