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Abstract

Let X, X1, X2,... be a sequence of independent and identically distributed random
variables in the domain of attraction of a normal distribution. A universal result in
almost sure limit theorem for the self-normalized partial sums Sn/Vn is established,
where Sn =

∑n
i=1 Xi, V2

n =
∑n

i=1 X2
i .
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1. Introduction
Throughout this article, we assume {X, Xn}n Î N is a sequence of independent and

identically distributed (i.i.d.) random variables with a non-degenerate distribution func-

tion F. For each n ≥ 1, the symbol Sn/Vn denotes self-normalized partial sums, where

Sn =
∑n

i=1 Xi, V2
n =

∑n
i=1 X2

i . We say that the random variable X belongs to the domain

of attraction of the normal law, if there exist constants an > 0, bn Î ℝ such that

Sn − bn

an

d→N , (1)

where N is the standard normal random variable. We say that {Xn}nÎN satisfies the

central limit theorem (CLT).

It is known that (1) holds if and only if

lim
x→∞

x2P(|X| > x)
EX2I(|X| ≤ x)

= 0. (2)

In contrast to the well-known classical central limit theorem, Gine et al. [1] obtained

the following self-normalized version of the central limit theorem: (Sn − ESn)/Vn
d→N

as n ® ∞ if and only if (2) holds.

Brosamler [2] and Schatte [3] obtained the following almost sure central limit theo-

rem (ASCLT): Let {Xn}nÎN be i.i.d. random variables with mean 0, variance s2 > 0 and

partial sums Sn. Then

Wu Journal of Inequalities and Applications 2012, 2012:17
http://www.journalofinequalitiesandapplications.com/content/2012/1/17

© 2012 Wu; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

mailto:wqy666@glite.edu.cn
mailto:wqy666@glite.edu.cn
http://creativecommons.org/licenses/by/2.0


lim
n→∞

1
Dn

n∑
k=1

dkI
{

Sk

σ
√

k
< x

}
= �(x) a.s. for all x ∈ R, (3)

with dk = 1/k and Dn =
∑n

k=1 dk , where I denotes an indicator function, and F(x) is

the standard normal distribution function. Some ASCLT results for partial sums were

obtained by Lacey and Philipp [4], Ibragimov and Lifshits [5], Miao [6], Berkes and

Csáki [7], Hörmann [8], Wu [9,10], and Ye and Wu [11]. Huang and Zhang [12] and

Zhang and Yang [13] obtained ASCLT results for self-normalized version.

Under mild moment conditions ASCLT follows from the ordinary CLT, but in gen-

eral the validity of ASCLT is a delicate question of a totally different character as CLT.

The difference between CLT and ASCLT lies in the weight in ASCLT.

The terminology of summation procedures (see, e.g., Chandrasekharan and Minak-

shisundaram [[14], p. 35]) shows that the large the weight sequence {dk; k ≥ 1} in (3)

is, the stronger the relation becomes. By this argument, one should also expect to get

stronger results if we use larger weights. And it would be of considerable interest to

determine the optimal weights.

On the other hand, by the Theorem 1 of Schatte [3], Equation (3) fails for weight dk
= 1. The optimal weight sequence remains unknown.

The purpose of this article is to study and establish the ASCLT for self-normalized

partial sums of random variables in the domain of attraction of the normal law, we

will show that the ASCLT holds under a fairly general growth condition on dk = k-1

exp(ln k)a), 0 ≤ a < 1/2.

Our theorem is formulated in a more general setting.

Theorem 1.1. Let {X, Xn}nÎN be a sequence of i.i.d. random variables in the domain of

attraction of the normal law with mean zero. Suppose 0 ≤ a < 1/2 and set

dk =
exp(lnαk)

k
, Dn =

n∑
k=1

dk. (4)

then

lim
n→∞

1
Dn

n∑
k=1

dkI
{

Sk

Vk
≤ x

}
= �(x) a.s. for any x ∈ R. (5)

By the terminology of summation procedures, we have the following corollary.

Corollary 1.2. Theorem 1.1 remain valid if we replace the weight sequence {dk}kÎN by

any {d∗k}k∈Nsuch that 0 ≤ d∗k ≤ dk,
∑∞

k=1 d∗k = ∞.

Remark 1.3. Our results not only give substantial improvements for weight sequence

in theorem 1.1 obtained by Huang [12]but also removed the condition

nP(|X1| > ηn) ≤ c(log n)ε0 , 0 <ε0 < 1 in theorem 1.1 of [12].

