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Abstract. This paper describes a new parallel, scalable and

robust finite element based solver for the first-order Stokes

momentum balance equations for ice flow. The solver, known

as Albany/FELIX, is constructed using the component-based

approach to building application codes, in which mature,

modular libraries developed as a part of the Trilinos project

are combined using abstract interfaces and template-based

generic programming, resulting in a final code with access

to dozens of algorithmic and advanced analysis capabili-

ties. Following an overview of the relevant partial differen-

tial equations and boundary conditions, the numerical meth-

ods chosen to discretize the ice flow equations are described,

along with their implementation. The results of several ver-

ification studies of the model accuracy are presented using

(1) new test cases for simplified two-dimensional (2-D) ver-

sions of the governing equations derived using the method of

manufactured solutions, and (2) canonical ice sheet modeling

benchmarks. Model accuracy and convergence with respect

to mesh resolution are then studied on problems involving a

realistic Greenland ice sheet geometry discretized using hex-

ahedral and tetrahedral meshes. Also explored as a part of

this study is the effect of vertical mesh resolution on the so-

lution accuracy and solver performance. The robustness and

scalability of our solver on these problems is demonstrated.

Lastly, we show that good scalability can be achieved by pre-

conditioning the iterative linear solver using a new algebraic

multilevel preconditioner, constructed based on the idea of

semi-coarsening.

1 Introduction

In its fourth assessment report (AR4), the Intergovernmental

Panel on Climate Change (IPCC) declined to include esti-

mates of future sea-level rise from ice sheet dynamics due

to the inability of ice sheet models to mimic or explain ob-

served dynamic behaviors, such as the acceleration and thin-

ning then occurring on several of Greenland’s large outlet

glaciers (IPCC, 2007). Since the AR4, increased support

from United States, United Kingdom, and European Union

funding agencies has enabled concerted efforts towards im-

proving the representation of ice dynamics in ice sheet mod-

els and towards their coupling to other components of Earth

system models (ESMs) (Little, 2007; Lipscomb et al., 2008;

van der Veen et al., 2010). Thanks to this support, there

has recently been tremendous progress in the development

of “next generation” community-supported ice sheet models

(e.g., Bueler and Brown, 2009; Rutt et al., 2009; Larour et

al., 2012; Gagliardini et al., 2013; Brinkerhoff and Johnson,

2013; Lipscomb et al., 2013) able to perform realistic, high-

resolution, continental-scale simulations. These models run

on massively parallel high-performance computing (HPC)
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architectures using 102–104 processes and employ modern,

well-supported solver libraries (e.g., PETSC, Balay et al.,

2008, and Trilinos, Heroux et al., 2005). A primary develop-

ment focus has been on improving the representation of the

momentum balance equations over the “shallow ice” (SIA;

Hutter, 1983) and “shallow-shelf” (SSA; Morland, 1987) ap-

proximations through the inclusion of both vertical shear and

membrane stresses over the entire model domain (e.g., Pat-

tyn, 2002). These approaches include “hybrid” models (a

combination of SIA and SSA; Bueler and Brown, 2009; Pol-

lard and Deconto, 2009; Goldberg and Sergienko, 2011), so-

called “higher-order” models (Pattyn, 2003), “full” Stokes

models (Larour et al., 2012; Leng et al., 2012; Gagliardini

et al., 2013), and combinations of a range of approximations

up to and including full Stokes (Seroussi et al., 2012). By ac-

counting for both vertical and horizontal stress gradients, the

aforementioned models allow for more realistic and accurate

simulations of outlet glaciers, ice streams, and ice shelves,

as well as modeling of the transfer of perturbations from

marginal to inland regions.

Other significant improvements in ice sheet modeling

frameworks include the integration of unstructured (Larour

et al., 2012; Gagliardini et al., 2013; Brinkerhoff and John-

son, 2013) or adaptive (Cornford et al., 2013) meshes, which

allows the focusing of resolution and computational power

in regions of dynamic complexity. Also becoming standard

is the use of formal optimization and data assimilation tech-

niques for generating realistic model initial conditions. Sur-

face observations are used to infer poorly known ice prop-

erties or parameters, such as the friction coefficient at the

ice–bedrock interface (e.g., Morlighem et al., 2010; Larour et

al., 2012; Gillet-Chaulet et al., 2012; Brinkerhoff and John-

son, 2013) or the rheology of floating ice shelves (Khazen-

dar et al., 2009), allowing for a quantifiably “optimal” match

between modeled and observed velocities. Recently, these

approaches have been extended to simultaneously optimize

both model parameter fields and uncertain initial condition

fields, while also accounting for forcing from climate mod-

els in order to minimize transient shocks when coupling to

climate forcing (Perego et al., 2014). Other recent and note-

worthy optimization improvements include the assimilation

of time-dependent observations (e.g., Goldberg and Heim-

bach, 2013) and the estimation of formal uncertainties for

optimized parameter fields (Petra et al., 2015).

The latter capability – the characterization of parameter

uncertainties – represents a critical first step towards formal

uncertainty quantification (UQ) of ice sheet model output

quantities of interest, such as estimates of future sea-level

rise. For this process to be computationally tractable during

both the inverse (parameter estimation and uncertainty as-

signment) and forward propagation steps, it is crucial to have

robust, efficient, and scalable solves on HPC platforms (Isaac

et al., 2014). This, in turn, requires advanced dynamical core

capabilities, such as access to model derivatives (e.g., the

Jacobian matrix), and advanced algorithms for the solution

of the nonlinear and linear equations. These same require-

ments of robustness, efficiency, and scalability hold for the

inclusion of ice sheet models as fully coupled components of

large-scale, high-resolution ESMs.

In this paper, we introduce and focus on a new momen-

tum balance solver for land ice simulations based on the first-

order approximation of the nonlinear Stokes flow model for

glaciers and ice sheets. This new solver, Albany/FELIX (Fi-

nite Elements for Land Ice eXperiments, described in more

detail below), either already includes many of the capabilities

discussed above or is designed to allow for their easy imple-

mentation at later stages of development. Here, we present

algorithms and software that lead to a robust nonlinear solu-

tion procedure (including the use of automatic differentiation

(AD) technologies), scalable linear algebra, and the ability to

use unstructured and highly refined grids.

The remainder of this paper is organized as follows. In

Sect. 2, we describe in detail our mathematical model for

glaciers and ice sheets, giving the relevant assumptions, par-

tial differential equations, boundary conditions, and parame-

ter values. Our numerical methods for discretizing this model

and their implementation in Albany/FELIX are summarized

in Sect. 3. In Sect. 4, which focuses on verification of the

Albany/FELIX code using the method of manufactured so-

lutions, two new test cases are derived for simplified two-

dimensional (2-D) versions of the first-order Stokes equa-

tions and used in a convergence verification study involving

several types and orders of finite elements. In Sect. 5, further

verification of the accuracy of solutions computed with our

solver is performed using canonical ice sheet modeling test

cases. The results of a mesh convergence study on a realistic

Greenland ice sheet geometry are then discussed in Sect. 6.

This study provides insight into the effects of the parallel do-

main decomposition on solver convergence, and the effect of

the vertical mesh resolution on solution accuracy. We then

describe our robust, nonlinear solver, which uses homotopy

continuation with respect to the regularization parameter in

the calculation of the ice effective viscosity. The solver’s ro-

bustness and scalability is demonstrated on various Green-

land ice sheet geometries, discretized using tetrahedral and

hexahedral meshes. Finally, we show that improved scala-

bility of our code can be achieved by preconditioning the

iterative linear solver using an algebraic multilevel precon-

ditioner, constructed based on the idea of semi-coarsening.

A concluding summary is offered in Sect. 7. Here, we also

touch briefly on the larger ice sheet modeling frameworks

that Albany/FELIX is being incorporated into for treating the

conservation of mass and energy and for performing prog-

nostic runs in both standalone mode and as coupled compo-

nents of ESMs.

