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1 Introduction
Gronwall-Bellman inequalities [1, 2] can be used as important tools in the study of exis-
tence, uniqueness, boundedness, stability and other qualitative properties of solutions of
differential equations and integral equations. There can be found a lot of generalizations
of Gronwall-Bellman inequalities in various cases from literature (e.g., [3-15]).

Agarwal et al. [5] studied the inequality

" bi(t)
u(t) <a(t) + Z/;( )g,'(t,s)wl-(u(s)) ds, ty<t<t.
i=1 Y Pilto

Agarwal et al. [6] obtained the explicit bound to the unknown function of the following
retarded integral inequality:

n a;(t)
p(uv) <c+ Y / o, O (9) + 86192 108 ()] .
i=1 Y%
In 2011, Abdeldaim and Yakout [4] studied the following integral inequalities:
u(t) < ug +/ (f(s)u(s) + q(s)) ds +/ fs)u(s) |:u(s) + / g()»)u()»)dk] ds,
0 0 0

u(t) < ug + /tf(s)u(s) |:u(s) + /sg(k)u(k)dk]p ds.
0 0

However, the bound given on such an inequality in [4] is not directly applicable in the
study of certain retarded nonlinear differential and integral equations. It is desirable to
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establish new inequalities of the above type, which can be used more effectively in the
study of certain classes of retarded nonlinear differential and integral equations.

In this paper, we discuss some new retarded nonlinear integral inequalities with iterated
integrals

alt

al(t) ) s
u(t) <up+ (f(s)u(s) + q(s)) ds + ful)|uls)+ | gA)u(r)dr|ds, (1.1)
0 0 0

a(t)
u(t) < o + fo (F)p(u(s)) + q(s)) ds

a(t) s
+/ f(s)w(u(s))[u(s)+/ g(k)u()\)d)\:| ds, (1.2)
0 0
a(t) s V4
u(t) < ug +/0 fs)u(s) |:u(s) +/0 g(k)u()»)d)»] ds, (1.3)
a(t) s V4
ult) <up+ / f(s)¢1(u(s>)[u(s)+ f g(k)dh(u(k))d/\] ds, (L4)
0 0

where u is a positive constant, and give upper bound estimation of the unknown function
by integral inequality technique. Furthermore, we apply our result to differential-integral
equations for estimation.

2 Main result
In this section, we discuss some retarded integral inequalities with iterated integrals.

Throughout this paper, let I = [0, 00).

Lemma 1 (Abdeldaim and Yakout [4]) We assume that u(t), f(t) and g(t) are nonnegative
real-valued continuous functions defined on I = [0, 00) and satisfy the inequality

t s p
u(t) <wug+ / fs)u(s) |:u(s) +/ g(k)u(k)dk] ds
0 0

forallt € I, where uy and p are positive constants. Then

u(t) < ug exp(/tf(s)Bl(s)) ds, Vtel,
0
where

uhexp(p [, g(s) ds)

B (t) = t S ’
! 1-pug [y f(s)exp(p [y g(x) dt)ds

such that pul [, f(s)exp(p [y g(t)dv)ds <1 forall t € I.

Lemma 2 (Abdeldaim and Yakout [4]) We assume that u(t), f(t) and g(t) are nonnegative
real-valued continuous functions defined on I = [0, 00) and satisfy the inequality

u(t) <uop +/0 (f(s)u(s) + q(s)) ds + /0 fs)u(s) |:u(s) +/0 g()»)u()»)d)»] ds, (2.1)
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forallt € I, where uy is a positive constant. Then
t
u(t) < <u0 + / q(s)exp(-A(s)) ds) exp(A(2)), Vtel, (2.2)
0

where A(t) = fot(f(s) +f(s)Qu(s)) ds, and

B (L(0) — 1) exp(Ay (£))
1+ (L(0) - o) [ f(s) exp(Ai(s)) ds’

Qi) = L(2)

where A1(t) = fot 2(f(s)L(s) + f(s) + g(s)) ds, and L(¢) is the maximal solution of the differen-
tial equation
dL(t)

7 qt) +f(OL*@) + (F(6) + gO)L(), VEel,

such that L(0) > ug.

