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Henan 454000, China norm inequalities for T and T* are established. As applications, weighted strong type

estimates for vector-valued commutators associated with T and T* are deduced
respectively.

1 Introduction and main results
Let T be a multilinear operator initially defined on the m-fold product of Schwartz spaces
and taking values in the space of tempered distributions,

T:S(R") x -+ x S(R") - S'(R").

Following [1], we say that T is a multilinear Calderén-Zygmund operator if, for some 1 <

g; < 00, it extends to a bounded multilinear operator from L% x --- x L9 to L9, where
é = q% +eoe 4 qu’ and if there exists a function K, defined off the diagonalx =y, =--- =y,

in (R”)"*1, satisfying

T(/?)(x)=T(ﬁ,m,fm)(x)=/ K@y ymh01) SO A1+ A, 1.1)

(™)
forall x ¢ (), suppfj;
A
’K()’o,ylym,)/m)’ = m H (12)
(X k=0 vk = yul)mm
and
, Aly; -yl
|K(y0,y1,...,y,»,...,ym)—K(yo,yl,...,y}-,...,y,,,)|5 / (1.3)

Qo vk = yul)rne

for some € > 0 and all 0 < j < m, whenever 2|y; - y]f| < maXo<k<m [¥j — ¥x|. Such kernels

are called m-linear Calderén-Zygmund kernels, and the collection of such functions is
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denoted by m-CZK (A, €) in [1]. As in [2], we define the maximal multilinear operator by
T*(F)(x) = ssupl Ts(s s fon) @),
>0

where Tj is the smooth truncation of T given by

To(f)(x) = f K@, y1, - ymdh01) -+ fon ) dyr -+ dyp.

=y 24+ |x=ym |2 >82

The vector-valued multilinear Calderén-Zygmund operator T, and vector-valued max-

imal multilinear operator Tq* associated with T are defined and studied in [3, 4].

Ty(N®) = [Ty o fid @), = [T fin) @)

00 1/q
(Z|T(ﬁk,...,fmk)(x)|q> ,

k=1

T30@ = TG fi) @, = [T oo )@
. 1/q
:<Z|T*(f1k,...,fmk)(x)|q) ,
k=1

where f; = {fix}32, fori=1,...,m.

Theorem A [3] Assume that T is a multilinear Calderén-Zygmund operator. Let 1 <
Pl Pm <00, L<qi,....,qm <00 and 1/m < p,q < 00 such that }7 = pil oot ﬁ, é =

qil Fooot qlm.lf(wfl,...,wf,{”) € (Ap,...,Ap,), then there exists a constant C > 0 such that

“ Tq(?)”w(w{...wf’n) = CH” Ifilg; HLPi(wff)'
j=1

Theorem B [4] Assume that T is a multilinear Calderén-Zygmund operator. Let 1 <

PlreerPm <00, 1< q1,...,qm < 00 and 0 < p,q < o0 such that 1% = pil ot i, clz =
RIS
q1 qm
(i) Ifl1<py,...,pm<occandweA, N---NA, ,then there exists a constant C > 0 such
p p P1 Pm
that

174Dl = CT T 210

j-1

(ii) If atleast one pj =1 and w € Ay, then there exists a constant C > 0 such that

m
IZaP) ey = CT TN 1o
j=1

It is worth noting that similar results hold for 7* in Theorems A and B.
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We will replace (1.3) by a weaker regularity condition on the kernel K. Assume that
operators A, are associated with kernels a,(x, y) in the sense that

Af@ = [ atsfo)dy

for every function f € LP(R"), 1 < p < 00, and a,(x, y) satisfy the following size condition:

|ac(x,9)| < he(x,y) = t"”t(@), (1.4)

where s is a positive fixed constant and / is a positive, bounded, decreasing function sat-
isfying that for some 1 > 0,

lim 7*"h(r) = 0. (15)

r—>o0

The jth transpose T*/ of T is defined via

(T oo 8) = (T fits @it oo fon)of])

for all f1,...,fn, g in S(R”). It is easy to check that the kernel K*/ of T*/ is related to the
kernel K of T via the identity

I(*Yj(x;yli oo ,yj—l,yj,)’jﬂ, e xym) = I((yj1y1) oo 1yj—11x;y/+1) oo ,J’m)
To maintain uniform notation, we may occasionally denote T = T*° and K = K*°,

