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Abstract. The Tropical Rainfall Measuring Mission 0.67 and 0.76, respectively. This research provides new in-
(TRMM) carries aboard the Precipitation Radar (TRMMPR) sights into Ku-band° dependence on soil water content in
that measures the backscattef) of the surfacec® is sen-  the arid regions.

sitive to surface soil moisture and vegetation conditions. Due
to sparse vegetation in arid and semi-arid regions, TRMMPR
o° primarily depends on the soil water content. In this study
we relate TRMMPRs° measurements to soil water content +

s) inthe Lower Colorado River Basin (LCRBj° depen- . . -
) ( By P The ongoing drought of the Colorado River Basin in the

dence onmy is studied for different vegetation greenness . .
values detérmined through Normalizedg Differen%e Vegeta_southwestern United States started in 2000 and has become

tion Index (NDVI). A new model ofs° that couples inci- the longest drought in the recorded history of the bakim{

dence anglen,, and NDVI is used to derive parameters and iIsena.et al. 2007. This is evident from the historic_: low
retrieve soil water content. The calibration and validation levels in most of the storage lakes that has resulted in severe

of this model are performed using simulated and measured/ae" shortage in some user states. The Colorado_River Basin
m, data. Simulatedh, is estimated using the Variable Infil- provides water to seven states in the US and Mexico. Due to

tration Capacity (VIC) model and measured is acquired the regional importance of this basin and agricultural and so-

from ground measuring stations in Walnut Gulch Experimen—CiaI impacts of water scarcity, it is important to understand
tal Watershed (WGEW) the factors related to droughts. Timely information of pos-

° model is calibrated using VIC and WGEM, data dur- sible drought can improve decisio_ns for water management
ing 1998 and the calibrated model is used to deviyeluring (Kalra and Ahma_dzoog. Drought signatures are c_IoseI_y re-
later years. The temporal trends of derivedare consistent lated to the s_patlal and tempqral variability of soil moisture
with VIC and WGEWm data with a correlation coefficient (Tang and Piechof&2009. Soil water content reflects the

(R) of 0.89 and 0.74, respectively. Derived is also consis- recent precipitation, agricultural potential, and water storage

tent with the measured precipitation data wkRk0.76. The and can serve as a good index of drougBhéffield et al.
gridded VIC data is used to calibrate the model at each gri02004_cosh et al..2008.. ) )
point in LCRB and spatial maps of the model parameters are Soil moisture is an |mportant_ varla_ble for understanding
prepared. The model parameters are spatially coherent witf® Nydrology and climate. It is an integral part of water
the general regional topography in LCRB. TRMMBR de- and energy balance equations m_atmqspherlc an_q hydrolo.g|c
rived soil moisture maps during May (dry) and August (wet) models. Microwave remote sensing with its sensitivity to di-

1999 are spatially similar to VIC estimates with correlation €/€CtriC properties is useful in mapping the land surface soil
moisture Schmugge1983 Beharj 2005 Pulliainen et al.