One objective of this paper is to introduce a new parallel,

scalable and robust finite element first-order Stokes solver for

ice flow, namely Albany/FELIX, to the land ice and climate

modeling communities. The article also contains several new

Geosci. Model Dev., 8, 1197–1220, 2015 www.geosci-model-dev.net/8/1197/2015/



I .K. Tezaur et al.: A finite element, first-order Stokes approximation ice sheet solver 1199

contributions to the field of ice sheet modeling, which are

most notably:

• the derivation of several new test cases based on the

method of manufactured solutions for simplified 2-D

forms of the first-order Stokes equations, which can be

used to verify convergence to an exact solution for parts

of the governing PDEs in any ice sheet code that dis-

cretizes these equations.

• the description of a homotopy continuation algorithm with

respect to a regularization parameter in the ice effective

viscosity expression, which greatly improves the robust-

ness of a Newton nonlinear solver, especially in the ab-

sence of a good initial guess.

• insights into the effects of the parallel decomposition and

vertical mesh spacing on solver performance and solu-

tion accuracy for ice sheet simulations.

• a new algebraic multilevel preconditioner, constructed

based on the idea of semi-coarsening and ideal for

meshes structured in the vertical direction, that delivers

a scalable linear solve when combined with a precondi-

tioned iterative method.

2 First-order Stokes approximation mathematical

model

We consider a power-law viscous, incompressible fluid in

a low Reynolds number flow, described by the first-order

approximation to the nonlinear Stokes flow equations for

glaciers and ice sheets (Dukowicz et al., 2010; Schoof and

Hindmarsh, 2010). The first-order (FO) approximation, also

referred to as the Blatter–Pattyn model (Pattyn, 2003; Blat-

ter, 1995), follows from assumptions of a small geometric

aspect ratio, δ =H/L (where H and L are characteristic

length scales for the vertical and horizontal dimensions, re-

spectively, and H � L), and the assumption that the normal

vectors to the ice sheet’s upper and lower surfaces, n ∈ R3,

are nearly vertical:

nT ≈
(
O(δ),O(δ), ±1+O(δ2)

)
. (1)

Effectively, the FO approximation is derived by neglecting

O(δ2) terms in the Stokes equations and respective boundary

conditions (discussed in more detail in Appendix A). Nu-

merical discretization of the FO Stokes equations gives rise

to a much smaller discrete system than numerical discretiza-

tion of the full Stokes equations. Moreover, discretization of

the FO Stokes system gives rise to a “nice” elliptic coercive

problem, in contrast to the notoriously difficult saddle-point

problem obtained when discretizing the full Stokes system.

Let u and v denote the x and y components of the ice ve-

locity vector u≡ (u,v)T ∈ R2, respectively. The FO approx-

imation consists of the following system of partial differen-

tial equations (PDEs):
−∇ · (2µε̇1)+ ρg

∂s

∂x
= 0,

−∇ · (2µε̇2)+ ρg
∂s

∂y
= 0,

(2)

where g denotes the gravitational acceleration, ρ denotes the

ice density, and s ≡ s(x,y) denotes the upper surface bound-

ary:

0s ≡ {(x,y,z) ∈ R3
|z= s(x,y)}. (3)

In the most general, three-dimensional (3-D) case of the

FO approximation, the strain-rate tensor

ε̇ ≡ (ε̇1, ε̇2) ∈ R3×2 (4)

is given by the following components

ε̇T1 =
(
2ε̇xx + ε̇yy, ε̇xy, ε̇xz

)
∈ R3, (5)

and

ε̇T2 =
(
ε̇xy, ε̇xx + 2ε̇yy, ε̇yz

)
∈ R3, (6)

where

ε̇xx =
∂u

∂x
, ε̇yy =

∂v

∂y
, ε̇xy =

1

2

(
∂u

∂y
+
∂v

∂x

)
,

ε̇xz =
1

2

∂u

∂z
, ε̇yz =

1

2

∂v

∂z
. (7)

The effective viscosity µ can be derived using Glen’s flow

law (Cuffey and Paterson, 2010; Nye, 1957) as

µ=
1

2
A−

1
n ε̇

1
n
−1

e , (8)

where ε̇e is the effective strain rate, given by

ε̇2
e ≡ ε̇

2
xx + ε̇

2
yy + ε̇xx ε̇yy + ε̇

2
xy + ε̇

2
xz+ ε̇

2
yz. (9)

In Eq. (8), A is the flow rate factor and n is the Glen’s

(power) law exponent, typically taken equal to 3 for ice

sheets. Hence, µ Eq. (8) is a nonlinear expression, and the

system Eq. (2) is a nonlinear, elliptic system of PDEs. The

flow-law rate factorA is strongly temperature dependent, and

can be described through the Arrhenius relation,

A(T )= A0 exp

(
−

Q

RT ∗

)
, (10)

where A0 denotes a constant of proportionality, Q denotes

the activation energy for ice creep, T ∗ denotes the ice temper-

ature in Kelvin (K) corrected for the pressure melting point

dependence, and R denotes the universal gas constant. For

more details involving the relation between the flow factor
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and temperature Eq. (10), the reader is referred to Cuffey

and Paterson (2010). For completeness, the expressions for

the Cauchy stress tensor σ and the pressure p in the FO ap-

proximation are provided:

σ = 2µ(ε̇1, ε̇2,0)
T
− ρg(s− z)I,

p = ρg(s− z)− 2µ(ε̇xx + ε̇yy), (11)

where 0= (0,0,0)T and I is the 3× 3 identity tensor. The

equations Eq. (2) are specified on a bounded 3-D domain,

denoted by �, with boundary

0 ≡ 0s ∪0b ∪0l. (12)

Here, 0s is the upper surface boundary Eq. (3), and

0b = {(x,y,z) ∈ R3
|z= b(x,y)}, (13)

0l = {(x,y,z) ∈ R3
|l(x,y)= 0}, (14)

are the lower and (vertical) lateral surface boundaries, re-

spectively. The relevant boundary conditions on 0 are

(a) a stress-free (homogeneous Neumann) boundary condi-

tion on the upper surface boundary

ε̇1 ·n= ε̇2 ·n= 0, on 0s . (15)

(b) either a no-slip or a sliding boundary condition on the

lower surface:

{
u= v = 0,on 00

2µε̇1 ·n+βu= 0, 2µε̇2 ·n+βv = 0,on 0β ,
(16)

where 0b is partitioned as 0b = 00∪0β with 00∩0β =

∅, and β ≡ β(x,y)≥ 0 is the basal sliding coefficient.

Note that we assume that the partitioning of 0b is known

a priori. In practice, this would be specified (through

a conservation of energy equation) by locating regions

of the bed for which the temperature is at the pressure

melting point. It is often more practical to enforce a

quasi-no-slip Robin boundary condition on 00 by set-

ting β to a large value and always using the equation on

the second line of Eq. (16) (e.g., β = 107 kPa a m−1).

(c) On the lateral boundaries, one of two boundary condi-

tions is applied: either a kinematic (Dirichlet) boundary

condition

u= ul, v = vl,on 0l, (17)

where ul and vl are prescribed values of the ice veloc-

ities on the lateral boundary, or a dynamic (Neumann)

boundary condition

2µε̇i ·n− ρg(s− z)n= ρwgmin(z,0)n,on 0l, (18)

for i = 1,2, where ρw denotes the density of water. In

Eq. (18), it has been assumed that the coordinate system

has been oriented such that z is strictly elevation (that

is, z= 0 at sea level and values of z increase for higher

elevations) (MacAyeal et al., 1996). The boundary con-

dition Eq. (18) is derived by assuming that the ice shelf

is in hydrostatic equilibrium with the air/water that sur-

rounds it and is often referred to as an “open-ocean”

boundary condition, as it takes into account the pressure

exerted on the ice shelf by the neighboring ocean. For

some canonical benchmark experiments performed here

(see Sect. 5.1), periodic lateral boundary conditions are

prescribed as well.

The values of the parameters that appear in the first-order

Stokes equations and the boundary conditions described

above and used herein are summarized in Table 1. From

this point forward, the new first-order Stokes approxima-

tion momentum balance solver will be referred to as “Al-

bany/FELIX”. In this code, the numerical discretization of

Eq. (2) uses Trilinos, a suite of modular software libraries

(described in detail in Heroux et al., 2005).