Assumption (HO) We always assume that there exist some 1 <gy,...,q, < 00 and some

O<q<oowith%1=%+~~~+qimsuchthatboth T* and T map L% x --- x L7 to L7,

Assumption (H1) Assume that there exist operators {Agi)}t>0 with kernels ati) (%,y) that
satisfy the conditions (1.4) and (1.5) with constants s and 7 for each i = 1,...,m and that
for everyj=0,1,2,...,m, there exists kernel Kf’]’(l)(x,yl, ...»¥m) such that

(T*J(fl,...,Ag%,,..,fm),g)
:/ /( ) ](:’f:(i)(x;yly...,ym)fl(yl)...fm(ym)g(x)dyl...dymdx’

forallfi,...,f,, in S(R”) with (), suppfk Nsuppg = ¢. Also assume that there exist a non-
negative function ¢ € C(R) with supp¢ € [-1,1] and a constant € > 0 so that for every
j€{0,1,...,m}and everyi € {1,2,...,m},all £ >0 and all x, 51, ...,y, € R", we have

K@ 51, 9m) = K@y, 9|

A “ Iyi—ykl)
<
T (lx=pul e =yl Z ¢( tis

k=1k#i

Ate/s

+ b
(I =yl + -« + | =y |)rmse

whenever 2t < |x — y;].
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Kernels K that satisfy the size estimate (1.2) and Assumption (H1) with parameters m,
A, s, 1, € are called generalized Calderén-Zygmund kernels, and their collection is denoted
by m-GCZK(A,s,n, ). We say that T is of class m-GCZO(A, s, n, ¢) if T has an associated
kernel K in m-GCZK(A,s,n,¢€).

Assumption (H2) Assume that there exist operators {A,};.o with kernels a,(x, y) that sat-
isfy conditions (1.4) and (1.5) with constants s and 7, and there exist kernels Kt(o)(x, Y1,
..»¥m) such that the representation is valid

I(t(o)(x,yl,...,ym)zf K(z,y1,.. ., ym)ac(x,z) dz
RVI

and that there exist a non-negative function ¢ € C(R) and supp¢ C [-1,1] and a positive
constant ¢ such that

K915 Y) = K (69100 Y|

A - % — il ) Atels
< ¢ + (1.6)
Qi 1 =y ) kX:I: ( tls (D ey I =y ymm+e

k%

for some A > 0, whenever 2t'% < max;<j<, |x — y;|. Moreover, assume that for all
x;ylx"'yym € Rn;

A

©
K @015 ym)| < (o0 |x =y’

whenever 2¢¢ < minj<j<,, |x - y;|, and for all x, 8", y1,..., ¥, € R",

Ats/s

K@y 9m) = KO (305 ym) | < :
| (x N Yy ) t (x 1 J )| (Zk:1|x_yk|)mn+s

whenever 26 < min;<j<,, [x — y;| and 2|x — x| < £15.

The commutators associated with 7" and T™* are defined respectively by

T (NG = [bu, [bas.. [brons (6 TV, - 1,], (D)

/}Rn) ]‘[ (b;(6) = ;) K (6,1, Y ]_[f(yl)dy,

and

T30 = sup| b, [ba,.. [0 o Tl -+ L], D)

l

/| -t l=yml? 521—[ (5@ = b)) K. ,ym)l_[f(y,)dy
=1 |4+ [ x=y | <>

j=1 i=1

= sup
>0

Here and subsequently, we often write ¥ = (y1,...,¥,) and dy = dy; - - - dy,,.
For simplicity of notation, we often write f = (f1,...,f,) with f; = {fx}22,. For the se-
quence {fi}z; = {fiks-- - fuklze; of vector functions, the commutators associated with
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vector-valued T, and T} can be defined by
0o 1/q
TnE,q(f)(x) = |Tn2(f)(x)|q = ” T (fis o fon ) () ”zq = <Z|Tné(ﬁ<)(x)|q) ,
k=1

00 1/q
T3, D@ = | T, = 1 T fi) @) = (DT;M)W) :
k

=1

From now on, we always assume that 7 is a multilinear operator in m-GCZO(A4, s, n, €)
and its kernel satisfies Assumption (H2). Recently, if / = m, Peng et al. [5] obtained the
following weighted strong type estimates for Tt;; and T with multiple weights (see Def-
inition 2.1).