1998 Baup et al. 2007). Its dependence on spatial and

Correspondence tdS. Ahmad temporal variability of surface dielectric constant is useful
BY (sajjad.ahmad@unlv.edu) to monitor soil moisture at basin scales. Recent research
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directions indicate rising interest in the operational measur-spatial maps from the basin scale hydrological models can
ing and monitoring of the global soil moisture using remote fill this gap for the purposes of calibration and validation.
sensingjoku et al, 2003 Moran et al, 2004 Wagner et al. Generally, backscatter at C- and L-bands has better sensi-
2007. National Aeronautics and Space Administration planstivity to soil moisture than Ku-band due to relatively lesser
to launch a dedicated soil moisture mapping mission calledattenuation by vegetation standl@by et al, 1982. C-band
Soil Moisture Active Passive (SMAP) in 201B4rrett et al. ERS scatterometer data has been used to map soil moisture in
2009. A similar mission called Soil Moisture and Ocean Canadian prairies{agner et al.1999. Kim and Zyl (2009)
Salinity (SMOS) has been successfully launched by Euro-have shown the use of L-band radar data to retrieve soil mois-
pean Space Agency in 200Drinkwater and Kerr2009. ture for bare soils and vegetated ardéisr(and Zyl, 2009.
Thus, it is important to further expand the hydrological ap- The potential of Ku-band microwave to measure soil mois-
plications of the microwave remote sensing data. ture has been demonstrated in several studi@sgelmann
Microwave backscatter () depends on soil moisture and et al, 2004. European Remote Sensing SAR data over agri-
vegetation conditions of land surface. Decoupling the effectsculture fields have been shown to retrieve leaf area index
of soil and vegetation on backscatter poses a major difficultyand soil moisture under lower vegetation conditiol®Kan
for useful application jlagagi and Kerr1997 Woodhouse et al, 1998. A similar study compared soil moisture re-
and Hoekman2000. The presence of vegetation reduces trieval from agricultural fields using C- and multiangle Ku-
o° sensitivity to soil moisture. Vegetation is sparse in arid band SAR data for different surface roughness conditions
and semi-arid regions and thus, backscatter measurements {8ano et al.1998. In recent studies, Ku-band backscatter
such areas primarily depend on the soil moisture and soidata measured by Seawinds scatterometer has been shown to
roughness characteristics. Various theoretical and empiribe temporally consistent with the changes in measured soil
cal models have been devised to retrieve soil moisture frommoisture Mladenova et a).2008 2009. In a previous study,
active and passive remote sensing dattalfy et al, 1982 authors have used a machine learning approach to demon-
Fung 1994 Wen et al, 2003 Bindlish et al, 2003 Paloscia  strate the relationship between soil moisture and TRMMPR
etal, 2001). Theoretical models involve complicated scatter- Ku-band backscatter dataAlimad et al.2010. Future mis-
ing phenomena from probabilistic models of soil, vegetation,sions of SMAP and SMOS operating in L-band would pro-
and terrain. They model plant leaves as thin disks, brancheside data with better sensitivity to soil moisture. Meanwhile,
and trunks as cylinders, and soil surface by the standard desver arid regions with low vegetation, it would be beneficial
viation and correlation length of surface heightfrazzoli  to understand° and itsf-response in relation to soil mois-
etal, 1991 1997 Shi et al, 1997 Rahman et a|2008 Ku- ture at basin scale. TRMMPR Ku-band data provides an op-
rum et al, 2009. Generally, such models are computation- portunity to study backscatter relationship to soil moisture
ally intensive and difficult to implement in large scale appli- at moderate spatial resolution and low to moderate vegeta-
cations. Empirical models of backscattef) are data driven  tion cover. TRMM has been observing tropical regions for a
and can be implemented with relative ease given sufficiendecade and can contribute in the understanding of global hy-
in-situ data for calibration and validation. drology by providing moderate resolution soil moisture maps
The Tropical Rainfall Measuring Mission (TRMM) Pre- of the arid regions.
cipitation Radar (TRMMPR), initially designed to measure In this paper, TRMMPR Ku-band® dependence on soil
rainfall (Kummerow et al. 1998 Kozu et al, 2007), pro-  water contentr,) is investigated in the arid region of Lower
vides Ku-band HH polarization® measurements of the land Colorado River Basin (LCRB). Backscatter, in decibels (dB),
surface. Earlier studies on TRMMP& have shown it to  is modeled as a function 6f m,, and Normalized Difference
be sensitive to the surface soil moistufefo et al. 2003 Vegetation Index (NDVI); and calibrated using known soil
Narayan et a) 2006, but no comprehensive method has beenmoisture data.c° model is calibrated using 1998 data and
developed for a systematic retrieval of soil moisture spatialused to deriven; during later years. Known data consists of
maps from TRMMPR Ku-band data. Generally, Ku-band ra- simulated soil moisture data from hydrologic modeling and
diation is attenuated by the vegetation canopy but we conjecmeasured data from ground stations. Simulaigds esti-
ture that in the arid regions, due to sparse and shrubland-likenated for top 10 cm soil layer by Variable Infiltration Capac-
vegetation, it has primary dependence on soil characteristicsty (VIC) model (Liang et al, 1994 Tang and Piechot2009
The purpose of this study is to investigate the relationship bewhereas measured; is acquired for top 5cm soil layer at
tween TRMMPR Ku-band backscatter, surface soil moistureground measuring stations in Walnut Gulch Experimental
and vegetation in semi-arid areas. In-situ soil moisture dataVatershed (WGEW). Soil moisture derived framfi model
is not widely available and is sparse for regional scale mod-s validated using in-situ measurements and climate division
eling (Tang and Piechof&2009. Soil moisture experiments monthly average precipitation data. The results show the po-
(SMEX) have considerably helped in the development of re-tential of Ku-band instruments over arid and semi-arid re-
mote sensing of soil moisture but the soil moisture measuregions.
ments from these experiments are only available for a few This paper is organized as follows. Section 2 provides
selected locationdas et al.2008. Simulated soil moisture details of the study area and data. This is followed by the
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description of the research approach and methods in Sect. 3
o° model, model parameters, and model calibration are also
discussed in this section. Section 4 presents the results an
discussion. The model derived soil moisture and the com-
parison with the time series of measured soil moisture and
precipitation data is also presented. The spatial distribution
of soil moisture in LCRB is derived and compared to the VIC

m; estimates. Finally, in Sect. 5 conclusions are presented.

2 Study area and data

This section describes the characteristics of the study area_g -6 -4 > 0
and the data used in this investigation. The TRMMPR sensor
specifications and NDVI data characteristics are provided.