Lemma 3 Suppose that ¢(t) is a positive and increasing function on I with ¢(0) = 0,
fie C(L,1),i=1,2; u(t) is a nonnegative real-valued continuous function defined on I with
u(0) = ug > 0 and satisfies the inequality

duf(t)
dt

<A@ +/H@e(u®), Vel (2.3)

then u(t) has the following estimation:

u(t) < o1 <q> (uo + /tﬁ(s) ds) + /tfz(s) ds), vt e [0, T1], (2.4)
0 0
where
O(r) := /1’ %, r>0, (2.5)

and T, is the largest number such that

T1 Ty S
¢<u0+ A fl(s)ds)+/0 fz(s)dsff1 % (2.6)

Remark 1 ®(t) = In(¢) when ¢(¢) = ¢.

Proof Integrating both sides of (2.3) from 0 to ¢,

u(t) < wup+ /0 fi(s)ds + /0 fg(S)(p(u(s)) ds
T t
< ug +/(; fils)ds + /0 fz(s)w(u(s)) ds, Vtel0,T], (2.7)

where T € [0, T1] is a positive constant chosen arbitrarily, T is defined by (2.6). Let

T ¢
Ri(t) = ug + / fils)ds + / fz(s)go(u(s)) ds, Vtel0,T], (2.8)
0 0
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then R (¢) is a nonnegative and nondecreasing function on I with R;(0) = o + fOT fi(s)ds.
Then (2.7) is equivalent to

u(t) <R (2), Vtel0,T]. (2.9)

Differentiating R; () with respect to ¢, from (2.8) and (2.9), we have

dRy(¢)
dt

=h O (u®) <HOe(Ri(), Veelo,T). (2.10)

Since R;(¢) > 0, from (2.10) we have

dRr,(¢)

o(R(0) dt <f(), Vtelo,T]. (2.11)

By taking ¢ = s in (2.11) and integrating it from O to ¢, we get
t
Ri(t) <! <<I>(R1(0)) + f fa(s) ds), vt e [0,T], (2.12)
0
where & is defined by (2.5). From (2.9) we have
T t
ut) < o' (CD (uo +/ fils) ds) + / fa(s) ds), Vte [0,T]. (2.13)
0 0

Letting ¢ = T, from (2.13) we get

T T
u(T) < d>‘1(<I> (uo +/ fils) ds) +/ fa(s) ds).
0 0

Because T € [0, T1] is chosen arbitrarily, this proves (2.4). O

Lemma 4 Let f; € C(I,1), i =1,2,3; we assume that u(t) is a nonnegative real-valued con-
tinuous function defined on I with u(0) = uy > 0 and satisfies the inequality

d:lit) <A +fH(Oul) + OU2E), Vtel, (2.14)

then u(t) has the following estimation:

t t -1
u(t) < exp(/o f2(s) ds) ((uo + /0 fils) ds)
t s -1
- [ 56 exp( | fz(f)df> ds) , (215)
0 0

forallt € [0, T,], where T, is the largest number such that

t -1 t s
(uo + /0 fils) ds) —/0 f3(s) exp(/o f2(T)d'L'> ds>0, Vtel0,T,]. (2.16)


http://www.journalofinequalitiesandapplications.com/content/2012/1/236

Wang Journal of Inequalities and Applications 2012, 2012:236
http://www.journalofinequalitiesandapplications.com/content/2012/1/236

Proof Integrating both sides of (2.14) from 0 to ¢, we get

u(t)5uo+f0fl(s)ds+/0fg(s)u(s)ds+/0f3(s)u2(s)ds
T t
§uo+/0 fl(s)ds+/0f2(s)u(s)ds
+/tf3(s)uz(s)ds, vt e[0,T], (2.17)
0

where T € [0, T,] is a positive constant chosen arbitrarily, T, is defined by (2.16). Let

T t
Ry(t) = ug +/0 fi(s)ds + /0 fa(s)u(s)ds

+ /tfg(s)uz(s) ds, Vtel0,T], (2.18)
0

then R,(t) is a nonnegative and nondecreasing function on I with R,(0) = g + foT fi(s)ds.
Then (2.17) is equivalent to

u(t) <R,(t), Vtel0,T]. (2.19)