Theorem C [5] Let b€ BMO", L = L+ .4 L with 1 <pj<o0,j=1,...,m. Then we
have

(i) There exists a constant C such that

m m
[ T;;(f)”m%) < Cl—[ 161l ato l—[ WSl 27i (aeoy)-
i-1

i=1

(ii) Ifeach w; € Apy» then there exists a constant C such that

m m
| 75510,y = CT T 18:lEMO [ T W22t
i=1 i=1

5 e . . . X
where vy = [ a)f Y. Similar results still hold for Ty, Which extend the results in

[6] significantly.

In this work, we first pursue results parallel to Theorems A and B, then extend Theo-
rem C to a vector-valued version. The main results can be stated as follows.

Theorem 1.1 Let1<py,...,pm <00, 1< qu,...,qm <00 and 1/m < p,q < 0o such thatp% =

1 1 1_1 1 1 m .
R q—l+~~~+q—m.1f(wi7 OO )€ (Ap,s...,Ap,,), then there exists a constant
C > 0 such that

m
1Ze gy = T TG s
j=1

Moreover, similar estimates hold for T*.

Theorem 1.2 Let 1 < py,...,p <00, 1 < q1,...,qm < 00 and 0 < p,q < 00 such that}% =

i+...+L’l:i+...+L‘
p1 pm” q q1 qm
(@) Ifl<pr,...,pm<ocand w e Ay N---NA,p,, then there exists a constant C > 0 such
that

174Dl = CT T 210

Jj=1
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(i) If atleast one pj =1 and w € Ay, then there exists a constant C > 0 such that

m
|ZaD iy = CT TN 1 |1
j=1

Moreover, similar estimates hold for T*.

Theorem 1.3 Let 1/m < p < 00, 1% = 1%1 + et zﬁ with 1< p1,...,pm < 00, 1/m < q < 00,

ya
and qil ot qu = }1 with 1 < qu,...,qm < 00. Suppose that & € A, vy = [ 0! and
b € (BMO)!. Then we have

(i) There then exists a constant C > 0 such that

l m
” an(f)”uf(%) = 1_[ 16l B0 1_[” ij ”LPi(Mw,)‘
j=1 j=1

(ii) If wj € Ap; then there exists a constant C > 0 such that

! m
” th(f)”Ll’(v(;,) = l_[ 151l a0 H” flg ”L’”/'(w])
j=1 j=1

Moreover, similar estimates hold for T*.

Remark 1.4 If /=1 and [ = m, Theorem 1.3 can be seen as the vector-valued extension of
Theorem 4.5 in [6] and Theorem C, respectively.

2 Proofs of Theorem 1.1 and Theorem 1.2

Let us begin with the definition of Hardy-Littlewood maximal operator, that is

M) = s o | 1700

The sharp maximal function is defined by

#t _ _ _ I~ — 8
M) = supmle| / )=l dy~sup / 1) — fol dy

For § > 0, we also need the maximal function Msf = M(|f|° )5 and Maf M(|f] )é.
The new maximal function M can be defined by

M(f) x)—supH|Q|/[f(yﬂ| Vi

For 1 <[ < m, as in [7], a modified maximal function M, is given by

. > L G|
_ —knl = (v, ) - " (v: .
i3 ([ [0l (1 i [, ool

Er k=0
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For exponents py, ..., p,,, we will often write p for the number givenby 1/p =1/p; +--- +
1/pm, and p for the vector p = (p1, ..., pm). Let us recall the definition of A; weights.

Definition 2.1 Let 1 < py,...,p, < 00. Given @ = (wy,...,wm), set vz = [[1 a;f/pi. We say

that o satisfies the A; condition if

1 1
1/’”5"’”(1/1_1,4),;;
sup| — ;' — | o < 00,

Q (|Q| Qll;[ ! 1_[ QI Jo '

i=1

_p;)%

1 .
when p; =1, (fa fQ o, "')? is understood as (infq ;)L

We will use the following lemmas in the proof of Theorem 1.1 and Theorem 1.2.