VlC model development to produce S|mu|ated SO'I mo|stureF|g 1. Backscatter map of the Lower Colorado River Basin show-
is also described. ing locations of study sites used in this research. Basins geographi-

cal position in the US is also shown and bounded withif+30° N
latitudes and 1074116 W longitudes. Northwest basin area is
not covered by TRMM satellite. (Right) Corresponding vegetation
(NDVI) map of the basin.

2.1 Colorado river basin

Colorado River basin provides water supply, flood control,
and hydropower to a large area of the southwest United
States. The basin drains an area of 637 000 square kilome-
ters (246 000 square miles), including parts of seven wester#ites over which the° relationship to soil moisture is ana-
US states, Wyoming, Colorado, Utah, New Mexico, Nevada,lyzed. In general, the semi-arid region of LCRB has inho-
Arizona, and California. It is the most important basin in mogeneous vegetation cover with mixture of vegetation and
terms of water supply for 25 million people within the basin bare soil patches. Since TRMMPR Ku-band over veg-
states and adjoining areas. etated area is greatly affected by the canopy scattering we
Two main mountain ranges, the Rocky Mountains and theperform our analysis over three different vegetation condi-
Wasatch Mountains, border the east and the west of the basi#ions specified by the NDVI values. In the later text, dense,
The basin contains large variations in topography, climate moderate, and low vegetation are denoteddyy MV, and
soils, and vegetation. Elevations range from 1400 m to aboutV: respectively. The NDVI ranges f&V, MV, andDV are
3700 m. The geologic parent materials provide a wide variety?-2-0.3, 0.3-0.5, and 0.5-0.75, respectively. Sites 1-3 and
of soils producing vegetation from needle leaf forest com-4-5 are covered bV andMV of Coconino forest, respec-
plexes to mostly desert shrubs and grasses. In general, tfively. Locations 8-9 are in the desert north of Coconino for-
semi-arid region of LCRB has inhomogeneous and spars€St and are covered witlV, primarily, sparse shrubs. Sites
vegetation cover with mixture of vegetation and bare soil 6—7 and 10-12 are locations corresponding¥andLV, re-
patches. Because of its geographic and climatologic characsPectively, in other parts of the basin. Sites 13 andL} (
teristics, the Colorado River Basin is particularly vulnerable are the locations of gages in the WGEW where top 5 cm soil
to severe and sustained drought. moisture measurements are used to validate the TRMMPR
Figurelis theo® image of the LCRB at 10incidence an- derived soil moist_ure. T_he leaf area index (LAI) value ranges
gle () prepared from backscatter observations from multiplefor the selected sites with vegetation covevs MV, andDV
orbits. It is noted that in this papéris used to denote inci- &ré 0.08-0.53, 0.22-1.38, and 0.55-2.20, respectively. The
dence angle and not soil moisture as conventionally done ifange of values represent the seasonal variations of the vege-
the Journal of Hydrology and Earth System Sciences pub”_tatlon cover reflegted in LAIL In gengral, the LCRB presents
cations. The relationship betweef andd is non-linear over ~ @n area with relatively low leaf area index.
the whole range of incidence angles but is approximately lin- In order to evaluate consistency of derived soil moisture to
ear within 3-15. This angle range is used for the normal- the climatic conditions, it is compared with the climate divi-
ization to 10. Due to orbital geometry of TRMM, 3tN lat- sion precipitation data. Climate divisions are regions with
itude is the upper limit of TRMMPR spatial coverage. The relatively homogeneous large-scale climate patterns. The
dark area in the east central LCRB is the Coconino forestNational Climate Data Center has used boundaries of the US
along the Mogollon ridge and the brighter areas in the im-counties, river basins, and major crop areas along with the
age correspond to desert and low vegetation. Correspondingegional climate statistics to divide US region into climate
NDVI image is also provided showing predominantly low divisions. These divisions are used as a guide for local anal-
vegetation cover. Figurg also shows the locations of study yses and forecasting; and large-scale climate pattern analysis
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(Guttman and Quaylel996. Sites 1-3DV), 4-5 MV) and  where NIR and RED are the near infrared band and red band
8-9 (LV) are in climate division 7 of the state of Arizona and reflectance, respectively. The normalization results in NDVI

are used for this comparison. values ranging betweenl and 1 where values less than 0
o represent bare soil and 1 represents dense vegetation. We
2.2 TRMM precipitation radar use NDVI data prepared from AVHRR that is available in the

form of 7-day composite images at a 1 km ground resolution

TRMM has proved to be a milestone in advancing the un-t the USGS earth explorer websitetp://edcsns17.cr.usgs.
derstanding of global rain in relation to the hydrologic cycle goy/EarthExploreji