3 Numerical discretization and implementation

The model described in Sect. 2 is discretized and solved

using a collection of algorithms and software implementa-

tions that were selected for accuracy, flexibility, robustness,

and scalability. The following brief discussion of the meth-

ods presumes prior knowledge of Galerkin finite element

approaches and Newton–Krylov based nonlinear solvers

(Strang and Fix, 1973; Pawlowski et al., 2006).

3.1 Numerical methods

The PDEs for the FO Stokes model defined by Eq. (2) and

the associated boundary conditions are discretized using the

classical Galerkin finite element method (FEM) (Hughes,

2000).

Let V denote the Hilbert space given by

V ≡ V(�)=
{
φ ∈H 1(�) : φ|00

= 0
}
, (19)

where H 1(�) denotes the space of square-integrable func-

tions whose first derivatives are also square integrable. Fol-

lowing the classical Galerkin FEM methodology, the weak

form of the problem is obtained by projecting each of the

equations in Eq. (2) onto a test function in V Eq. (19) in the

Geosci. Model Dev., 8, 1197–1220, 2015 www.geosci-model-dev.net/8/1197/2015/
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Table 1. Physical parameter values for first-order Stokes equations and boundary conditions∗.

Name Value Units Description

A 10−4 k−(n+1) Pa−n a−1 Flow rate factor

n 3 – Glen’s flow law exponent

g 9.8 m s−2 Gravitational constant

ρ 910 kg m−3 Ice density

ρw 1025 kg m−3 Ocean water density

R 8.314 J K−1 mol−1 Universal gas constant

A0

{
1.30× 107, if T < 263 K,

6.22× 1022, if T ≥ 263 K
k−(n+1) Pa−n s−1 Arrhenius constant of proportionality

Q

{
6.00× 104, if T < 263 K,

1.39× 105, if T ≥ 263 K,
J mol−1 Activation energy for ice creep

∗The symbol k in the table denotes km m1, i.e., k = km m−1
= 103.

continuousL2 inner product and integrating the second-order

terms by parts. Toward this effect, the weak formulation of

Eq. (2), for grounded ice, reads: find u,v ∈ V such that

∫
�

2µε̇1(u,v) · ∇φ1d�+

∫
0β

βuφ1d0

+

∫
�

ρg
∂s

∂x
φ1d�= 0,

∫
�

2µε̇2(u,v) · ∇φ2d�+

∫
0β

βvφ2d0

+

∫
�

ρg
∂s

∂y
φ2d�= 0,

(20)

for all φ1,φ2 ∈ V(�). The surface integral along the bound-

ary appearing in Eq. (20) arises from integration by parts

of the stress term in the variational form of the PDEs. This

approach leads to a weak enforcement of the basal surface

boundary condition Eq. (16) for the tangential stress, and

straightforward implementation of the basal boundary con-

ditions as an integrated boundary condition. (We believe, but

have not rigorously shown, that the Gelerkin finite element

approach for implementing the basal surface boundary con-

dition enables one to circumvent robustness issues stemming

from the discretization that were previously seen in our work

with a finite difference discretization (Lemieux et al., 2011).)

Letting F(u,v;φ1,φ2) denote the operator defining the

left-hand side of Eq. (20), the problem defined by Eq. (20)

is equivalent to finding the roots u,v ∈ V of the following

nonlinear equation:

F(u,v;φ1,φ2)= 0, ∀φ1,φ2 ∈ V. (21)

Equation (21) is an infinite-dimensional problem; a finite-

dimensional analog of Eq. (21) is obtained by replacing the

infinite-dimensional space V by a finite-dimensional finite el-

ement space, Vh, where h is a length scale associated with

a triangulation of the domain � into a set of disjoint finite

elements �e (�= ∪
nel

e=1�e, where nel ∈ N is the number of

finite elements in the triangulation).

Our implementation (a detailed discussion of which is

given in Sect. 3.2) allows for tetrahedral (with either trilinear

or triquadratic basis functions) or hexahedral elements (with

bilinear or biquadratic basis functions) for 3-D problems.

One reason a finite element approach was selected was for its

flexibility in using unstructured grids with non-uniform mesh

density to increase the resolution in areas of large velocity

gradients, such as in the vicinity of outlet glaciers, while re-

taining relatively coarse meshes in the more static interior

regions. In this paper, we present results on three different

types of grids:

(i) structured uniform hexahedral grids,

(ii) unstructured uniform tetrahedral grids, and

(iii) unstructured non-uniform tetrahedral grids.

The structured hexahedral meshes are generated by creat-

ing a uniform quadrilateral grid of a 2-D horizontal cross sec-

tion of a geometry �, and extruding it in a uniform fashion

as hexahedra in the vertical direction. Similarly, the uniform

tetrahedral meshes are created by meshing a 2-D horizontal

cross section of � using a uniform triangular mesh, extrud-

ing it in the vertical direction as prisms, then splitting each

prism into three tetrahedra (Fig. 14)1. For the unstructured

tetrahedral grids, an unstructured Delaunay triangle mesh of

a 2-D cross section of � is generated based on some kind

of refinement criteria (e.g., a static refinement based on the

gradient of the velocity) using a meshing software (e.g., Tri-

angle, a Delaunay triangulation mesh, Shewchuk, 1996), and

extruded in the vertical direction in the same way as a struc-

tured triangular grid. More details on these meshes are pro-

vided in Sects. 5 and 6. Note that although all the meshes

1Another possibility, which we have not fully explored yet, is to

use wedge elements on prisms.

www.geosci-model-dev.net/8/1197/2015/ Geosci. Model Dev., 8, 1197–1220, 2015



1202 I .K. Tezaur et al.: A finite element, first-order Stokes approximation ice sheet solver

employed for the ice sheet application considered here were

extruded (structured) in the vertical direction, our code base

allows for completely unstructured grids.

A domain decomposition approach is used to compute the

solution to the discretized nonlinear problem on distributed

memory parallel computers. As a pre-processing step, the el-

ements of the mesh are partitioned into one contiguous do-

main per processor to provide nearly equal work per proces-

sor. To do the partitioning, we used the decomposition util-

ity (called decomp) available as a part of the Sandia Engi-

neering Analysis Code Access System (SEACAS) database of

Trilinos to create a linear decomposition of the 2-D mesh.

Additional discussion of the parallel decompositions em-

ployed can be found in Sect. 6.

The result of the discretization process is a large, sparse

system of nonlinear algebraic equations for the two compo-

nents of horizontal velocity at the nodes of the mesh (the

discrete counterpart of Eq. 21). Our approach to solving this

fully coupled, nonlinear system is Newton’s method. An an-

alytic Jacobian matrix is computed at each iteration of New-

ton’s method using automatic differentiation (AD). The inte-

gration of AD into the Albany code base, both for Jacobians

and for parameter derivatives for sensitivity analysis and UQ,

has been a significant advantage of developing a new model

in this framework. The matrix is stored in sparse form, with

rows of the matrix distributed across the processors of the

machine.

The resulting linear system is solved using a precon-

ditioned iterative method. For the largest problems, we

use multilevel preconditioning (described in Sect. 3.1.2)

to achieve scalability, while incomplete LU (ILU) additive

Schwarz preconditioners work well for modest problem sizes

and processor counts. Since the model is symmetric, the con-

jugate gradient (CG) iterative linear solver is employed.

Because of the singularity in the viscosity formulation for

stress-free solutions, such as when computing the nonlinear

solution from a trivial initial guess, the Newton iteration does

not reliably converge. To achieve a robust nonlinear solution

procedure, we formulated and implemented a homotopy con-

tinuation approach that steps to the final solution by solving

a series of nonlinear problems that reliably converge. The de-

tails of this algorithm are given in Sect. 3.1.1.