Lemma 2.2 [3] Let T be an m-linear operator, and let 1 < qi,...,q,, < 00 and % <g< o0
be fixed indices such that é = % oot qu‘ For (of',...,0l") € (Agy, ..., Ay,,), the following

estimate holds:
. m
[T ooty = CT TN g9
j=1

Then, for all indices, 1 < py,...,py < 00 and i < p < 00 satisfy 1% = pil +

+
1< 81,8, <00 and % < § < 00 such that % = i + oo+ i, and all (wfl,...,a)’,;,’”
(Apys..»Ap,,). Then the following inequality holds:

1
pm’
) €

H (;‘T(ﬁk;...,ﬁnk)}s)iHLp(wf. wp <[] (Xk:lﬁm’)g’

m
. pi :
@) j-1 i)

Lemma 2.3 [7] Suppose that for somel < q1,q2,...,qm-1 < 00, ¢ € (1,00) and q € (0, 00)
satisfying é = % +oee t qim, T maps LT x --- x L9 to L1. Let 1 < py,...,pm < 00, }7 =
pil oot i’ o= (w1,...,0n) EAp and p = (p1,...,pm). Then
(i) T* can be extended to a bounded operator from [P} (w;) X - -+ X LP"(w,,) to LP(vg) if
all the exponents p; are strictly greater than 1.
(i) T* can be extended to a bounded operator from L1 (w;) X --- X LP"(w,,) to LP*°(v;)
if some exponents p; equal 1.

Similar results hold for T.

Note that if each w; € Ap;s then H;Z1Ap,- C Ajp and this inclusion is strict (see [8] for
details). This fact together with Lemma 2.3 yields the following weighted estimates.

Lemma 2.4 Consider an m-tuple (o', ...,0}") € (Ap,,..., Ap,), where L < pi,...,pm < 00

and % < p < 00 satisfy }7 = Pil oot Ii. Then there exists a constant C such that

m
70 gy = T8 sy

Jj=1
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and
. m
I7*Oligpy =11 Wil
j=1

Proof of Theorem 1.1 and Theorem 1.2 As a consequence of Lemma 2.2 and Lemma 2.4,
we obtain Theorem 1.1 (see the proof of Corollary 3 in [3]). From [7] we know that for all
1<i< m,]’ =(fi,...,fm) and x € R”, the following two inequalities hold:

M@ = MPY@ < 2[ MA@,

j=1

” Tf”LP(%) =C ZM’G)
=1

LP(vg)

So, we get || Tf”[}?(]}&)) <C| ]_[;ZI M(f)rp(v;)- A similar inequality still holds for T*. The-
orem 1.2 follows by repeating the same steps as in Corollary 3.3 in [4]. In fact, we apply
Theorem 2.1 in [4] to the families

f(T(ﬁ,...,fm),]_[Mf), f(T*(ﬁ,...,fm),HMf,).

j=1 j=1

Holder’s inequality and the normal inequalities for the maximal operator yield the desired

results. O

3 Proof of Theorem 1.3
We begin with some lemmas which will be used in the proof of Theorem 1.3.

Lemma 3.1 [9] Let 0 < p,8 < 0o and let w be a weight in Ax. Then there exists C > 0
(depending upon the A, condition of ®) such that

/ (Myf ) w(x) dx < C / (Mif (%)) w(x) dx 3.1)
Rﬂ Rﬂ
for every function such that the left-hand side is finite.

Lemma3.2 Let0<38<1/ml/m<qg<ooandl/q=1/q+---+1/q,withl<q,...,qmu < 0.
Then there exists a constant C > 0 such that

M; (Tq(;"))(x) = CHM(WW)(’C)
j=1

for any smooth vector function {fk}jﬁl Sforany x e R".

Proof Fix a point x € R” and a cube Q centered at x. Setfj :]'io +]_‘;°°, where]jo :]‘j Xq. Let
f"‘ =" f%m and Q* = (81 +4)Q. It is easy to see

T, -C| < |T,(F) @]+ > |T(*)@ - T(F*)w)

A 5ees0m

qy
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where C =3, |T(f" - -fu")(x)|; and in the last sum each «; = 0 or oo and in each

,,,,,

term there is at least one o; = 00. Since 0 < § < 1/m < 1, it follows that

(%/QHT&Z(}?)(Z)P_ |C|5|dz>l/8
<C(|Q|/}T(}?)(z)_6|2dz)1/s
< (IQl/}T(fO) z)’ dz)1/5+C Zm(?a/(g’T(fa)(z)_CEdz)l/a

épl +P2,

where C = [clg = (X ay lek|D)V4.