Differentiating R (£) with respect to ¢, from (2.18) and (2.19), we have

dR,(t)
dt

=fH(Out) + U () <fo(E)R(E) + (E)R5(E), Yt e [0, T]. (2.20)

Since Ry(¢) > 0, from (2.20) we have

d’f;t(t) <AORND + /@), Ve[, T). (2.21)

Ry*(8)
Let S;(2) = R;*(¢), then $1(0) = (uo + fOTﬁ(s) ds)7!, from (2.21) we obtain

ds ()
dt

+A(0)S1(t) > A1), VEe[o,T]. (2.22)

Consider the ordinary differential equation

l 0 4 £0)S:(8) = f(t), Vtelo,T], (2.23)

52(0) = (uo + fOTfl(s) ds)™.

The solution of equation (2.23) is

t T -1
So(t) = exp(—/o fals) ds)((uo +/O fils) ds)
—/ f3(s) exp(/sfz(t)dr) ds) (2.24)
0 0

Page 5 of 17
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forall ¢ € [0, T]. Letting ¢ = T in (2.24), from (2.19), (2.22), (2.23) and (2.24), we obtain

1 1
<

Si(T) ~ S(T)

T T -1
< exp(/ fa(s) ds) ((uo +/ fils) ds)
0 0
T s -1
- fa(s)eXP( | fz(f)df> ds) . (225)
0 0

Because T € [0, T3] is chosen arbitrarily, this proves (2.15). O

u(T) < Ry(T) =

Lemma 5 Suppose that ¢(t), ¢(t)/t are positive and increasing functions on I, f; € C(1,1),
i=1,2,3,4; u(t) is a nonnegative real-valued continuous function defined on I with u(0) =

ug > 0 and satisfies the inequality

d
) <A®) +LOu®) + fOu@)e(u(®) +fa)e(u(t)),
dt (2.26)

u(0) =uy, Vtel,

then u(t) has the following estimation:

u(t) < exp<<l>11(d>1 <ln(u0 + /tfl(s) ds) + /tfz(s) ds> + ftfg(s) ds
0 0 0

+/z fa(s)ds >) (2.27)
o exp(In(uo + [, fi(z)dT) + [y fo(7) d7)

forall t € [0, T3], where

" ds
CDl(r) = ‘/; go(Tp(s)), r> 0, (2.28)

and Ts is the largest number such that

T T T
®1(ln(uo+/0 ﬁ(s)ds) +/0 fz(s)ds) +/0 f3(s)ds

' fals) ds > ds
' /0 exp(In(uo + [} fi(x)dz) + [ fox)dr) : /1 ¢(exp(s))

(2.29)

Proof Integrating both sides of (2.26) from 0 to ¢, we get

u(t) < u0+/0ﬁ(s)ds+/of2(s)u(s)ds+/0ﬁ,(s)u(s)w(u(s)) ds+/of4(s)<p(u(s)) ds
T t
§u0+/ fl(s)ds+/f2(s)u(s)ds
0 0

+[ﬁ(s)u(s)ga(u(s))ds+/ﬁ;(s)qo(u(s))ds, (2.30)
0 0
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for all £ € [0, T], where T € [0, T3] is a positive constant chosen arbitrarily, 75 is defined
by (2.29). Let R5(t) denote the function on the right-hand side of (2.30), which is a positive
and nondecreasing function on [0, T'] with

T
R3(0) = ug + / fi(s)ds. (2.31)
0
Then (2.26) is equivalent to
u(t) < Rs(t), Vtel0,T]. (2.32)