3.1.1 Homotopy continuation algorithm

Although the stress tensor σ Eq. (11) is well defined for any

differentiable function u, the Glen’s law effective viscosity

Eq. (8) is not defined when u is a rigid movement or exactly

0 (because n is typically taken to be greater than 1; see, e.g.,

Schoof, 2010; Chen et al., 2013). This can pose a problem for

nonlinear solvers as the initial guess for u is often taken as

uniform or 0. To circumvent this difficulty, a regularization

parameter γ > 0, γ � 1 is added to the sum of the strain

rates in the effective strain rate term of the effective viscosity

Eq. (8), yielding what we refer to as µγ :

µγ =
1

2
A−

1
n

(
ε̇2

e + γ
)( 1

2n
−

1
2

)
, where lim

γ→0
µγ = µ. (22)

One common practice is to define µ= µγ in Eq. (8) using

some small, fixed value for γ , e.g., γ = 10−10. Here, noting

that the nonlinear solver often struggles to converge initially

when using Newton’s method, we use a variable γ as the con-

tinuation parameter in a homotopy method (Algorithm 1).

In this approach, a sequence of problems Eq. (2) is solved

for a sequence of effective viscosities {µγi } for i = 1,2, . . .,

with 0< γi+1 < γi , until γ reaches its target value. We use

a natural continuation procedure, where the final solution at

one value of the continuation parameter α (defined in Algo-

rithm 1) is used as the initial guess for the subsequent non-

linear problem. The continuation algorithm has adaptive step

size control, and will backtrack and attempt a smaller param-

eter step if the nonlinear solve at some step fails to converge

(Allgower and Georg, 2003). The step size increase is in part

based on the number of Newton iterations that were required

to converge the previous step, so a relatively easy nonlinear

solve requiring just a handful of Newton iterations will lead

to a more aggressive parameter step (see Salinger et al., 2002,

for the detailed algorithm). We have found that starting with

α0 = 0 leads to a system that will reliably converge from a

trivial initial guess, that an initial step size of 0.1 is a good

initial step, and that α∞ = 1 provides an adequate stopping

value.

Algorithm 1 Homotopy continuation on regularization pa-

rameter γ in µγ .

Set α = α0, u0
= u0 and i = 0 .

while α ≤ α∞ do

Set γ = 10−10α and define µγ by the formula Eq. (22).

Set µ= µγ in Eq. (8).

Set i = i+ 1.

Solve Eq. (2) with initial guess ui−1 using Newton’s

method, to obtain ui .

Increase α using a homotopy continuation method (e.g., nat-

ural continuation).

end while

In general, the homotopy continuation approach leads to

many fewer nonlinear solves than when the regularization

parameter γ in Eq. (22) is fixed to some small value, e.g.,

γ = 10−10, especially for problems where a “good” initial

guess for Newton’s method is unavailable. Moreover, with

the homotopy continuation approach, it is found that a full

step can often be employed in Newton’s method line search

algorithm, without the need for backtracking (i.e., iteratively

reducing the step size in the line search algorithm).

We note that the homotopy continuation approach is in

general effective when the initial guess is not close to the

solution (in which case µγ is very small). Similarly, a good
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initial guess for umay not be a good initial guess when using

continuation because the initial viscosity µγ0
for the contin-

uation algorithm is generally far from the real viscosity µ.

When solving transient problems, it may be better to simply

use a standard Newton method (without homotopy continua-

tion), taking the solution at the previous time step as the ini-

tial guess, and using homotopy continuation only if the New-

ton solver has difficulties converging. A different approach,

which may be used as an alternative to homotopy continua-

tion, is to perform a few iterations using the Picard method

and then to switch to the Newton method once the nonlin-

ear iterations start to converge (e.g., Leng et al., 2015). The

robustness and efficiency of the Newton solver with the ho-

motopy continuation approach summarized in Algorithm 1 is

studied numerically in Sect. 6.1.1.

3.1.2 Multilevel preconditioning

Multigrid preconditioners are among the most efficient and

scalable linear solution techniques for resolving matrix equa-

tions associated with elliptic operators. The basic idea is to

utilize multiple-resolution versions of the original problem

to accelerate the iterative solution procedure. Toward this ef-

fect, smooth error components (in the current solution ap-

proximation) can be efficiently damped by applying a simple

iterative process to a coarse-resolution version of the prob-

lem. This coarse version essentially facilitates the propaga-

tion of long-range information across the domain. Oscilla-

tory components are effectively reduced through a simple it-

erative procedure, while smooth components are tackled us-

ing auxiliary lower-resolution versions of the problem. Dif-

ferent geometric multigrid methods have been successfully

applied to the linear systems arising from ice sheet modeling

simulations, e.g., Brown et al. (2013); Cornford et al. (2013);

Isaac et al. (2014).

For our capability, we prefer algebraic multigrid (AMG)

methods due to the potentially unstructured nature of the

mesh in the horizontal plane. AMG methods have the advan-

tage that the lower-resolution versions of the multigrid hi-

erarchy are constructed automatically using only the matrix

coefficient entries. Unfortunately, solution of the underlying

linear systems is problematic due to the strong anisotropic

nature of the discrete equations. This is essentially a con-

sequence of the disparate scales in the horizontal and ver-

tical directions and the associated large mesh aspect ratios.

At the discrete level, these aspect ratios give rise to matri-

ces where entries representing vertical coupling are generally

much larger than entries representing horizontal coupling.

Anisotropic phenomena within ice sheets and fairly different

types of multigrid methods have been considered in recent

prior works (Brown et al., 2013; Isaac et al., 2014; Jouvet

and Graser, 2013).

From a multigrid perspective, reducing oscillatory errors

in the horizontal direction is much more difficult than in

the vertical direction. Furthermore, accurately capturing hor-

izontal coupling on coarse levels can be challenging due

to the relatively small size of the corresponding matrix en-

tries (which are effectively averaged to generate the low-

resolution versions). To avoid these difficulties, we have de-

veloped a hybrid structure/unstructured AMG multigrid ca-

pability that leverages the fact that our meshes, though un-

structured in the horizontal plane, are structured in the verti-

cal direction. That is, our 3-D meshes can be viewed as ex-

trusions of unstructured 2-D meshes, allowing for varying

vertical mesh spacing. A paper is in preparation to further

describe the details of this hybrid algorithm. Here, we briefly

describe its essence.

The basic concept behind the hybrid struc-

tured/unstructured AMG method is to first apply operator-

dependent multigrid semi-coarsening to initially coarsen

the mesh and construct the first few levels of the multigrid

hierarchy. Semi-coarsening and an operator-dependent

multigrid both have a long history on structured grid prob-

lems (Dendy and Moulton, 2010; Schaffer, 1998; Brown

et al., 2000). Semi-coarsening refers only to coarsening

in some subset of coordinate directions and is often ad-

vocated to address anisotropic problems. Essentially, one

only coarsens in directions where oscillatory errors are

easily reduced. An operator-dependent multigrid refers to

a family of algorithms that intimately takes advantage of

the structure. They can be viewed as idealized or “perfect”

grid transfers for one-dimensional (1-D) simplifications of

the higher-dimensional problem. In this way, several coarse-

level meshes are effectively constructed, each containing the

same number of points within all horizontal planes. When

it is no longer possible to further coarsen vertically (as

there is just a single horizontal layer), a standard smoothed

aggregation AMG method is applied to this horizontal

problem, creating additional levels in the hierarchy. Thus,

finer levels of the hierarchy are created via semi-coarsening

and the operator-dependent multigrid (leveraging grid

structure). Coarser levels are constructed via AMG, which

is applied after the anisotropic behavior is no longer present

(as there is just a single horizontal layer). To complete this

brief description, we note that a line Jacobi method is used

as the simple iterative scheme to damp oscillatory errors

on the finer levels. It allows for aggressive semi-coarsening

(i.e., reduction factors greater than 3 in the linear system

dimension as one proceeds to progressively coarser levels).

Polynomial smoothing is used on the levels associated with

a standard AMG.