Applying Kolmogorov’s inequality and Theorem 1.2 to P;, we have

1/8 R
(|Q| /iT (fo) Z)| dZ) =< C” Tq(fo)”LU%w(Q,ﬂ)

Q

<1
sc!‘l[@/(zw(znqjdz

[ [M(ly) ).
j=1

We proceed to the estimate for P,. We can take ¢ = [2./nl(Q)]*. If a; = - - - = o, = 00, we

have
1/8
(|Q|/mf @, dz)
< @/Q|T(}7°°)(z)—c|qdz
c 00 1/q
~ T(F) ) - T(F)x)|?) 4
<6 (e -r@er) e

C o0
Gl Q(Z}

S

k=1

all3

= P21 + P22.

q 1/q

) dz

q 1/q

) dz
1/q
) dz

/ IK(2,5) - K6, )| ik -~ font 7
(RmM\Q*)™

/ |K@5) - K@) it foi| d5
(Rm\Q*)™

|KO)(z,y) K 9)|lfik - fonk| dy

RM\Q*)™


http://www.journalofinequalitiesandapplications.com/content/2013/1/250

Si Journal of Inequalities and Applications 2013, 2013:250
http://www.journalofinequalitiesandapplications.com/content/2013/1/250

Since z € Q and y; € R"\ (8/n + 4)Q, we get |y — z| > (4/n + 1)I(Q) > 2" for all j =
1,...,m. Applying Assumption (H2), we obtain

= —// A Wilay - Vonlgn & d
Aol p
Por = Q| (RM\Q*)™ (lz - Yl +-+ |Z—ym|)’””’+8 Llq am 4Y

szsn (k+1n|Q*| Yelg lf|q/dyz

< c]_[M(ij)(x).
j=1

Since x,z € Q, |z — x| < /nl(Q) < 3. Note that |y; — z| > (4y/n + 1)I(Q) > 2£', for all
j=1,...,m, hence ¢( lyt’;f‘) = 0. Similarly, we get Py, < ]_[1"21 M([]}|q/.)(x)
Now we estimate the typical representative of P, thatis, ¢; = --- = o; = 0o and a3 =

=0y, =0.

T f S0 f2) @) = T o S o SO,

= [, K@) 03]+ K05 - K il il 5
an
i /< K@D =K@l Vol &5
an
+ f( ) (K (2,5) = K6, 3)|filgr - - Vonl g 5.
an

Thus, we get

! 0 oo £0 0 s 1/8
(@./Q}T(fl "“’ﬁ ’. l+l”‘°1fm)(z)_6’qdz)
C o e g0 o
= @/Q|T(fl ,...,fl JI+10 0 )(Z) T(fl ’. ﬁ P l+1""’fm)(x)|qdz

C Py = —
< —// |K(Z’y)_Kt(o)(z,y)“ﬂ|q1"'lfm|qm dydz
QI Jo Jenyn

C - o o
v | [ K@ - K@l ol Dz
QI Jo Jwnyn
=P23 +P24.

For P,3, by Assumption (H2), we have

/ ( / £ T 0l
23 =
|Q| RM\Q*)! 16{12 ,,,,, 1) |z - y/l)mwrE

1_[1 1 lf(j/, |q, dy;
+v/(R”\Q*)l ( mn) Hf V(yz , By dz

Z]GIZ ..... l}|z _)// j=l+1

00 |Q*|€/n
= (Z (2k|Q*|1/n)mn+£ _/ ®RMQ* )IHV()//” y}

Page 10 of 17
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= 1
+Z(2k|Q*|1/n)mn [2k+1Q*\2kQ* Hlf(y/” dy1> Hf V(y/)’ dyl

k=1 j=l+1

CHM(W%)(’C)'
j=1

By a similar argument, we deduce that Py, < C ]_[]”le (qu.)(x). In other case, we can
also deduce the same estimate with minor modifications on the above arguments. We
have thus proved Lemma 3.2. d