Remark 1.4. If EX2 <∞, then X is in the domain of attraction of the normal law.

Therefore, the class of random variables in Theorems 1.1 is of very broad range.

Remark 1.5. Essentially, the open problem should be whether Theorem 1.1 holds for

1/2 ≤ a < 1 remains open.
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2. Proofs
In the following, an ~ bn denotes limn®∞ an/bn = 1. The symbol c stands for a generic

positive constant which may differ from one place to another.

Furthermore, the following three lemmas will be useful in the proof, and the first is

due to [15].

Lemma 2.1. Let X be a random variable with EX = 0, and denote

l(x) = EX2I{|X| ≤ x}. The following statements are equivalent:

(i) X is in the domain of attraction of the normal law.

(ii) x2P(|X| > x) = o(l(x)) .

(iii) xE(|X| I(|X| > x)) = o(l(x)) .

(iv) E(|X|αI(|X| ≤ x)) = o(xα−2l(x)) for a > 2.

Lemma 2.2. Let {ξ, ξn}nÎN be a sequence of uniformly bounded random variables. If

exist constants c > 0 and δ > 0 such that

|Eξkξj| ≤ c
(

k
j

)δ

, for 1 ≤ k < j, (6)

then

lim
n→∞

1
Dn

n∑
k=1

dkξk = 0 a.s., (7)

where dk and Dn are defined by (4).

Proof. Since

E

(
n∑

k=1

dkξk

)2

≤
n∑

k=1

d2
kEξ2

k + 2
∑

1≤k<j≤n

dkdj
∣∣Eξkξj

∣∣

=
n∑

k=1

d2
kEξ2

k + 2
∑

1≤k<j≤n;j/k≥ln2/δDn

dkdj |Eξkξl| + 2
∑

1≤k<j≤n;j/k<ln2/δDn

dkdj |Eξkξl|

:= Tn1 + 2(Tn2 + Tn3).

(8)

By the assumption of Lemma 2.2, there exists a constant c > 0 such that |ξk| ≤ c for

any k. Noting that exp(lnαx) = exp

(∫ x
1

α(ln u)α−1

u
du

)
, we have exp(lna x), a < 1 is a

slowly varying function at infinity. Hence,

Tn1 ≤ c
n∑

k=1

exp(2lnαk)
k2

≤ c
∞∑
k=1

exp(2lnαk)
k2

< ∞.

By (6),

Tn2 ≤ c
∑

1≤k<j≤n;j/k≥ln2/δDn

dkdj

(
k
j

)δ

≤ c
∑

1≤k<j≤n;j/k≥ln2/δDn

dkdj

ln2Dn
≤ cD2

n

ln2Dn
. (9)

On the other hand, if a = 0, we have dk = e/k, Dn ~ e ln n, hence, for sufficiently

large n,
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Tn3 ≤ c
n∑

k=1

1
k

kln2/δDn∑
j=k

1
j
≤ cDn ln ln Dn ≤ D2

n

ln2Dn
. (10)

If a > 0, note that

Dn ∼
∫ n

1

exp(lnαx)
x

dx =
∫ ln n

0
exp(yα)dy

∼
∫ ln n

0

(
exp(yα) +

1− α

α
y−α exp(yα)

)
dy

=
∫ ln n

0

1
α

(
y1−α exp(yα)

)′
dy

=
1
α

ln1−αn exp(lnαn), n →∞.

(11)

This implies

ln Dn ∼ lnαn, exp(lnαn) ∼ αDn

(ln Dn)

1− α

α

, ln ln Dn ∼ α ln ln n.

Thus combining |ξk| ≤ c for any k,

Tn3 ≤ c
n∑

k=1

dk

∑
1≤k<j≤n;j/k<(ln Dn)2/δ

dj

≤ c
n∑

k=1

dk

∑
k<j≤k(ln Dn)2/δ

exp(lnαn)
1
j

≤ c exp(lnαn) ln ln Dn

n∑
k=1

dk

≤ c
D2

n ln ln Dn

(ln Dn)(1−α)/α
.

Since a < 1/2 implies (1 - 2a)/(2a) > 0 and ε1 : = 1/(2a) - 1 > 0. Thus, for suffi-

ciently large n, we get

Tn3 ≤ c
D2

n

(ln Dn)1/(2α)

ln ln Dn

(ln Dn)(1−2α)/(2α)
≤ D2

n

(ln Dn)1/(2α)
=

D2
n

(ln Dn)1+ε1
. (12)

Let Tn :=
1

Dn

∑n
k=1 dkξk, ε2 := min(1, ε1) . Combining (8)-(12), for sufficiently large n,

we get

ET2
n ≤

c

(ln Dn)1+ε2
.