Differentiating R3(¢) with respect to ¢ and using (2.32), we have

dRs(t)

o SLOR©) +f3(t)Rs (D)9 (Rs (1)) + fa(D)e(Rs(2)), Ve e [0, T]. (2.33)
From (2.33) we get
1 dR3(t) -1
R;'(2) <h(®) + e (Rs()) +fat)p(Rs())R5 (), Vtel0,T]. (2.34)

dt

Integrating both sides of (2.34) from 0 to ¢ and using (2.31), we get
Ri(t) < exp(lnRg(O) + / fols)ds + / S3(8)e(Rs(s)) ds + / Sa(8)o(R3(s))R5*(s) ds)
0 0 0
T T t
< 1 d d R d
<exp(infus [ A0ds) s [ s+ [ O0@e)ds
+ / ﬁ;(S)(ﬂ(Rg(S))R;l(S) ds), Vte[0,T], (2.35)
0
here we use the monotonicity of ¢(¢) and ¢(t)/t. Let
T T t
Ry(t) = ln(uo +/0 ﬁ(s)ds) +f0 ﬁ(s)ds+/(;ﬁ,(s)(p(R3(s)) ds
o [ A R)R! 0 ds (236)

for all ¢ € [0, T], then R4() is a positive and nondecreasing function on [0, T] with

T T
R4(0) = ln<u0 + /(; fils) ds) + /0 fa(s) ds. (2.37)
(2.36) is equivalent to
R3(t) <exp(Ra(2)), Vte[0,T]. (2.38)

Differentiating R4(¢) with respect to ¢ and using (2.38), we have

dR4(t)
dt

= /(O9(Rs3(8)) +fa(t)e (Rs(£))R3' (£)

< f3()p(exp(Ra(t))) +_ﬂ}(t)(p(exp(R4(t)))(exp(R4(t)))_1, Vte[0,T]. (2.39)
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From (2.39) we get

dRy(t)

- =hO+h(© (exp(Ra(2)))™", VEel[o,T1. (2.40)

¢ (exp(Ra(2)))

Integrating both sides of (2.40) from 0 to ¢,

@1 (Ra(t)) < ©1(R4(0)) +/f3(3) d5+/f4(5)(eXP(R4(0)))_l ds
0 0

< d; <ln<u0 + /OTﬁ(s)ds> + /()Tﬁ(s)ds) + /Otfg(s)ds

‘ fals)ds
2.41
' /o exp(n(uo + [ fi(x)de) + [ () dr) 241

for all ¢ € [0, T], where ®; is defined by (2.28). From (2.32), (2.38) and (2.41), we have
u(t) < Rs(t) < exp(Ra(t))

T T t
§exp<cl>11(d>1<ln(u0+f0 ﬁ(s)ds) +/0 fz(s)ds) +/0f3(s)ds

t Jals)ds )) 2.42
+/0 exp(in(uo + [ fi(x)dr) + [} fi(x)dr) )] (242)

forall ¢ € [0, T]. Letting ¢ = T, from (2.42) we get

u(T) < exp(@[l(dh <ln(u0 + /Tﬁ(s)ds) + /ng(s)ds) + /ng(s) ds
0 0 0

N /T fals)ds ))
T T :
o exp(In(uo + [, fi(r)dr)+ [ fr(z)d7)

Because T € [0, T3] is chosen arbitrarily, this gives the estimation (2.27) of the unknown

function in the inequality (2.26). O
Theorem 1 Suppose that o € C'(I,1) is an increasing function with a(t) < t, a(0) = 0,

Vt € I; u(t), f(t), q(t) and g(t) are nonnegative real-valued continuous functions defined on
I =[0,00) and satisfy the inequality (1.1). Then

a(t) a(t)
u(t) < exp(ln(uo + / q(s) ds) + / (F(s) +f(s)L1 (a7 (5))) ds) (2.43)
0 0

forallt € [0, Ty], where

alt) a(t) -1
Li(t) = exp</0 (F(s) +g(s)) ds) <<u0 + /0 q(s) ds>

1

a(t) s -
—/ f(s)exp </ (f(r) +g(1)) dr) ds) , (2.44)
0 0

Page 8 of 17
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Ty is the largest number such that

a(t) -1 a(t) s
(Mo +/0 q(s) ds) —/0 f(s) exp(/o (f(r) + g(1)) dl’) ds> 0.

Remark 2 Theorem 1 gives the explicit estimation (2.43) for the inequality (1.1) which is
just the inequality (2.1) when «(¢) = t. Lemma 1 gives the implicit estimation (2.2) for the
inequality (2.1).