Lemma 3.3 Let 0 <8 <e<1/m, 1/m<q<oo and 1/q =1/q1 + --- + 1/q,, with 1 <
s+ Gm < 00. Suppose that be (BMO). There then exists a constant C > 0 depending
only on § and € such that

M(T ,,qf)(x)<C]"[||b||BMO<]"[ML“0gL (Iflg) @) +M(qu)(x))

j=1 j=1

-1
+C Y > [ TbillsroMe (T, of ) &)

j=1 secl ico
J

for any smooth vector function {ﬁ},‘ﬁlfor any x € R", where o’ ={1,...,l}\ 0.
Proof For simplicity of notation, we write F(y) instead of the product of m functions

AO) - fum) and let A = ﬁ sz bj(z)dz, forj=1,...,1. Let x e R” and Q be a cube cen-
tered at x. Then we have

T (F)) = /( o (09 = 101) - (0 - OV PG 5

- /( - (b1®) = 21) = (B19) = 21)) - -~ ((Ba®) = 1) = (Buy) = 11))

x K(x,y)F(y) dy

ZZ( D[ [(Bi) - n) / [ [(5:0) - 1)K 3)FG) dy

i=0 4 ECl jeo ]eo'

= (1) = 21) -+ (Bu@) = 1) T)@) + T((Bi(1) = A1) -+ (Bu(-1) = 11)f ) ()

Y 0 T - x/ [1(B0) - 2)K@HEG) d.

i=1 UECl jeo ]ea
Noting that ]_[ o (0i(y)) — A ]_[].EU/ [(Bj(y;) — bj(x)) — (bj(x) — Aj)]. Then we get

T ) < | (B16) = 20) - (Bi®) — 1) | Ty ()
HT((Brl) = 2) -+ (Bil) - 1)) W),

-1
+ CZ Z ]_[|b](x) - )\,/‘ Tnb{r,’j(x)

i=1 GEC{ jeo

Page 11 of 17
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Since 0 < § < 1/m < 1, it follows that

. 7 1/8
<@ /Qi|T1'1l3,q(f)(Z)|(S _ |C|5|dz>
! 7 1/8
< C(@ /Q|Tnz,(f)(z) _ C|8qdz)

. R s 1/8
§C<@ /Q |(b1(z)_xl)..~(bxz)—Az)IT(f)(z){qle)

- 1 - s 1/8
+CZZ<_/1_[(|bi(z)—)~j|Tnba/qf(Z)) dZ>
g AN ‘

jeo

. ) s 1/8
+ C(@ /Q’T((bl('l) - Al) T (bl('l) - )‘l)f)(z) - C‘qdz>

L1401+,

o =

3 |
o=

where C = [c|; = (Y, |cx|7)V4. We can choose 1 < py, ..., p; < 00 with pil oot

Since 0 < § < & < 1/m, Holder’s inequality gives

l

1= CT 15l smoMe(Tof) (),
j=1

-1
I =CY Y [T 1billssoMe(Trus,, of V).

i=1 el jeo

Let us estimate term II1. Setfj :fjo +j?°°, wherej?j0 :E X0 Letf"‘ =fit - fem and Q* =

,,,,,

| T3, @)~ C]|
< Ty((B1(1) = A1) -+ (Bu() - )LZ)J;O)(Z)
+C 3 (T ((Bil) = 2) -+ (i) = 1)) (@)

A1 5000

~(T((b1(1) = A1) -+~ (Ba1) = 20)F%)) ()

q1

where in the last sum each @; = 0 or co and in each term there is at least one o; = co.

Ifoy =+ =, =0, applying Kolmogorov’s inequality and Theorem 1.2, we get

1/
(ﬁ /QiTq((bl('l) - )\,1) e (bl(l) _ )‘l)fo)(z)|8dz)

< CITo((Br) =) - (Br) = 2)F) | e g,

<C]L[i/|b,(y,)_k,|v(z)| dZﬁ L/V‘(zﬂ dr
T QU T L Q1
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= Cl_[ ”b ”BMOHlf'q] ”LlogL ),Q 1_[ |Q| /V(Z qj

j=l+1

l m
< C[T1oilzuo [ [ Mroeny (lq;) ).