By (11), we have Dn+1 ~ Dn. Let 0 <h <ε2/(1 + ε2), nk = inf{n; Dn ≥ exp(k1-h)}, then

Dnk ≥ exp(k1−η), Dnk−1 < exp(k1−η) . Therefore

1 ≤ Dnk

exp(k1−η)
∼ Dnk−1

exp(k1−η)
< 1 → 1,

Wu Journal of Inequalities and Applications 2012, 2012:17
http://www.journalofinequalitiesandapplications.com/content/2012/1/17

Page 4 of 10



that is,

Dnk ∼ exp(k1−η).

Since (1 - h)(1 + ε2) > 1 from the definition of h, thus for any ε > 0, we have

∞∑
k=1

P(
∣∣Tnk

∣∣ > ε) ≤ c
∞∑
k=1

ET2
nk
≤ c

∞∑
k=1

1
k(1−η)(1+ε2)

<∞.

By the Borel-Cantelli lemma,

Tnk → 0 a.s.

Now for nk <n ≤ nk+1, by |ξk| ≤ c for any k,

|Tn| ≤
∣∣Tnk

∣∣ +
c

Dnk

nk+1∑
i=nk+1

di ≤
∣∣Tnk

∣∣ + c
(

Dnk+1

Dnk

+ 1
)
→ 0 a.s.

from
Dnk+1

Dnk

∼ exp (k + 1)1−η)
exp(k1−η)

= exp(k1−η((1 + 1/k)1−η − 1)) ∼ exp((1 − η)k−η) → 1 . I.

e., (7) holds. This completes the proof of Lemma 2.2.

Let l(x) = EX2I{|X| ≤ x}, b = inf{x ≥ 1; l(x) > 0} and

ηj = inf
{

s; s ≥ b + 1,
l(s)
s2
≤ 1

j

}
for j ≥ 1.

By the definition of hj, we have jl(ηj) ≤ η2
j and jl(hj - ε) > (hj - ε)

2 for any ε > 0. It

implies that

nl(ηn) ∼ η2
n , as n →∞. (13)

For every 1 ≤ i ≤ n, let

X̄ni = XiI(|Xi| ≤ ηn), S̄n =
n∑

i=1

X̄ni, V̄2
n =

n∑
i=1

X̄2
ni.

Lemma 2.3. Suppose that the assumptions of Theorem 1.1 hold. Then

lim
n→∞

1
Dn

n∑
k=1

dkI

{
S̄k − ES̄k√

kl(ηk)
≤ x

}
= �(x) a.s. for any x ∈ R, (14)

lim
n→∞

1
Dn

n∑
k=1

dk

(
I

(
k⋃

i=1

(|Xi| > ηk)

)
− EI

(
k⋃

i=1

(|Xi| > ηk)

))
= 0 a.s., (15)

lim
n→∞

1
Dn

n∑
k=1

dk

(
f

(
V̄2

k

kl(ηk)

)
− Ef

(
V̄2

k

kl(ηk)

))
= 0 a.s., (16)

where dk and Dn are defined by (4) and f is a non-negative, bounded Lipschitz

function.
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Proof. By the cental limit theorem for i.i.d. random variables and VarS̄n∼nl(ηn) as n

® ∞ from EX = 0 , Lemma 2.1 (iii), and (13), it follows that

S̄n − ES̄n√
nl(ηn)

d→N , as n →∞,

where N denotes the standard normal random variable. This implies that for any g

(x) which is a non-negative, bounded Lipschitz function

Eg

(
S̄n − ES̄n√

nl(ηn)

)
→ Eg(N ), as n →∞,

Hence, we obtain

lim
n→∞

1
Dn

n∑
k=1

dkEg

(
S̄k − ES̄k√

kl(ηk)

)
= Eg(N )

from the Toeplitz lemma.

On the other hand, note that (14) is equivalent to

lim
n→∞

1
Dn

n∑
k=1

dkg

(
S̄k − ES̄k√

kl(ηk)

)
= Eg(N ) a.s.

from Theorem 7.1 of [16] and Section 2 of [17]. Hence, to prove (14), it suffices to

prove

lim
n→∞

1
Dn

n∑
k=1

dk

(
g

(
S̄k − ES̄k√

kl(ηk)

)
− Eg

(
S̄k − ES̄k√

kl(ηk)

))
= 0 a.s., (17)

for any g(x) which is a non-negative, bounded Lipschitz function.