and climate. The TRMMPR, primarily designed to estimate
vertical profile of rain from the path integrated attenuation 4 variable Infiltration Capacity (VIC) model
of the radar pulse, also provides surface measurements
(Kummerow et al. 1998 Kozu et al, 200]). Theseo® mea-  v|C is a macro-scale water and energy balance model that
surements have been used to study vegetaBtephen and  yses meteorological, soil, and vegetation data to estimate
Long, 2002 Satake and Hanad@004), deserts§tephenand  gridded surface and subsurface rundffapg et al, 1994.
Long, 2009, and ocean winds.{ et al., 2004. TRMMPR  |n this research, we develop VIC model for the LCRB
provides Ku-band HH polarization® measurements. Ear- (Tang and Piechofa2009. The meteorological data ap-
lier studies on TRMMPRy° have shown it to be sensitive to plied to the model includes gridded daily precipitation, min-
the surface soil moistureSgto et al. 2003 Narayan et al.  jmum and maximum air temperature, and wind speed. We
200@ This Study is the first attempt ina SyStematiC Spatial use the gndded meteoro]ogica| data atolljsso|ution, pre-
estimation of soil moisture from TRMMPR backscatter data. pared by the Surface Water Mode”ng group at the Uni-
TRMMPR o° measurements are madedatange of O—  versity of Washington Http://www.hydro.washington.edu/
17. o° measurements far less than 3 have high noise. | ettenmaier/Data/gridde/The development of this data is
Each TRMMPR measurement record provides a rain flag indescribed in Maurer et al. 2009. The soil data includes
dicating the precipitation condition for its* value.o° cor-  field capacity, wilting point, saturated hydraulic conductiv-
rupted by rain provides uncertain information about the landity, soil type, and porosity and are obtained from the State
surface and thus TRMMPR?® is cleaned by removing the Soijl Geographic Database maintained by the Earth System
rain contaminated and near-nadir high noise measurementscience Center, Pennsylvania. United States Geological Sur-
TRMMPR measurements are available at four azimuth anvey (USGS) 30 arc-second digital elevation model is used as
gles (from ascending and descending passes and cross tragkreference for the soil layer deptAkdulla et al, 1996.
scanning towards both sides of satellite path}. azimuth  The vegetation data is the land composition at each grid cell
modulation is primarily caused by the topography (surfaceand constitutes 14 classes. This data is available as a Uni-
slope). The mean® variation due to azimuth angle over the yersity of Maryland 1 km Global Land Cover product and is
LCRB is generally less than 2 dB except along the Mogollonysed to prepare the land cover map. The VIC model is forced
ridge where the surface slope has higher variability. For thepy gridded precipitation, temperature, wind series, landcover
majority of this area, the azimuth angle dependence is neglitype, and soil properties; and calculates the moisture fluxes
gible. for each grid cell. The soil moisture is computed for three
TRMMPR ¢° observations have a ground resolution of soil layers, i.e., 0-10cm, 10-40cm, and 40-140cm. VIC
4.4km which is reasonably large to include large fractionssimulated soil moisture has been used for drought analysis
of bare soil in the arid regions. Thus, thé 6 dependence is  (Sheffield et al.2004) and related to the oceanic-atmospheric
primarily affected by the surface roughness. Large bare soipatterns Tang and Piechof2009. We relate water content
patches in the TRMMPR footprint significantly influence the of the top 10 cm soil layer to the TRMMP& observations.
backscatter measurements thus introducing strong soil moispespite the lack of TRMM coverage in the northwest part of
ture signal in ther° observations. basin, the overlap with the VIC estimated soil moisture map

) ) o is sufficient to perform this analysis.
2.3 Normalized difference vegetation index

The Normalized Difference Vegetation Index is the normal-
ized difference of infrared band and red band reflectance an
is useful for monitoring vegetatioriTgcker, 1979. NDVI

g Research approach and methods

has b tensivel 4t q wated | B&ckscatter depends upon the surface geometrical (lan-
as been extensively used to assess ground vegetaled lagfisq andcover, soil type and condition, vegetation type and

cover. This mdex_ benefits from thg d|ffere-nce.of reflectangestate’ etc.) and dielectric (moisture content of vegetation and

of red and hear mfr_ared freq.uenc!es, which increases Wlthsoil) characteristics. Despite the advances in usifign

the vegetation density. NDV1 is defined as mapping various land parameters, soil moisture mapping is
NIR — RED still in its early stages of developmewégner et al.2007).

NDVI = NIR+RED (1) It is difficult to decouple the contributions from geometrical
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Fig. 2. Backscatter incidence angle dependence for three vegetation densities (dense, moderate, and low) and three soil water content value
i.e.,(a) 15-16%,(b) 19-21%, andc) 24—26%.
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Fig. 3. Backscatter incidence angle dependence for three soil moisture ranges (15-16%, 19-21%, and 24—-26%) and vegetation covers, i.e.
(a) LV, (b) MV, and(c) DV.

and dielectric features. These characteristics modulate th8.1 Backscatter model
TRMMPR backscatter.o° has contribution from vegeta-

tion canopy and soil, and their water content. At Ku-band, Backscatte-response varies with vegetation density and

thg vggetaﬂon canopy contribution is through the SC"jltte”ngsoil moisture. In order to understand the coupled dependence
of incident pulse by the leaves, branches, and canopy water