The algebraic multilevel preconditioner described above

has been implemented in and is available through the (open-

source) ML package of Trilinos (Heroux et al., 2005), in Trili-

nos 11.12 or later (see the Code Availability section at the

end of this paper). The linear solver can be employed with or

without the Albany and Albany/FELIX codes used to perform

the ice sheet simulations described herein. The general ML
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user’s guide2 Gee et al. (2007) contains a detailed description

of how to exercise the multigrid solver. Numerous example

applications are included in the Trilinos release demonstrat-

ing how the multigrid solver can be used in different situa-

tions. An addendum to Gee et al. (2007) explaining how to

invoke the particular software feature used in this paper (Tu-

minaro, 2014) describes how the multigrid semi-coarsening

algorithm is specified from a user perspective. A paper is un-

derway describing more algorithm details (Tuminaro et al.,

2015).

3.2 Software implementation

The numerical methods described above are implemented

in the Albany code base, an open-source3, multi-physics

code/analysis package developed at Sandia National Labo-

ratories. A full description of Albany can be found in a sep-

arate publication (Salinger et al., 2013). Briefly, Albany is

a finite element code base for the solution and analysis of

models of coupled PDEs using parallel, unstructured-grid,

implicit algorithms. It makes use of numerous computational

mathematics libraries from the Trilinos suite (Heroux et al.,

2005), and has been previously used in other application do-

mains such as quantum device modeling (Gao et al., 2013)

and computational mechanics (Sun et al., 2013).

The software stack in Albany involves dozens of libraries

that are delivered through Trilinos as independent software

packages developed by small teams of domain experts. The

Sierra ToolKit (STK) package is used for mesh database

structures and mesh I/O. The Epetra package is used for

distributed memory, parallel data structures for vectors and

sparse matrices, which greatly simplify parallel operations

such as halo exchanges for synchronizing data between pro-

cessors. The Intrepid (Bochev et al., 2012) package provides

flexible finite element discretization algorithms and general

integration kernels. The PDE equations are described by a

set of evaluation kernels whose evaluation is managed by the

Phalanx package.

One of the main distinguishing characteristics of the Al-

bany code base is the use of the template-based generic pro-

gramming (TBGP) approach (Pawlowski et al., 2012a, b).

With this methodology, all that is required to implement a

new set of physics in Albany is to code the residual of the

PDE equations. Given this residual, Albany automatically

computes and assembles the sparse Jacobian matrix and sen-

sitivity vectors without any additional code development.

TBGP makes extensive use of the Sacado package (Phipps

et al., 2012) for automatic differentiation, which employs

C++ expression templates with operator overloading, and

2Available online at http://www.trilinos.org/oldsite/packages/

ml/mlguide5.pdf.
3The Albany framework can be obtained from its public

github repository by the interested reader: https://github.com/

gahansen/Albany.

has been closely integrated with the Phalanx and Intrepid

packages.

The Newton-based nonlinear system solver and homo-

topy continuation algorithm are implemented in the NOX

(Pawlowski et al., 2006) and LOCA (Salinger et al., 2005)

packages, respectively. These solvers can additionally per-

form sensitivity analysis using the analytic sensitivity vec-

tors computed with automatic differentiation with respect to

model parameters. Within the solvers, we have full runtime

access to all the Trilinos preconditioners (ILU and algebraic

multilevel preconditioners, from the Ifpack and ML software

packages, respectively) and linear solvers by specification in

an input file. For the bulk of the computations in this paper,

the ML package was employed for algebraic multilevel pre-

conditioners (Tuminaro, 2014), and the Belos package was

employed for iterative solvers (CG or GMRES) (Bavier et

al., 2012).

Albany is also coupled to the Dakota framework (Adams et

al., 2009, updated 2013) of sampling-based optimization and

UQ algorithms, which will play a significant role in model

initialization, calibration, and projections. Although the ap-

plication of optimization and UQ algorithms goes beyond the

scope of this paper, we emphasize that the component-based

approach for building this application code leads to the rapid

incorporation of many sophisticated capabilities.

To give the reader an idea of how much time can be saved

in writing a solver using modular packages or libraries, it is

noted that it took one staff member working half-time for

approximately six months to write the Albany/FELIX solver

and to verify the code on the test cases presented in Sects. 4–

5. It is estimated that all the work presented in the paper

(including development of the AMG preconditioner based

on semi-coarsening, described in Sect. 3.1.2) took approxi-

mately 1.5 FTEs (full-time equivalent units) worth of work.

4 Verification using the method of manufactured

solutions (MMS)

We first conduct formal verification of the new Al-

bany/FELIX code described in Sect. 3 through the method of

manufactured solutions (MMS), using test cases derived here

explicitly for this purpose. A survey of the literature reveals

that past work has focused on deriving MMS benchmarks for

the “shallow ice” and nonlinear Stokes models (e.g., Bueler

et al., 2007; Leng et al., 2013, respectively) rather than the

FO approximation Eq. (2). The lack of MMS solutions for

the FO Stokes equations in the literature is likely due to the

complexity of these equations, which makes deriving source

terms for a given manufactured solution difficult, if not in-

tractable. Here, we derive some new MMS benchmarks for

simplified versions of the FO Stokes Eq. (2) in 2-D. These

equations are obtained by neglecting gradients in one of the

coordinate directions, first z (Sect. 4.1), then y (Sect. 4.2),

and allow us to look at the convergence of our computed so-
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lution to an exact solution for parts of the governing PDEs.

The terms appearing in our test cases are simple enough to

be implemented by anyone simply by referring to the expres-

sions in this paper. It is emphasized that the test cases are

intended to be used as part of a multi-stage code verification

that also includes verification of the 3-D FO Stokes equations

using code-to-code comparisons and mesh convergence stud-

ies on realistic geometries (Sects. 5 and 6, respectively).

Here, we use the Albany/FELIX code and these new MMS

benchmarks to verify (i) that the dynamics have been imple-

mented correctly, and (ii) that the type of finite elements em-

ployed show convergence at their expected theoretical rates.

We consider four different finite element types in our nu-

merical convergence study: three node triangles (denoted by

“Tri 3”), four node quadrilaterals (denoted by “Quad 4”), six

node triangles (denoted by “Tri 6”), and nine node quadrilat-

erals (denoted by “Quad 9”) (Fig. 1). Convergence is evalu-

ated in the discrete l2 norm. In particular, the relative error in

a computed solution, denoted by Edisc
rel , is calculated from

Edisc
rel =

||un−u||2

||u||2
, (23)

where || · ||2 denotes the discrete l2 norm, uT ≡ (u,v) is the

exact solution to Eq. (24), and un is the numerically com-

puted solution to Eq. (24). It is well known from classical fi-

nite element theory (Hughes, 2000) that the theoretical con-

vergence rate in the norm considered is 2 for the Tri 3 and

Quad 4 elements, and 3 for the Quad 6 and Quad 9 elements.

Hence, the first two elements are referred to as first-order fi-

nite elements and the second two elements are referred to as

second-order finite elements. Note that the quadrilateral ele-

ments are expected to deliver a more accurate solution than

their triangular counterparts of the same order.

4.1 x–y MMS test case

Consider the FO Stokes Eq. (2) in 2-D, that is, Eq. (2) with

all the ∂
∂z

terms neglected. Assume these equations are posed

on a domain whose sides are aligned with the x and y axes in

a Cartesian reference frame, so that ∂s
∂x
=

∂s
∂y
= 0. Let fT ≡

(f1,f2) be a source term for Eq. (2), to be determined such

that a given manufactured solution satisfies these equations.

Under these assumptions, the FO Stokes system Eq. (2) has

the following form:

−
∂

∂x

(
4µ2−D,xy

∂u

∂x
+ 2µ2−D,xy

∂v

∂y

)
−
∂

∂y

(
µ2−D,xy

∂u

∂y
+µ2−D,xy

∂v

∂x

)
+ f1 = 0,

−
∂

∂x

(
µ2−D,xy

∂u

∂x
+µ2−D,xy

∂v

∂y

)
−
∂

∂y

(
2µ2−D,xy

∂u

∂x
+ 4µ2−D,xy

∂v

∂y

)
+ f2 = 0,

(24)

(a) (b) (c) (d)

Figure 1. 2-D finite elements evaluated in the manufactured solu-

tion test cases. (a) Tri 3, (b) Quad 4, (c) Tri 6, (d) Quad 9.

where the viscosity µ2−D,xy is given by the 2-D version of

Eq. (8):

µ2−D,xy =
1

2
A−

1
n

{(
∂u

∂x

)2

+

(
∂v

∂y

)2

+
∂u

∂x

∂v

∂y

+
1

4

(
∂u

∂y
+
∂v

∂x

)2
}( 1

2n
−

1
2

)
. (25)

We note that the x–y FO Stokes Eq. (24) can be viewed

as a test for ice shelves; stress gradients in the x–z plane are

negligible compared to those in the x–y plane.