Proof Let z1(£) denote the function on the right-hand side of (1.1), which is a positive and
nondecreasing function on I with z;(0) = ug. Then (1.1) is equivalent to

u(t) <z (t), u(a(®) <z (a®) <z(t), Vtel (2.45)

Differentiating z;(¢) with respect to ¢ and using (2.45), we have

d
Z;it) = o/ (Of (0 u(e(t) + &' (O((0))
al(t)
+ oe’(t)f(oc(t))u(ot(t)) [u(a(t)) + /0 g )u() dk]
<d'O)g(a®) + [’ @)f (@) + ' @)f () Yi(D)]21(2), Vi€, (2.46)
where
al(t)
Yi(t) := z1(¢) + / g)zn(A)dr, Vtel. (2.47)
0

Then Y;(¢) is a positive and nondecreasing function on I with ¥7(0) = z;(0) = &y and
z1(t) < 1) (2.48)

Differentiating Y;(¢) with respect to ¢ and using (2.46), (2.47) and (2.48), we get

dl;l;t) < ' (O)g(a(®) + [« Of (@) + o' @)f (@) Y1) ]21(2) + o' (£)g(ex(£))21(2)
< (O)g(a®) + [’ @)f (@) + o' ()g(x(0) | Y1(2) + &' (£)f ((2)) Y2(t)  (2.49)

for all £ € I. Applying Lemma 4 to (2.49), we obtain
Yi(t) < Li(f), VEel[0,Ty]. (2.50)

From (2.46) and (2.50), we get

d
%(ﬂ <d'(O)g(a(®) + [a/(t)f(a(t)) + a/(t)f(a(t))Ll(t)]zl(t), Vte[0,T4]. (2.51)

Applying Lemma 3 to (2.51) and using Remark 1, we obtain

al(t) al(t)
z1(t) < exp <ln<u0 + / q(s) ds) + / (F(s) +f($)Li (7' (9))) ds), vt € [0, Tyl
0 0
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From (2.45), the estimation (2.43) of the unknown function in the inequality (1.1) is ob-
tained. a

Theorem 2 Suppose ¢ € C(I,I) and a € C'(I,1) are increasing functions with a(t) < t,
a(0) =0, Vt € I. We assume that u(t), f(t), q(t) and g(t) are nonnegative real-valued con-
tinuous functions defined on I and satisfy the inequality (1.2). Then

103}
u(t) < e (CD (uo +/ q(s) ds>
0

a(t)
+ / (F(s) +f($)La(a(5))) ds), Vt € [0, T4, (2.52)
0

where ® is defined by (2.5),

alt) at) o(t)
Ly(t) = exp (CI>11 <<I>1 <ln<u0 +/ q(s) ds) +f g(s) ds) +/ f(s)ds
0 0 0

" f(5)ds ))
, Vtel0,Ty], 2.53
+/0 exp(In(uq +f0"‘(t) q(s)ds) + f:(t)g(s) ds) € [0, T4] (2.53)

®, is defined by (2.28), Ty is the largest number such that

ds

alt) a(t) Oo
1 -
o) [ [

a(Ty) a(Ty) a(Ty)
o (ln (uo +/ q(s) ds) +/ g(s) ds) + fls)ds (2.54)
0 0 0

fls)ds /"0 ds
1

a(Ty)
g ox () T g(yds) i oexp()
p(n(uo + [y ¥ q(s)ds) + [, * g(s) ds) plexp

Proof Let z;(t) denote the function on the right-hand side of (1.2), which is a positive and

nondecreasing function on I with z,(0) = uo. Then (1.2) is equivalent to
u(t) < zy(t), u(a(t)) < z(at) <z(t), Veel (2.55)

Differentiating z,(t) with respect to ¢ and using (2.55), we have

dz(t)

r o (O)f (@) o (u((1)) + o' (Dg(e(2))

a(t)
+ o' (@)f () (u(ex(2))) |:u(oz(t)) + /(; gM)u(n) dk]
<d'(Og(a®) + [’ Of (@) + ' @O)f () Y2 () | (22(8)), VEE€T, (2.56)

where

al(t)
Yo (t) := zo(t) + / gM)z(X)dr, Vtel (2.57)
0
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Then Y5(t) is a positive and nondecreasing function on I with Y5(0) = z,(0) = uy and
z3(t) < Yo (2). (2.58)