For any k ≥ 1, let

ξk = g

(
S̄k − ES̄k√

kl(ηk)

)
− Eg

(
S̄k − ES̄k√

kl(ηk)

)
.

For any 1 ≤ k <j, note that g

(
S̄k − ES̄k√

kl(ηk)

)
and

g

⎛
⎜⎜⎜⎝

S̄j − ES̄j −
k∑

i=1
(Xi − EXi)I(|Xi| ≤ ηj)√

jl(ηj)

⎞
⎟⎟⎟⎠ are independent and g(x) is a non-negative,

bounded Lipschitz function. By the definition of hj, we get,
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∣∣Eξkξj
∣∣ =

∣∣∣∣∣Cov

(
g

(
S̄k − ES̄k√

kl(ηk)

)
, g

(
S̄j − ES̄j√

jl(ηj)

))∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣
Cov

⎛
⎜⎜⎜⎝g

(
S̄k − ES̄k√

kl(ηk)

)
, g

(
S̄j − ES̄j√

jl(ηj)

)
− g

⎛
⎜⎜⎜⎝

S̄j − ES̄j −
k∑

i=1
(Xi − EX1)I(|X1| ≤ ηj)√

jl(ηj)

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣

≤ c

E

(
k∑

i=1
(Xi − EXi)I(|Xi| ≤ ηj)

)
√

jl(ηj)
≤ c

√
kEX2I(|X| ≤ ηj)√

jl(ηj)

= c
(

k
j

)1/2

.

By Lemma 2.2, (17) holds.

Now we prove (15). Let

Zk = I

(
k⋃

i=1

(|Xi| > ηk)

)
− EI

(
k⋃

i=1

(|Xi| > ηk)

)
for any k ≥ 1.

It is known that I(A ∪ B) - I(B) ≤ I(A) for any sets A and B, then for 1 ≤ k <j, by

Lemma 2.1 (ii) and (13), we get

P(|X| > ηj) = o(1)
l(ηj)

η2
j

=
o(1)

j
. (18)

Hence

∣∣EZkZj
∣∣ =

∣∣∣∣∣∣Cov

⎛
⎝I

(
k⋃

i=1

(|Xi| > ηk)

)
, I

⎛
⎝ j⋃

i=1

(|Xi| > ηj)

⎞
⎠

⎞
⎠

∣∣∣∣∣∣
=

∣∣∣∣∣∣Cov

⎛
⎝I

(
k⋃

i=1

(|Xi| > ηk)

)
, I

⎛
⎝ j⋃

i=1

(|Xi| > ηj)

⎞
⎠− I

⎛
⎝ j⋃

i=k+1

(|Xi| > ηj)

⎞
⎠

⎞
⎠

∣∣∣∣∣∣
≤ E

∣∣∣∣∣∣I
⎛
⎝ j⋃

i=1

(|Xi| > ηj)

⎞
⎠− I

⎛
⎝ j⋃

i=k+1

(|Xi| > ηj)

⎞
⎠

∣∣∣∣∣∣
≤ EI

(
k⋃

i=1

(|Xi| > ηj)

)
≤ kP(|X| > ηj)

≤ k

j
.

By Lemma 2.2, (15) holds.

Finally, we prove (16). Let

ζk = f

(
V̄2

k

kl(ηk)

)
− Ef

(
V̄2

k

kl(ηk)

)
for any k ≥ 1.
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For 1 ≤ k <j,

∣∣Eζkζj
∣∣ =

∣∣∣∣∣Cov

(
f

(
V̄2

k

kl(ηk)

)
, f

(
V̄2

j

jl(ηj)

))∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣
Cov

⎛
⎜⎜⎜⎝f

(
V̄2

k

kl(ηk)

)
, f

(
V̄2

j

jl(ηj)

)
− f

⎛
⎜⎜⎜⎝

V̄2
j −

k∑
i=1

X2
i I(|Xi| ≤ ηj)

jl(ηj)

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣

≤ c

E

(
k∑

i=1
X2

i I(|Xi| ≤ ηj)

)

jl(ηj)
= c

kEX2I(|X| ≤ ηj)

jl(ηj)
= c

kl(ηj)

jl(ηj)

= c
k
j
.

By Lemma 2.2, (16) holds. This completes the proof of Lemma 2.3.