The x–y MMS first test case is posed on a box domain,

namely �= (0,1)× (0,1) with Robin boundary conditions

on ∂�. The source term in Eq. (24) is derived such that the

exact solution to this system is given by the following ex-

pression:

u= ex sin(2πy),

v = ex cos(2πy),
(26)

(Fig. 2). Substituting Eq. (26) into Eq. (24), the source

terms f1 and f2 are obtained:

f1 = 2µ2−D,xye
x sin(2πy)

[
2− 3π − 2π2

]
+A−

1
n

(
1

n
− 1

)
ε̇

1
n
−2

e,2−D

(
∂ε̇e,2−D

∂x
(2ε̇xx + ε̇yy)

+
∂ε̇e,2−D

∂y
ε̇xy

)
, (27)

f2 = 2µ2−D,xye
x cos(2πy)

[
3π +

1

2
− 8π2

]
+A−

1
n

(
1

n
− 1

)
ε̇

1
n
−2

e,2−D

(
∂ε̇e,2−D

∂x
ε̇xy

+
∂ε̇e,2−D

∂y
(ε̇xx + 2ε̇yy)

)
, (28)

where

ε̇e,2−D ≡

√(
∂u

∂x

)2

+

(
∂v

∂y

)2

+
∂u

∂x

∂v

∂y
+

1

4

(
∂u

∂y
+
∂v

∂x

)2

= ex

√
(1+ 4π2− 2π)sin2(2πy)+

1

4
(2π + 1)2cos2(2πy),

(29)
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(a) (b)

Figure 2. Plots of exact solutions to the x–y MMS test case: (a) u,

(b) v.

and µ2−D,xy is given by Eq. (25). The solution (26) implies

the following boundary conditions on the boundary of �:

ε̇1 ·n= 2(π − 1)u, ε̇2 ·n=−

(
π +

1

2

)
v, at x = 0,

ε̇1 ·n=−2(π − 1)u, ε̇2 ·n=

(
π +

1

2

)
v, at x = 1,

u= 0, ε̇2 ·n= 0, at y = 0 and y = 1,

v = 0, at (x,y)= (0,0),

(30)

where n denotes the outward unit normal vector to a given

boundary and where

ε̇T1 =
(
2ε̇xx + ε̇yy, ε̇xy

)
∈ R2, (31)

and

ε̇T2 =
(
ε̇xy, ε̇xx + 2ε̇yy

)
∈ R2. (32)

The last condition on Eq. (30) is imposed to guarantee

uniqueness of the v component of the velocity vector.

For the x–y MMS test case considered here, the values

of the flow rate factor and Glen’s flow law exponent were

taken to be A= 1 and n= 3, respectively. The relative er-

rors Eq. (23) as a function of the mesh size h for the x–y

MMS test case are plotted on a log-log plot in Fig. 3. The two

lowest-order finite elements (Tri 3 and Quad 4) converge at

their theoretical rates of 2, whereas the higher-order finite el-

ements (Tri 6 and Quad 9) exhibit a slight superconvergence

over their theoretical convergence rate of 3. As expected, the

quadrilateral elements deliver a more accurate solution than

their triangular counterparts.

4.2 x–z MMS test case

The 2-D FO Stokes equations in the x–z variables are ob-

tained from Eq. (2) by neglecting the y-component of the

velocity (v) and all the ∂
∂y

terms. The vector ε̇T1 reads

ε̇T1 = (2ε̇xx, ε̇xz) , (33)

Figure 3. Convergence rates for the x–y MMS test case in the dis-

crete l2 norm Eq. (23).

and the FO Stokes equations reduce to the following 2-D

equation in the x− z plane:

−
∂

∂x

(
4µ2−D,xz

∂u

∂x

)
−
∂

∂z

(
µ2−D,xz

∂u

∂z

)
+ f1 = 0, (34)

where

µ2−D,xz =
1

2
A−1/n

(
ε̇2
xx + ε̇

2
xz

) 1
2n
−

1
2
, f1 = ρg

∂s

∂x
. (35)

We consider the following approximate solution of

Eq. (34):

u=
2Aρngn

n+ 1

(
(s− z)n+1

−H n+1
)∣∣∣∣ ∂s∂x

∣∣∣∣n−1
∂s

∂x

−
ρg

β
H
∂s

∂x
. (36)

The first term of u is the solution of the SIA with no-slip

at the bedrock interface, whereas the second term is the so-

lution of the SSA equation when H and β are constant and s

is quadratic in x. We now use the solution u as our man-

ufactured solution, and we modify the forcing term f1 of

Eq. (34) so that the FO equation is exactly satisfied by u.

In particular, we set n= 3, and consider the geometry de-

fined by s = s0−αx
2, b = s−H , x ∈ (−L,L), with constants

s0,α,H, and β. Then,

f1 =
16

3
Aµ4

2−D,xz

(
−2φ2

4φ5+ 24φ3φ4(φ1+ 2αx2)

−6x3φ3
1φ2φ3− 18x2φ2

1φ2φ
2
4 − 6xφ1φ3φ5

)
, (37)
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where

φ1 = z− s, φ2 = 4Aα3ρ3g3x, φ3 = 4x3φ5
1φ

2
2 ,

φ4 = 8αx3φ3
1φ2−

2Hαρg

β
+ 3xφ2(φ

4
1 −H

4),

φ5 = 56αx2φ3
1φ2+ 48α2x4φ2

1φ2+ 6φ2(φ
4
1 −H

4),

µ2−D,xz =
1

2
(Aφ2

4 +Axφ1φ3)
−

1
3 .

(38)

Boundary conditions are of the Robin and Neumann type,

and are given by

ε̇1 ·n= ftop,at z= s(x),

ε̇1 ·n+βu= fbed,at z= b(x),

ε̇1 ·n= flat,at x = L,

ε̇1 ·n=−flat,at x =−L,

(39)

where

flat =−4φ4µ2−D,xz,

ftop =−4φ4µ2−D,xzn
top
x − 4φ2x

2φ3
1µ2−D,xzn

top
y ,

fbed =−4φ4µ2−D,xzn
bed
x − 4φ2x

2φ3
1µ2−D,xzn

bed
y

+2Hαρgx−βx2φ2(φ
4
1 −H

4).

(40)

Here, the components of the normal to the top and bedrock

surfaces read n
top
x =

2αx√
4α2x2+1

, n
top
z =

1√
4α2x2+1

and n
top
x =

−nbed
x , n

top
z =−n

bed
z .

Figure 4 shows a contour plot of the exact solution to the

x–z MMS problem Eq. (36) and the domain � on which this

problem is posed.

Reasonable values for the constants defining the x–z

MMS test case, and the ones used here, are L= 50 km,

s0 = 2 km, H = 1 km, α = 4e− 5 km−1, β = 1 kPa yr m−1

and A= 10−4 k−4 Pa−3 a−1.

Figure 5 plots the relative errors in Eq. (23) on a log-log

scale as a function of the horizontal mesh resolution hx for

the x–z MMS test case. The x and z resolutions considered

are such that n= 5, 10, 20, and 40, where n denotes the num-

ber of elements in each spatial direction. The two first-order

elements, Tri 3 and Quad 4, converge at a rate of 2, their

theoretical convergence rate. The convergence rate of the Tri

6 element is close to its theoretical convergence rate of 3.