Differentiating Y>(£) with respect to ¢ and using (2.56), (2.57) and (2.58), we get

dY,(t)
dt

<d'O)g(a®) + [/ @)f (@) + &' @)f (1) Y2 (1) |0 (22(0)) + ' (D)g(ex(2))z2(2)
<o (B)q(a(®)) + ' (Og(a(0) Ya(t) + &' @)f ((2)) Ya(6)p(Ya(2))
+ o/(t)f(oz(t))go(Yz(t)) (2.59)

for all t € I. Applying Lemma 5 to (2.59), we obtain

alt) a(t) alt)
Y7(t) < exp<d>1_1<d>1 <ln<u0 +/ q(s) ds) +/ g(s) ds) +/ f(s)ds
0 0 0

a(t) f(s)ds
’ /o ex o(t) o(t) ))
p(n(uo + [y q(s)ds) + g(s)ds)

0
= Ly(t), Vtel0,T4], (2.60)

where T, and L, are defined by (2.53) and (2.54) respectively. From (2.56) and (2.60), we
get

dzy(2)
dt

< a/(O)g(a(®) + [« (O)f («()

+ o' @)f () L2() ]@(22(8)),  VE€ [0, Tyl (2.61)

Applying Lemma 3 to (2.61), we obtain

a(t) a(t)
2(t) < d7! (CD (uo + /0 q(s) ds) +/O (f(s) +f(s)Ly (a_l(s))) ds), vVt e [0, T4],

where @ is defined by (2.5). From (2.55), the estimation (2.52) of the unknown function in
the inequality (1.2) is obtained. O

Theorem 3 Suppose a € CY(I,1) are increasing functions with a(t) < t,a(0) = 0,Vt € I. We
assume that u(t), f(t) and g(t) are nonnegative real-valued continuous functions defined
on I and satisfy the inequality (1.3). Then

u(t) < ug exp(/tf(s)Bz(s)) ds, Vtel, (2.62)
0
where
a(t)
By(t) = sooxp(p fy” g(s)ds) (2.63)

1—pid 2 £(9) explp [ g(v) dr)ds’

such that pul) f:(t)f(s) exp(p [, g(r)dv)ds <1forallte .
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Remark 3 If «(t) = ¢, then Theorem 3 reduces Lemma 1.

Proof Let z3(t) denote the function on the right-hand side of (1.3), which is a positive and
nondecreasing function on I with z3(0) = u,. Then (1.3) is equivalent to

u(t) < z3(t), u(a(t)) <zs(at)) <z(t), Veiel

Differentiating z3(¢) with respect to ¢ and using (2.64), we have

p

d a(t)
ngt(t) - a/(t)f(a(t))u(a(t)) [u(a(t)) +/ g)u(n) dk:|
0

p

103}
<a/(t)f(0t(t))23(t)[23(t)+ /0 g()»)a(k)d)»}
= o' (O)f (a(1))z3()YE(2), Veel,

where

al(t)
Y3(¢) :=z3(¢) + f gM)zs(M)dr, Vtel
0

Then Y3(t) is a positive and nondecreasing function on I with Y3(0) = z3(0) =

z3(t) < Ys(t).

Differentiating Y3(£) with respect to ¢ and using (2.65), (2.66) and (2.67), we get

dYs(t)
dt

<o/ (O)f (a(2))z3(O) Y3 () + o (t)g (et(2))z3(2)
< Of (@(@®))Y37(0) + o (g (a(®) Ya(t), Vtel
From (2.68) we have

Y 1+p) (t) 3( )

Let S3(¢) = Y37 (2), then S3(0) = u,”. From (2.69) we obtain

dS3(t)
dt

+ pa (£)g(a(t))S3(t) < —p (E)f (a(t)), VEel

Consider the ordinary differential equation

B0 4 po'(£)g(a(t)Sa(t) = —pe (Of (@(D)),  VEel,
54(0) = uo .