. . of v ionan il moisture, thi ion presents the anal-
called the volume scattering. Ku-band wavelength (2.2 cm) |s0 egetation and soil moisture, this section presents the ana

of the order of small plant leaf sizes. Generally, plant IeavesySIS ofo” §-response over three vegetation coverg,(MV,

. . .. ..andLV) and three soil moisture conditions (daily averages:
attenuate the power and this attenuation increases with in; V) (daily 9

. . cr: ) . 15-16%, 19-21%, and 24-26%) (see 2g.In Fig. 2 plots,
crease in canopy moisiure, thus poses difficulty in remev_each symbol point is an individual backscatter measurement
ing soil moisture characteristics from TRMMPR backscat- y P

ter. Nevertheless, in arid regions where the vegetation iat a certain incidence angle. Figuta, b, and c corresponds
j ' 9 9 Yo0°vs.6 plots under three soil moisture conditions. In each

sparse and has large patches of intervening bare soil, Ku- : . .
band backscatter is directly affected by the soil moisture. IanOt’ data is shown by different symbols for three vegetation

S ensities. Straight lines are the linear fits to each data set.
most of the LCRB, the vegetation is hon-homogenous an . ; .
. . L . he analysis of these plots reveals that soil moisture and veg-
discontinuous resulting in frequent patches of bare soil and

. o .
low vegetation areas. This contributes to higher dependencgtatlon modulate the TRMMPR® 9-response. In general,

. . an increase in soil moisture increasesas well as the slope
of HH-pol Ku-band backscatter on the soil surface condi- o : )
. . : ; -~ of o° f-response. Vegetation density has the reverse affect
tions i.e., soil type, roughness, and moisture. The relative . . .
S ) . . on TRMMPR near-nadir backscatter, i.e., as the vegetation
contribution of soil and vegetation scattering depends upon L o .
. : ; density increasess® decreases and slope of @sresponse
the vegetation cover and is reflected in the slope obthé- . .
: : . becomes shallower. In order to further clarify the role of soil
responsel(ong and Hardin1994). The relationship between . . o : .
A . . ._moisture in thes® #-response, Fig3 shows thes° vs. 6
o° and6 is non-linear over the whole range of angles but is L . .
) . L - plots and line fits for three soil moisture values over the three
approximately linear within 3-15 incidence angle range. . : . . : ;
vegetation cover types. It is evident that the increase in soll
moisture increases the backscatter and slope of the incidence

angle response. This effect is more pronounced in the areas
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with low vegetation. Based on this analysis, we propose an both model applications, the model calibration is done us-

coupleds® model given by ing 1998 data where the values of model parameters are es-
. timated individually for each point of interest. Later, the es-
0°(0,ms,NDVI) = A+ B(6 — bref) timated model parameter values are used to compute the soil
+C (O —Oref) (g — us) + D(mg — y) moisture during 1999.
+N(NDVI — pngvi) +e. 2) In order to understand the modeled backscatter depen-

dence on soil moisture, it is necessary that the soil moisture
In this model, the mean annual normalized backscatter data at desired spatial and temporal scales be available. We
(dB) is modulated by the incidence angle dependeBce yse the top 10cm layer VIC soil moisture data to calibrate
(dB/°), soil moisture dependende (dB/%), coupled inci-  and validate the proposed backscatter model. The model is
dence angle and soil moisture depende@ic@B/°/%), and  also tested for the ground measurements in WGEW.
NDVI dependence N (dB)drt is the reference angle of  vIC simulated soil moisture is available at 1481/8°
backscatter incidence angle normalization and chosen‘as 1Qyrid (approximately 1212 km grid in LCRB region). In
(Ulaby et al, 1982). w, (%) andundvi are the annual aver-  thjs study, point-based and spatial analyses of the proposed
ages of soil moisture and NDVI, respectively. e is the mod-model are performed at the VIC spatial resolution, i.e., the
eling error. The model takes into accodntNDVI, andm; ~ TRMMPR ¢° measurements within a given £22 km VIC
dependence and provides parameters to capture backscatigs|| are used in model-parameter and soil moisture estima-
response to these variables. tion. Due to coarser combined incidence angle and temporal

The model fitting is performed at the resolution of the sampling ofs°, a ten day moving window with five day step

coarsest input data, which in this case is gridded VIC soilis ysed forr° model inversion aneh, averaging. NDVI data

moisture (12 knx12km). Thus, although° is available at (1 km resolution) is also smoothed to match the VIC resolu-
4.4 km resolution the parameter maps and the derived soifjon.

moisture maps are made at 12 km spatial resolution.
The proposed model is applied to the data over the arid3.2 Backscatter model calibration
lands of the LCRB using the Least Squared Error Estimation
(LSEE) approach. In this approach, for several (83yob-  The model is applied to the three study sites v, MV,
servations of backscatter, incidence angle, soil moisture, an@ndLV vegetation covers using LSEE approach and the sur-

NDVI, Eq. (2) becomes a matrix equation of the form face fits atuungvi are shown in Fig4. The corresponding
model parameters are listed in TallleThe model parame-
YX=Lp+E ters over all the listed sites are computed using the 1998 soil
where (3)  water content and NDVI data.