Proof of Theorem 1.1. For any given 0 <ε < 1, note that

I
(

Sk

Vk
≤ x

)
≤ I

(
S̄k√

(1 + ε)kl(ηk)
≤ x

)
+ I(V̄2

k > (1 + ε)kl(ηk)) + I

(
k⋃

i=1

|Xi| > ηk)

)
, for x ≥ 0,

I
(

Sk

Vk
≤ x

)
≤ I

(
S̄k√

(1− ε)kl(ηk)
≤ x

)
+ I(V̄2

k < (1− ε)kl(ηk)) + I

(
k⋃

i=1

|Xi| > ηk)

)
, for x < 0,

and

I
(

Sk

Vk
≤ x

)
≥ I

(
S̄k√

(1− ε)kl(ηk)
≤ x

)
− I(V̄2

k < (1− ε)kl(ηk))− I

(
k⋃

i=1

|Xi| > ηk)

)
, for x ≥ 0,

I
(

Sk

Vk
≤ x

)
≥ I

(
S̄k√

(1 + ε)kl(ηk)
≤ x

)
− I(V̄2

k < (1 + ε)kl(ηk))− I

(
k⋃

i=1

|Xi| > ηk)

)
, for x < 0.

Hence, to prove (5), it suffices to prove

lim
n→∞

1
Dn

n∑
k=1

dkI

(
S̄k√

kl(ηk)
≤ √1± εx

)
= �(

√
1± εx) a.s., (19)

lim
n→∞

1
Dn

n∑
k=1

dkI

(
k⋃

i=1

|Xi| > ηk)

)
= 0 a.s., (20)

lim
n→∞

1
Dn

n∑
k=1

dkI(V̄2
k > (1 + ε)kl(ηk)) = 0 a.s., (21)

lim
n→∞

1
Dn

n∑
k=1

dkI(V̄2
k > (1− ε)kl(ηk)) = 0 a.s., (22)

by the arbitrariness of ε > 0.

Firstly, we prove (19). Let 0 <b < 1/2 and h(·) be a real function, such that for any

given x Î ℝ,

I(y ≤ √1± εx− β) ≤ h(y) ≤ I(y ≤ √1± εx + β). (23)
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By EX = 0, Lemma 2.1 (iii) and (13), we have∣∣ES̄k
∣∣ =

∣∣kEXI(|X| ≤ ηk)
∣∣ =

∣∣kEXI(|X| > ηk)
∣∣ ≤ kE |X| I(|X| > ηk) = o(

√
kl(ηk)).

This, combining with (14), (23) and the arbitrariness of b in (23), (19) holds.

By (15), (18) and the Toeplitz lemma,

0 ≤ 1
Dn

n∑
k=1

dkI

(
k⋃

i=1

|Xi| > ηk)

)
∼ 1

Dn

n∑
k=1

dkEI

(
k⋃

i=1

|Xi| > ηk

)

≤ 1
Dn

n∑
k=1

dkkP(|X| > ηk) → 0 a.s.

That is (20) holds.

Now we prove (21). For any μ > 0, let f be a non-negative, bounded Lipschitz func-

tion such that

I(x > 1 + μ) ≤ f (x) ≤ I(x > 1 + μ/2).

Form EV̄2
k = kl(ηk), X̄ni is i.i.d., Lemma 2.1 (iv), and (13),

P
(
V̄2

k >
(

1 +
μ

2

)
kl(ηk)

)
= P

(
V̄2

k − EV̄2
k >

μ

2
kl(ηk)

)

≤ c
E(V̄2

k − EV̄2
k )

2

k2l2(ηk)
≤ c

EX4I(|X| ≤ ηk)
kl2(ηk)

=
o(1)η2

k

kl(ηk)
= o(1) → 0.

Therefore, from (16) and the Toeplitz lemma,

0 ≤ 1
Dn

n∑
k=1

dkI(V̄2
k > (1 + μ)kl(ηk)) ≤ 1

Dn

n∑
k=1

dkf

(
V̄2

k

kl(ηk)

)

∼ 1
Dn

n∑
k=1

dkEf

(
V̄2

k

kl(ηk)

)
≤ 1

Dn

n∑
k=1

dkEI(V̄2
k > (1 + μ/2)kl(ηk))

=
1

Dn

n∑
k=1

dkP(V̄2
k > (1 + μ/2)kl(ηk))

→ 0 a.s.

Hence, (21) holds. By similar methods used to prove (21), we can prove (22). This

completes the proof of Theorem 1.1.
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