The solution of equation (2.71) is

a(t) al(t) s
Sa(t) = exp(— /0 pg(s) ds) (uop - /0 pf(s)exp ( ./o pg(r)dt) ds)

o' (t)g(a®)Y;” (@) < o' ()f (x(t)), Veel

(2.64)

(2.65)

(2.66)

ug and

(2.67)

(2.68)

(2.69)

(2.70)

(2.71)

(2.72)
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for all ¢ € I. By (2.70), (2.71) and (2.72), we obtain
YP(t) = S31(t) < S;*(t) = Bo(t), Vtel, (2.73)

where B, (t) is as defined in (2.63). From (2.65) and (2.73), we have

dz3(t)
dt

<o/ (O)f (a(2))z3()Ba (1), Vtel

By taking ¢ = s in the above inequality and integrating it from O to ¢, from (2.64) we get

al(t)
u(t) < z3(t) <up eXp</ f(S)Bz(S)) ds, Vtel.
0

The estimation (2.62) of the unknown function in the inequality (1.3) is obtained. d

Theorem 4 Suppose ¢1,¢2,a € C(I,1) are increasing functions with ¢;(t) > 0, a(t) < t,
Vt>0,i=12, a(0) = 0. We assume that u(t), f(¢t) and g(t) are nonnegative real-valued
continuous functions defined on I = [0, 00) and satisfy the inequality (1.4). Then

a(t) a(t)
u(t) < CD; [@gl(Cbg <<D2(u0) +/ g(s) ds) +/ f(s) ds)], Vt < Ts, (2.74)
0 0

where

"odt
<I>2(r):=/1 m, r>0, (2.75)

" (3 (9))ds
Palr) = / N CROIC ROk

>0, (2.76)

and Ts is the largest number such that

alt) (0 X oa(®3'(s) ds
o <d)2(uo) +/0 g(S) dS> + ; f(S) ds S/; (pl(q)gl(s))(q)gl(s))p:

a(t) 103} S
-1
o <<I>3(d>2(uo)+/0 g(s)ds> + ; f(s)ds> 5‘/1. @’

Proof Let z4(t) denote the function on the right-hand side of (1.4), which is a positive and

nondecreasing function on I with z4(0) = ug. Then (1.4) is equivalent to
u(®) <zi(t),  w(a®) <zi(at) <z(t), Veel (2.77)

Differentiating z4(t) with respect to ¢ and using (2.77), we have

dzy(t)
dt

a(t) p
_ a/(ty(am)(pl(u(a(t)))[u(am) . / 2o () dx}

a(® »
< o/ (B)f ((t)) 1 (24(2)) [24(t)+ /0 g2 (24 (1)) dk]

= o' (O)f (a() @1 (24 (2)) YE (1), Vel (2.78)
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where

a(t)
Yy(t) :=z4(t) + / gW)@a(za(V)) dr, Vtel (2.79)
0
Then Y,(¢) is a positive and nondecreasing function on I with Y4(0) = z4(0) = u and
za(t) < Ya(2). (2.80)

Differentiating Y4 (t) with respect to ¢ and using (2.78), (2.79) and (2.80), we get

dizt( ) < o OF 0)n(0) Y20 + 0/ g () (20)

<d'@)f () o1 (Ya(®) Y5 () + ' (g (e (2)) 02 (Ya(t)), Veel (2.81)
Since ¢,(Y4(£)) > 0, Vi > 0, from (2.81) we have

dYa(t)

)¢1(Y4(t))yf(t)
ea(Ya(t)) —

o @ )= @)

dt+a'(t)g(a(t))dt, Vtel

By taking ¢ = s in the above inequality and integrating it from O to ¢, we get

@1(Ya(s) Y3 (s)

D,(Y4(1) < @2(Ya(0)) + /0 @ )= )

+ /to/(s)g(a(s)) ds, (2.82)
0

for all t € I, where @, is defined by (2.75). From (2.82) we have

T
B (Ya(t)) < 2(Y3(0) + /0 o (5)g(a(s)) ds

L @1(Ya(s) Y7 ()
+/0 o (s)f(oz(s))m ds (2.83)

for all £ < T, where 0 < T < T5 is chosen arbitrarily. Let Y5(¢) denote the function on the
right-hand side of (2.83), which is a positive and nondecreasing function on I with Y5(0) =
D, (1) + foTa’(s)g(a(s))ds and