Jj=1 Jj=1

Ifa;=---=a, =00, we have

1 . 1/8
(i Lo~ az)

C -
< @/(;|Tng(f°°)(z)—c|qdz
C 00 1/q
< = [ 21T ()@ - T ()W) de
QI Jo\45
|Q| / (

x [(b1(n) = 1) -+ (Biyr) = M)fik - fok | Y

C oo
<
Q) Q(

x [(b1(n) = 11) -+ (Biyr) = M)fik - - fouk | Y

a3

x [(b1(n) = 11) -+ (Biyr) = Ma)fik - - fouk | Y

|K(Z,5/) - [((x’j;)|
}‘l\Q* m

q 1/q
) dz
q 1/q
) dz
q 1/q
) dz

[K(z.5) - K (z,5)]

RM\Q*)™

1KV (2,5) - K(x,7)]

]Rn\Q ym

=1II + III,.

Consider now the term III;. Taking ¢ = [2./7/(Q)]%, we have by Assumption (H2)

o Qe
I < —/ / <
0] (RM\Q*)m ZI: (2k| Q¥ |/mymn+e

X |(b1()/1) — A1) (bz(yz)—kz)Hﬁlql  fonlg Ay dz
= an zke 2k+1 |Q*

j=1 k=1

i 1
x b)) = 1| s B, —f il dy,
~/2k+1Q*| IV 1’ J4qj /]l;[l 2(k+1)n|Q*| akelgr Jlq; 7

m

I o0
k 1
=< Cl_[ Z % ”b]’“BMO” Wq; ||L(logL),2k+1Q* l_[ W /2’<+1Q* lﬁ|q/ dyj

j=1 k=1 j=l+1

Page 13 of 17


http://www.journalofinequalitiesandapplications.com/content/2013/1/250

Si Journal of Inequalities and Applications 2013, 2013:250 Page 14 of 17
http://www.journalofinequalitiesandapplications.com/content/2013/1/250

! m
1
< Cl_[ ”bj”BMO “ lfj|qj HL(logL),Zk‘le* 1_[ W /k+1 i m'% dyj
J=1 j=l+1 2k+1Q

I m
< C[ [ 15illzuo [ [ Mraoeny (Ilq;) ).

j=1 j=1
Similarly, we get III, < 11.:1 151 Bato ]_[I'Zl Mi(iog L)([ﬁ|q/)(x). Now we consider only the typ-

ical representative of III. Similar to the estimates of P, in Lemma 3.2, we have

1 0 0 5 1/8
<@/iT((bl('l)_)‘l)"'(bl('l)_)‘l)1 s S fm)(z)—6|qd2>

|Q|/|T ((B1(1) = 20) - (B = Ao o ) @)

= T((Bu(2) = 2a) - (Bu) = ) f S ) @)

li[ ( / £ (br(n) = 1) -+ (Bulyn) = 1) T 15 0))lg, oy
(RM\Q*)! (2/5{1,2 ,,,,, i) |z —y,'l)’”””

Jj=

1(BrOn) = M) -+ (By) = ) Ty L 0)lg, oy
+/(‘RK\Q*)[ )1_[/ lf(yl qj yl

Qe 2=y j=l+1

<cl"[||b||BMoHVIq,IlmgLzw IQ*I/ ey

j=l+1

! m
< Cl_[ 1571l zrmo HML(logL) (Iﬁ|q/)(x)'

j=1 j=1
Then Lemma 3.3 is proved. d

Lemma 3.4 Let 0 < p < 00, 1/m<q<oo,and% oot qu = é withl<qy,...,qm < 00 and
let w € Awo. Suppose thatb e (BMO)!. Then there exists a constant C > 0 such that

m p
f | T W) x<CH||b a0 f n(]‘[Mmogm(wq,)(x)) w(x) dax (3.2)
j=1

for any smooth function]? with compact support.