The Quad 9 element exhibits a slight superconvergence over

its theoretical convergence rate of 3. As for the x–y MMS

test case considered in Sect. 4.1, and as expected, the quadri-

lateral elements deliver a more accurate solution than their

triangular analogs.

5 Intercomparison with other codes and benchmarks

In this section, we discuss further (informal) verification

of results for Albany/FELIX using some canonical ice

sheet benchmarks, namely the ISMIP-HOM tests A and C

Figure 4. Contour plot of the exact solution to the x–z MMS test

case.

Figure 5. Convergence rates for the x–z MMS test case in the dis-

crete l2 norm Eq. (23).

(Sect. 5.1), and the confined shelf test case (Sect. 5.2) (Rom-

melaere, 1996). For these problems, the exact solution is

not known in closed analytic form and our quasi-verification

consists of code-to-code comparisons between the solution

computed in Albany/FELIX, the results from other models

participating in the original benchmark experiments, and the

FO approximation, the finite element code of Perego et al.

(2012).

The values of the physical parameters used in the two test

cases considered are summarized in Table 1. We note that

the units employed in our implementation are m a−1 for the

ice velocities u and v (where “a” denotes years) and km for

the length scale (e.g., the mesh dimensions). Our units are

the same as in Perego et al. (2012), but differ from other

implementations, which often use a length scale of meters

(m). Our units give rise to matrices with smaller differences
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in scale (which may be better scaled), as there is in general

a smaller difference in scale in the relevant parameter val-

ues (e.g., A= 10−4 k−(n+1) Pa−n a−1 when the mesh is in

km vs. A= 10−16 Pa−n a−1 when the mesh is in m, where

k= km m−1
= 103).

5.1 ISMIP-HOM benchmarks

The ISMIP-HOM test cases (Pattyn et al., 2008) are a canon-

ical set of benchmark experiments for so-called “higher-

order” ice sheet models. Here, we consider tests A and C,

both of which are specified on a horizontal, periodic domain

with a unit length of L km. The bedrock surface, 0b, is given

by a continuous function z= b(x,y) ∈ R2 and the upper sur-

face, 0s , is given by a continuous function z= s(x,y) ∈ R2.

The geometries are generated from a uniform hexahedral

mesh of the unit cube (0,1)3 ∈ R3 via the following trans-

formation:

x = LX, y = LY, z= s(x,y)Z+ b(x,y)(1−Z), (41)

where X,Y, and Z are the coordinates of the unit cube

(in km), and L ∈ N is given. That is, a uniform mesh of

nx × ny × nz elements is first generated of (0,1)3, to yield

the nodal coordinates X, Y , and Z; then, the transformation

Eq. (41) is applied. The following domain sizes are consid-

ered: L= 5,10,20,40,80 and 160 km. Each domain is dis-

cretized using an 80×80×20 mesh of hexahedral elements.

As a part of the quasi-verification, the Albany/FELIX solu-

tion is compared with the solution computed in the finite el-

ement code of Perego et al. (2012) at the upper surface along

the line y = L/4. Table 2 shows the relative difference be-

tween the Albany/FELIX and Perego et al. (2012) solutions

in the l2 norm along this line, calculated from the formula

Eq. (23) with the Perego et al. (2012) solution taken as the

reference solution. Differences in the solutions are likely due

to the different finite elements used: trilinear finite elements

on hexahedra are used in Albany/FELIX, whereas linear fi-

nite elements on tetrahedra are used in the code of Perego et

al. (2012).

5.1.1 ISMIP-HOM test A

The first ISMIP-HOM benchmark considered is test A. For

this problem, the upper ice surface boundary (0s) is given by

the following linear function

s(x,y)=−x tanα, (42)

and the bedrock boundary (0b) is given by the following

trigonometric function

b(x,y)= s(x,y)− 1+
1

2
sin

(
2π

L
x

)
sin

(
2π

L
y

)
, (43)

with α = 0.5◦. The geometry is thus that of a uniformly slop-

ing slab along the x coordinate direction with a doubly peri-

odic, “egg crate” shaped bed. A no-slip boundary condition

Table 2. Relative differences between Albany/FELIX and Perego et

al. (2012) solutions for ISMIP-HOM tests A and C.

L (km) Test A Test C

5 0.00735 % 0.386 %

10 0.00629 % 0.248 %

20 0.00132 % 0.176 %

40 0.00408 % 0.213 %

80 0.0407 % 0.277 %

160 0.127 % 0.320 %

is prescribed on 0b (with 00 ≡ 0b and 0β =∅), stress-free

boundary conditions are prescribed on the upper surface 0s ,

and periodic boundary conditions are prescribed on the lat-

eral boundaries 0l.

Figure 6 compares the solution computed within the Al-

bany/FELIX code for ISMIP-HOM test A with the solution

computed by the code of Perego et al. (2012) (denoted by

MP12 in this figure). The agreement between the two is ex-

cellent. The second column of Table 2 reports the relative dif-

ference between these two solutions in the l2 norm Eq. (23).

The relative difference is at most 0.1 % for L= 180 and on

the order of 0.001 % for L= 5,10,20, and 40.

Figure 6 also includes the mean and standard deviation of

solutions computed by other models participating in the orig-

inal set of benchmark experiments. For a detailed descrip-

tion of these models, the reader is referred to Pattyn et al.

(2008). For all values of L considered, the Albany/FELIX so-

lution is within 1 standard deviation of the mean of the other

FO models considered in the original set of experiments. In

Fig. 6, the solutions labeled “Full Stokes” were calculated

using the (more expensive but more physically realistic) full

Stokes model for ice sheet flow (detailed in Appendix A).

Comparing a FO Stokes solution to the full Stokes solution

reveals how well the FO Stokes physics approximate the full

Stokes model. The reader can observe by examining Fig. 6

that agreement between the FO Stokes and the full Stokes

solutions improves with increasing L.

5.1.2 ISMIP-HOM test C

For ISMIP-HOM test C, the upper and bedrock surfaces (0s
and 0b, respectively) are given by the following linear func-

tions:

s(x,y)=−x tanα, b(x,y)= s(x,y)− 1, (44)

with α = 0.1◦. In addition to having a different geometry

than test A, test C also differs in the boundary conditions.

Unlike test A, sliding boundary conditions are prescribed on

the bedrock (0β ≡ 0b and 00 ≡∅), with the basal sliding

coefficient given by

β(x,y)= 1+ sin

(
2π

L
x

)
sin

(
2π

L
y

)
. (45)
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Figure 6. ISMIP-HOM test A: surface velocity component u as

a function of x at y = L/4 for each L considered. The blue solid

line (MP12) represents results from Perego et al. (2012) and the red

dashed line (labeled FelixFO) represents results from the current

solver.

The boundary conditions at the upper and lateral bound-

aries (0s and 0l, respectively) are the same as for test A,

namely stress-free and periodic, respectively. The geometry

is thus that of a constant thickness, uniformly sloping slab

along the x coordinate direction with a doubly periodic, “egg

crate” spatial pattern for the basal friction parameter β.

The test case solution computed in Albany/FELIX is

shown in Fig. 7, along with the solution computed using the

solver of Perego et al. (2012). For every L considered, the

relative difference between Albany/FELIX and the solver of

Perego et al. (2012) (denoted, as before, by MP12 in Fig. 7)

is less than 1 % (Table 2). Moreover, as for ISMIP-HOM

test A, the Albany/FELIX solution is within 1 standard devi-

ation of the model means for each value of L. As for ISMIP-

HOM test A, Fig. 7 also illustrates how well the FO Stokes

model compares to the (more expensive but more accurate)

full Stokes model. As for test A, the two models agree better

for larger L.

5.2 Confined shelf benchmark

We next consider an idealized ice shelf test case, referred

to here as the “confined shelf” test case, which is a slightly

modified version of test 3 from the Ice Shelf Model Inter-

comparison exercise (Rommelaere, 1996). The geometry is

that of a 500 m thick slab of ice with equal extents of 200 km

along the x and y dimensions, floating in hydrostatic equilib-

rium. A stress-free boundary condition is applied at the up-

per and basal boundaries (z= s and z= b, respectively) and

homogeneous Dirichlet boundary conditions (u= v = 0) are

applied on three of the four lateral boundaries (the eastern

Figure 7. ISMIP-HOM test C: surface velocity component u as a

function of x at y = L/4 for each L considered. The blue solid

line (MP12) represents results from Perego et al. (2012) and the red

dashed line (labeled FelixFO) represents results from the current

solver. Note that, for the 5 km test, the MP12 and FelixFO results

directly overly the results for the full Stokes models participating in

the original intercomparison.