Ya(e) < @51 (Ys(0), Ve<T. (2.84)

Differentiating Y5(¢) with respect to ¢ and using the hypothesis on ¢,/¢;, from (2.84) we

have
avs(s) @1(Ya (1) Y7 (2)
= (t)f(“(t))m
-1 -1
< (Of (a(®)) @1(P5" (Y5(2)))(P; (YS(t)))p, Vi< T (2.85)

02(@3' (Y5(2)))
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By the definition of @3 in (2.76), from (2.85) we obtain
t
®3(Y5(1)) < P3(Y5(0)) +/ o/ (s)f (e(s)) ds
0
a(T) al(t)
< @; (d>2(uo) +/ g(s) ds) +/ fls)ds, Vt<T. (2.86)
0 0
Let £ = T, from (2.86) we have
a(T)
&s(Y(T)) = %(%(uo) [ e ds)
0
o(T)
+/ fls)ds, Vt<T. (2.87)
0
Since 0 < T < T5 is chosen arbitrarily, from (2.77), (2.80), (2.84) and (2.87), we have

a(t) a(t)
u(t) < d>51 |:d>gl (d>3 <<D2(u0) + /(; g(s) ds) + /0 f(s) ds)], vVt < Ts.

This proves (2.74). O

3 Application

In this section we apply our Theorem 4 to the following differential-integral equation:

d’;—(tt) = H(t,x(x(2)), fot K(s,x(x(s))) ds), Vtel,

x(o) = X0,

(3.88)

where K € C(R x R,R), H € C(R3,R), |xo| > 0 is a constant, satisfy the following condi-

tions:

K (6,x(t))| < g(®)v2(|x(2)
’H (t,x(a(t)), / tK (s, %(ce(s))) dS)
0

t p
< f(t)¢1(|a(t)|)<|x(t)| + /0 |1<(s,x(a(s)))|ds) , (3.90)

), (3.89)

where f, g are nonnegative real-valued continuous functions defined on I.

Corollary 1 Consider the nonlinear system (3.88) and suppose that K, H satisfy the con-
ditions (3.89) and (3.90), and Y, ¥y, Yo/, € CU(I, 1) are increasing functions with
a(t) <t, Yi(t) >0,Vt>0,i=1,2, 2(0) = 0. Then all the solutions of equation (3.88) ex-
ist on I and satisfy the following estimation:

s “0) glai(5)
|x(t)| < \1111|:‘-I/21(‘-I/2 (\p1(|x0|) +/0 %ds>

“O fes)
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forallt < T, where

W, (r) / at >0
r):= — r>0,
! na0)

7 Wa(¥l(s)ds
Wy(r) .—/1 RO r>0,

and T is the largest number such that

“0) ga(s) “0 f(a-1(s)) © gy (®5(5) ds
Wz(“’l('x(")*/o a/(al(s))ds)+/o 2 (a1(s) dsffl N CROICRO

alt) -1 alt) -1 [
_ gle'(s)) fla\(s)) dt
%1(% <%("‘°') +./o a/fi—«s» ds) */o a/((zrl(s)) ds) 5/1 o)

Proof Integrating both sides of equation (3.88) from 0 to ¢, we get

x(t) = xo + /OtH(s,x(a(s)), /OSK(r,x(a(r))) dr) ds, Vtel. (3.92)

Using the conditions (3.89) and (3.90), from (3.92) we obtain

|x(6)] < Ixol+/Otf(S)wl(Ix(a(S))l)<|x(a(5))| +/osg(f)wz(lx(a(r))l)dr>pds

“0 flaY(s))
< |xo] +/0 m‘ﬂl(‘x(s)‘)

s -1 b
X (|x(s)|+/0 %wzﬂx(f)”dl’) ds (3.93)

for all ¢ € I. Applying Theorem 4 to (3.93), we get the estimation (3.91). This completes
the proof of Corollary 1. O
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