» = 5x 1 column vector of parameters 'Tablel daFa reveal_s tha4_decreases wheredsincreases
; T with vegetation density. It is noted th&tvalues are gener-
le.l4 B C D NJ ally negative and thus an increaseRnmplies reduction in
¥ = K x 1 column vector of backscatter measurements the physical slope of the lineB depends upon the relative
L = K x5 matrix where five columns correspond to the contribution of surface and volume scattering. Under dense
vegetation conditions} can have positive values because
at near-nadir incidence angles over such land cover is lower
due to higher attenuation from leaves. With an increase in

and]...]™ denotes matrix transpose. The modeling errors inthe incidence angle higher backscattering is caused due to

the vectorE are assumed to be independent identically dis-the pre(_jominant. leaf orientations. This effect reduces with
tributed Gaussian random variables. The model can be invegetation density. The parametefsand D correspond to

verted using the LSEE to compute the parameter vector givethe sensitivity to water content. The magnitudesCoand

variables of the five coefficients/parameters
E = K x 1 column vector of errors,

by D reduce with increase in vegetation cover. L&walues
reflect low vegetation and more bare soil, thus, for I1Bw
p=L"% values,C and D are theo® sensitivities to water content of
where soil. N is the change i ° per unit change in NDVI.

The model has also been used to study the impact of not

1 . using NDVI data (dropping the 5th term on the right hand
[...]”"denotes matrix inverse. side of Eq.2). We note that adding NDVI dependence

The stability of this approach is dependent upon the invert-S/ightly improves the model performance. The reason being
ibility of LT L. Firstly, the model performance is tested for that the vegetation dependence of the model is also incor-
the selected sites representing the three vegetation densiti@@rated in the other parameters (especially captured in the
(DV, MV, andLV). Secondly, the model is applied to all grid v&lues ofA andB).
cells in the region to retrieve the spatial soil moisture maps.

LT=@" L)"*L7 is the pseudoinverse @f and
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Fig. 4. Surface fit to backscattes £) dependence on incidence angl¢ énd soil water contenir{) (Eg. 2) over(a) low, (b) moderate, and
(c) dense vegetation.

Table 1. List of model parameters of EqR) using VIC soil water 15 that reduces over the shrubs and desert area in th? _”F’“h'
content for three vegetation densities. east and southwestD measures the backscatter sensitivity
to soil moisture which reduces in the areas of higher vegeta-
Vegetation Density tipn density. It has low values over the dense veg_etation_ ar_wd
Parameter Low Moderate  Dense high values over the desert. In the desert area, this sensitivity
is also dependent upon the soil type and existence of rocky

A (dB) —-488 725 877 surfaces. This is evident in the image where low valueb of

% (((:j%/;/‘)’) 8'53 00;1227 00'1078 occur in the desert regionC is a measure of variability in

C (dBP/%) _0_623 _0_617 _0_0'04 _th_e s_ensmwty of soll _m0|sture_ to _backscatter. Even though

N (dB) 6.84 216 -3.64 it is Imk_ed to _the relative contrlbu_tlon of SL_Jrface and_volume
.y 0.27 0.5 0.67 scattering, it is related to vegetation density and moisture. In
s (%) 18.77 19.32 24.27 the image, the very low values occur over the non-vegetated
RMSE (%) 2.02 1.45 1.6 areas with high surface roughness. In these areas, increase

in moisture will significantly alter ther° 6-response from
soil-surface-like-response to dense-vegetation-like-response.

ndvi IS the average annual NDVI in the region whereas N
%uantifies the effect of annual change in the NDVI @h
fheasurements.

The results over the selected study sites show the potenti
of Ku-band backscatter measurements to map soil moistur
over the arid regions. In order to evaluate the applicability
of this approach at a basin scale, we compute the model pa-
rameters at each grid cell in LCRB. The Vg, and NDVI 4 Results and discussion
data at each grid cell in LCRB along with corresponding TR-

MMPR o° measurement during 1998 are used to computeCalibrated models described in the previous section are used
the model parameters at each grid cell. It is noted that thdo compute the soil moisture during 1999. The computed
model described in Eq2] is applied individually to each model parameters from the 1998 data listed in Tdblre
grid cell and thus results in separate model parameters foused to derive soil water content from TRMMRR data

at each grid cell. The spatial maps of the model parameterdluring the later years by reordering of Eg),(.e.,
are shown in Fig5 along with root mean square error of the o _
model fit at each point. The error is high along the Mogollon m, = i, + —— A= B(6 —ret) = N(NDVI = pnavi) (4)
ridge due to the highly varying topography. The backscat- C(O—bren) + D

ter dependence on NDVIV) and average NDVI map during  Figure6a compares the time series of TRMMPR derived and
1998 are also shown. Since the computation is grid basedv|C estimated soil moisture during 1999 at the study site 12.
the output is a spatial distribution of the model parameters. The temporal variation of the soil water content derived by