Proof We assume that the right-hand side of (3.2) is finite, since otherwise there is nothing
to be proved. For / = 1, by using Lemma 3.1 and Lemma 3.3, we obtain

Lp(w)]
Lp(w):|

I Tnz,f”w(w) =< M5 Tnz,jllmw) <C|m; THZ?,qf“LP(w)

l_[ML(logL) (Ifly)

Jj=1

< C||b1”BMO|:“M8(T¢1]?)”Lp(w) +

< cnblnmo[nTJnu(w) +

m
HML(logL)(Wq,)
j=1
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scmbano[ [TMW) | + ] [Meooen (15lg) }

j=1 LP(w) j=1 LP(w)

< Cllb1llsmo HML(logL) (Iflg;) (3.3)
j=1 LP (w)

For the general case [ > 2, similarly to the case for / = 1, we have

m

HML(logL)(lﬁ|qj)

j=1

!
1T f lrw) < CH 1651l a0

j=1

1P(w)

To apply the Fefferman-Stein inequality in (3.3), one needs to verify now that
[I Tng’jHLp(w) < o0 and ||TJ||Lp(w) < 00. We will only show the first one since the proof
of another one is very similar but easier.

Suppose that the symbols b; and the weight w are bounded functions. Since]? has com-

pact support, we may assume suppf; C B(0, R). Then we have

|Tn2,q7(x) |pw(x) dx + /

|x|>2.

T loreo = [

x| <2R

| Tjf @) () dix
R
= 11 + 12.

We choose s > p and sy,...,s,; > 1 such that 1/s = 1/s; + - -+ + 1/s;,. Theorem 1.1 and

Holder’s inequality imply
R R pls
L<C f | Tpyp f 1P dx < c( |qu|de) RGPl
x| <2R ’ R#

m p
<C ila s | R < 0.
JAU/R Do)

j-1

Consider now the term . Since |x| > 2R, we have by Assumption (H2)
Tl <c| [ k)l uow)] - i) - i)
(B(0,2R))™

q

<C Kx,5) - K (x5 Tirop|. &5
Bl -/(B(O.2R))”‘| N J’)|£[[I7(Y/)|q, ’

K9 x,y Tle(o. 5
+-/(B(0,2R))m| s y)|£[U7(Yz)|q,. y

m 1 m
I
P O ! j=1

ThuS, [2 = Cf]Rn (Hﬁl ML(]OgL)(m|qj)(x))pW(x) dx < co.
For the general case, we can check the limit (see the proof of [10], Theorem 1.1, we omit
the details here). Thus, (3.2) is proved. O
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Proof of Theorem 1.3 (i) Since vz € A, C Aso, Lemma 3.4 gives

m
/Rn ’ Tné,q(f)(x) ’pv@ dx < C./1;n HMi(logL)([mq/.)(x)vg) dx.
j=1

It follows from [8] that there exists r > 1 such that v; € A (oL, om) . On the other hand, since

.....

d(t) = t(1 +log* £) <t for all t > 1, the generalized ]ensen mequahty yields that

1 . 1/r
|lfj||L(logL),Q§C(_/m(y)| d)’)
Ql Jo

for all j. One sees immediately that

|| Tl'[l;,q(f) ”l}’(u,;)) =C

[1451,)

LP(v3)

Sincev; € A (oL, pmy it follows from Holder’s inequality and the well-known inequality of

Fefferman-Stein [9] that

m
<C 1_[ ” filg; HLI’J‘/’(Mw;)'

Lp/r(\)(;)) 1’:1

[1(7)

We then have
| T34 15 <CHHbllsmonllwq,lle,Mw,
j=1

This is the desired conclusion.
(ii) Since wj € Ap;s there exists r > 0 such that w; € Apjir Analysis similar to that in the
proof of Theorem 1.3 (i) shows that

“ Hbq(f) ”L!’(v[;)) =C

[ 1M-(1514)
j=1

LP(vz)
The Holder inequality implies

1/r
P (vz) ( U’/’(v,;)))

" 1/r
= (T,
j=1

[T 51s)

[Tm(st;)

m
= 1_[ H filg, ”LPI(M/)' (3.4)
j=1

To prove Theorem 1.3 holds for 7%, it suffices to prove Lemmas 3.2-3.4 hold for T*.
The proof follows from similar steps in [11] and combines the argument we used in the
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above lemmas. The key for tackling the new complexities is a very careful deal with the

supremum, we refer the reader to [11]. This concludes the proof of the theorem.
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