The dense vegetation has lowestdue to high attenua- the model is in agreement with the VIC estimates. The model
tion of Ku-band waves by the leaves in the canopy. Theperformance deteriorates under extreme dry and wet condi-
bright spot in the middle of thé image is from the city of tions. Figuregb plots the regression lines for the study sites
Phoenix, Arizona.A increases with reduction in vegetation 1 (DV), 4 (MV), and 12 (V) where ther is 0.57, 0.66, and
density towards northeast and southweBtvalues are also  0.78, respectively. The correlation reduces with vegetation
consistent with the vegetation density and lows occur overdensity.
the desert region where surface scattering dominates. The Vegetation increases the volume scattering thus decreas-
dense vegetation has the highest mean annual soil moistuiieag the slope ofo° 6-response line. It depends upon the
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Fig. 6. (a)Comparison of 1999 temporal variation of VIC and TRMMPR derived soil water content over low vegetatiofbpfeegression
analysis over three study sites, iBY, MV, andLV.

characteristics of vegetation layer such as leaf area index and In a similar manner, the model is also used to estimate
canopy water content. Dense vegetation attenuates the elethe soil water content at study site 14 in the WGEW during
tromagnetic energy and reduces the sensitivity to the undert999-2006. In this case, the results are compared to gage
lying soil characteristics. This effect is more severe undermeasurements plotted in Figa. Gage measurements during
wet canopy conditions. The Ku-band has higher attenuatiormost of the year 2002 are not available. Nevertheless, the
by the canopy. This significantly reduces tifevalues atlow  model captures quite well the temporal behavior of measured

incidence angles thus reducidgand increasing the value of
B.

The water content increases theand this effect is higher
at low incidence angles. It results in an increasetiand
decrease iB. Theo®° sensitivity to soil moisture depends

soil moisture. As seen earlier, the derived soil water content
accuracy reduces under extreme dry and wet conditions. The
corresponding regression line and correlation are shown in
Fig. 7b. The model accuracy reduces with time since the

model calibration is performed using 1998 data.

on the vegetation cover density and vegetation water con- The temporal variation of soil moisture is linked to the pre-
tent. Over dense vegetation the soil moisture signal is overgipitation illustrated in Fig8a. The time series corresponds
shadowed by vegetation backscatter and difficult to detectig the climate division 7 of Arizona where monthly averages
With decrease in Vegetation denSity the contribution from theOf derived soil water content are Computed using the data
soil increases thus raising the sensitivity to the soil water confrom study sites 1-5 and 8-9 (these sites fall in this climate
tent. The presence of water in the vegetation reduces the peRfivision). The derived soil water content provides a temporal
etration through canopy thus reducing the sensitivity to soilpehavior during 19992006 that is similar to the monthly av-
water content. In this case, the is primarily reflecting the  erages of the measured precipitation data with a correlation
canopy water content. Under very dry conditions, the soilof 0.76 (see Fig8b).

ind vegrer:atior_}gﬁlﬂvl\e/zlsRlogv diielectric c onstau!agy et ala b The analysis of derived soil water content to measured soil
h983' ; us, ackscatter is most influenced bY qiqtre and precipitation data confirms the potential of TR-
the surface geometry. MMPR ¢° data for soil moisture retrieval in the LCRB. The
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Fig. 7. (a) Comparison of TRMMPR derived and gage soil water content in Walnut Gulch Experimental WatgtshBdta scatter plot
and correlation.
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Fig. 8. (a) Comparison of TRMMPR derived soil water content and monthly average precipitation in the climate division 7 of Affipona.
Regression line of datasets.

proposed model captures the general temporal variation ofver selected study sites, the model performs better during
the soil moisture. The model is able to derived soil waterwet season. In the wet season (August), the spatial distribu-
content over different vegetation covers in the arid region oftion of derived soil water content is similar to the VIC esti-
LCRB where the sensitivity to soil moisture reduces with in- mates withR=0.76. The dissimilarities correspond to very
crease in vegetation cover. dry and very wet areas of the basin. Although the correlation

The proposed model is point-specific and thus needs soifluring dry season is lower (0.67), a general similarity in the
moisture measurements for calibration. In order to extendsPatial distributions is evident.
the model to the whole area and prepare soil moisture maps, We note that the penetration depth of Ku-band microwaves
simulated VIC soil moisture is used. As shown in Fig. is shallow and thus only the top few millimeters (depends on
the model parameters are spatially coherent with the surfacehe moisture) of soil layer moisture affects the backscatter
spatial characteristics. measurements. Nevertheless, the surface moisture is linked

The method has limited utility in areas that lack soil mois- to the soil moisture at near surface layers (5-10 cm). This is
ture data for calibration. Moreover, the calibration of the evident from the high correlation of derived soil moisture to
model is grid-point specific and thus for spatial mapping re-VIC and gage soil moisture data.
quires spatial maps of soil moisture from hydrological mod- e approached this study with a goal to develop a sim-
eling. Nevertheless, the model has established the ability ople model that can explain relationship between backscatter
TRMMPR Ku-band data over arid-regions for soil moisture and soil moisture. The proposed model is shown to provide
retrieval. good soil moisture estimates in LCRB and would perform

Using the same approach we estimate the spatial soil moisaell in other similar (arid and semi-arid) settings. It is diffi-
ture maps. The spatial maps of the computed model paramesult to decouple the impact of all surface characteristic on the
ters (Fig.5) are used to derive the spatial maps of soil waterbackscatter measurements. The complex dependence of mi-
content fromo° measurements during May (dry period) and crowave scattering on surface roughness, soil moisture, and
August (wet period) of 1999. Figucompares the maps of vegetation is simplified in a linear model that works well over
model derived and VIC soil water content over the TRMM mixed patches of bare soil and vegetation (typical of arid and
coverage of LCRB. The maps are compared during dry andemi-arid land surfaces) in the radar footprint. Application of
wet times of the year 1999. As seen earlier in the analysighe model over large basins provides good estimates of soil
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Fig. 9. Comparison of VIC (left column) and TRMMPR derived (center column) soil moisture images during dry (top row) and wet (bottom
row) periods. The corresponding regression lines (right column) are also shown.

moisture without accounting for surface roughness effectscipitation data. The spatial maps of the soil water content are
At this scale the surface roughness effect is captured in the inderived for dry and wet periods during 1999 and are consis-
cidence angle dependence of TRMMPR backscatter. Thougtent with the VIC estimates. The spatial coherence of these
desirable, explicit incorporation of surface roughness into themaps confirms the ability of TRMMPR to map soil moisture.
model would complicate the model without significantly im-  This research provides an approach to use spaceborne
proving the results. In regions with dense vegetation, thebackscatter data for soil moisture retrieval. The model pre-
model performance deteriorates (as seen by reduced correlaented in the research is point-based model and provides
tion). In such regions, the soil moisture signal at Ku-band isgridded model parameters. It is a generic model with pa-
primarily originating from the vegetation canopy. The model rameters that depend on surface type. The proposed model
performance also deteriorates under high soil moisture conis simple yet reasonably accurate for quick retrieval of large
ditions especially if such conditions persist over several daysscale soil moisture maps from backscatter data. The model
inherits its spatial resolution from the input data and cap-
tures the average large scale dependence of backscatter on
5 Conclusions soil moisture and vegetation. Thus, it is suitable for stud-
ies of large scale watersheds. Due to coarse resolution of
Soil moisture is an important parameter to understand thefRMMPR, the estimated soil moisture can be used in large
hydrologic cycle. The soil moisture measured data is scarcescale hydrological and meteorological models. Finer scales
and alternative approaches are needed for its spatial mappin@<4 km) may require downscaling.
Radar backscatter over land depends upon the soil moisture The accuracy of this model reduces under extreme dry and
and vegetation characteristics of the land surface. In the caseet surface conditions. Under very dry conditioss,is pri-
of arid regions, such as LCRB, due to sparse vegetationmarily a function of the surface geometry and thus does not
backscatter primarily depends on the soil moisture characreflect the soil water content resulting in the erroneous esti-
teristics. A new technique that relates response to NDVI  mates. During very wet periods, soil saturation is the main
and soil moisture data in arid regions is presented. TRMMPRsource of errors in the estimates.
o° is modeled as a function of incidence angle, NDVI, and
soil water content. The model calibration is performed usingAcknowledgementsThe work was partly funded by NOAA
the known soil moisture data from VIC estimates and gage/Wards NA07OAR4310324 and NA070ARA4310228; NSF Award
measurements; and NDVI data during 1998. The model i EPS-0814372, DOE Award DE-F602-08ER64709, and the
tested over selected study sites in the LCRB with vf':lrying%W(mmng Water DevelOpr.nem Comission. S.O" MO.'Sture data
- from Walnut Gulch Experimental Watershed is provided by the
vegetatlon cover. The model p.a.rameters: reflect the surfacggpa.aARS Southwest Watershed Research Center.
characteristics and the° sensitivity to soil water content
and NDVI. The model is used to derive the soil water con- Edited by: W. Wagner
tent during 1999-2006 and provides results consistent with
the VIC estimated and in-situ measurements. The results are
temporally consistent with the time series of measured pre-
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