(x = 200), western (x = 0) and northern (y = 200) bound-

aries). The southern (y = 0) lateral boundary is open to the

ocean and subject to the open-ocean Neumann boundary con-

dition described in Sect. 2 (boundary condition c). The val-

ues of the parameters that appear in Eq. (18) can be found in

Table 1.

The confined shelf geometry is discretized using a struc-

tured tetrahedral mesh of 41× 41 nodes in the x–y plane

with 10 vertical levels. As with the ISMIP-HOM test cases,

the solution for the confined shelf test case computed in our

code, Albany/FELIX, is compared to the solution computed

by the solver of Perego et al. (2012) on the same mesh.

Figure 8 shows the solution calculated in Albany/FELIX,

which is visually identical to the solution computed by the

solver of Perego et al. (2012). The difference between the

Albany/FELIX and Perego et al. (2012) solutions was found

to be on the order of O(10−10) at all grid points.

6 Convergence study using realistic geometry

The final results presented herein are the results of a nu-

merical convergence and performance study using a realistic,

1 km spatial resolution Greenland Ice Sheet (GIS) geometry

(i.e., surface and bed topography from Bamber et al., 2013).

First, we present results from a 3-D mesh convergence

study in which a set of uniform quadrilateral meshes of dif-

ferent horizontal and vertical resolutions were considered.

We began by generating a quadrilateral mesh with an 8 km
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Figure 8. Albany/FELIX solution to the confined-shelf test case (in-

distinguishable from the solution obtained by the solver of Perego

et al. (2012)).

horizontal resolution. We then refined this coarse mesh uni-

formly in the horizontal direction (by splitting each quadrilat-

eral finite element into four smaller quadrilaterals; see Fig. 9)

four times to yield meshes with resolutions of 4, 2, and 1 km,

and 500 m. The horizontal meshes were then extruded into

3-D hexahedral meshes with uniform or graded spacing be-

tween the vertical layers. In the graded vertical spacing case,

a transformation is performed such that a mesh with nz verti-

cal layers is finer near the bedrock boundary 0b and becomes

progressively coarser moving up, towards the surface bound-

ary 0s . The formulas4 for the coordinate of the ith vertical

layer, zi (for i = 0, . . .,nz, where nz is the number of vertical

layers), for each of these two spacings, is given in Table 3.

The number of layers considered in our study ranges from

5 to 80. Realistic basal friction coefficient (β) fields were

calculated by solving a deterministic inversion problem that

minimizes simultaneously the discrepancy between modeled

and observed surface velocities, modeled and observed bed

topography, and between a specified surface mass balance

field and the modeled flux divergence (see Perego et al.,

2014, for more details). A realistic, 3-D temperature field,

originally calculated using CISM for the study in Shannon

et al. (2013), was included as an initial condition in order to

provide realistic values for the flow-law rate factor Eq. (10).

Prior to being interpolated onto the meshes at hand, the origi-

nal topography, surface height, basal friction and temperature

data were smoothed by convolution with a 2-D Gaussian fil-

ter (with a standard deviation of 5 km). This smoothing filter

reduces the small-scale variations of the original fields, so

that it is reasonable to consider meshes from 8 km to 500 m

4The formula for the graded z spacing can be found in the CISM

documentation (Price et al., 2015), available at http://oceans11.lanl.

gov/cism.

(a) (b)

Figure 9. Examples of uniform mesh refinement: (a) no refinement

(8 km GIS), and (b) one level of refinement (4 km GIS).

Table 3. Formulas for different vertical mesh-spacing strategies

(uniform vs. graded), for i = 0, . . .,nz.

z spacing zi

Uniform i
nz

Graded 1− 4
3

[
1−

(
nz

2nz−i

)2
]

for our convergence study. Using directly the non-smoothed

data, we would have needed to consider much finer meshes

in order to obtain asymptotic convergence.

The purpose of our GIS mesh convergence study is three-

fold:

(i) to show a theoretical convergence rate for the finite el-

ements evaluated with respect to refinement in all three

coordinate directions,

(ii) to determine in a rigorous fashion for a GIS problem

with a fixed horizontal mesh resolution how many ver-

tical layers are required to achieve a solution with a de-

sired accuracy, and

(iii) to investigate whether the performance of our linear and

nonlinear solvers changes with the number of vertical

layers.

From finite element theory, theoretical convergence rates

are expected for a problem in which the data are fixed on

all meshes considered, so better-resolved data are intention-

ally not introduced on the coarser meshes that were part

of our convergence study in this section. A high-resolution

Geosci. Model Dev., 8, 1197–1220, 2015 www.geosci-model-dev.net/8/1197/2015/
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GIS problem, with real, high-resolution data is considered in

Sect. 6.1.3.

The FO Eq. (2) with basal sliding at the bedrock Eq. (16)

and stress-free boundary conditions Eq. (15) on the remain-

ing boundaries were solved on the base 8 km resolution mesh

and the four successively refined meshes. Model runs were

performed in parallel on Titan5, a Cray XK6 operated by

the Oak Ridge Leadership Computing Facility (OLCF). Note

that the parallel decompositions employed in the runs were 2-

D only; all elements with the same x and y coordinates were

on the same processor (convergence difficulties were encoun-

tered when splitting vertical columns in the mesh across pro-

cessors). A parallel decomposition for 16 cores is illustrated

in Fig. 10.

Tables 4 and 5 report the relative errors in the computed

solution for each mesh resolution considered with uniform

and graded vertical mesh spacings (respectively). The con-

vergence metric employed was the continuous L2 norm. The

relative error in each solution was calculated according to the

following formula:

Econt
rel ≡

√∫
�
||un−uref||

2
2d�∫

�
||uref||

2
2d�

. (46)

In Eq. (46), || · ||2 denotes the L2 norm, un denotes the

computed solution and uref denotes the reference solution,

which here we take as the solution computed for the finest

resolution mesh, the 500 m mesh with 80 vertical layers

and graded vertical spacing (for this quasi-realistic prob-

lem, there is no exact solution available in closed analytic

form). This finest mesh had 1.12 billion dofs. The integrals

in Eq. (46) were calculated exactly using a sufficiently accu-

rate numerical quadrature rule.

Below, we provide some discussion of the data summa-

rized in Tables 4 and 5, as well as some conclusions drawn

from these results.

Mesh convergence

Figure 11 shows the relative error Eq. (46) as a function of

the horizontal mesh spacing (8, 4, 2, 1 km) on a log-log plot

(blue line). The numerical values of the relative error Erel

plotted are the diagonal entries of Tables 4 and 5 (which were

identical for the two tables). The asymptotic convergence rate

(the slope of the blue line in Fig. 11 disregarding the coars-

est mesh data point, as it is not in the region of asymptotic

convergence) is 1.97. This compares very well with the theo-

retical convergence rate of 2, for the bilinear hexahedral ele-

ments considered in this norm (black-dashed line in Fig. 11).

5More information on Titan can be found at www.olcf.ornl.gov/

titan.

Figure 10. GIS domain decomposition for 16 core, parallel run,

with different colors representing portions of the domain owned by

different cores.

Effect of partitioning on mesh convergence

As noted in the discussion of the full 3-D mesh convergence

study described in Sect. 6, our study revealed that 2-D par-

allel decompositions of the meshes (i.e., decompositions in

which all elements with the same x and y coordinates were

on the same processor, as shown in Fig. 10) led to out-of-the-

box convergence of our linear and nonlinear solves. In con-

trast, convergence difficulties were encountered when split-

ting vertical columns in the mesh across processors. The 2-

D parallel decomposition is therefore recommended over a

full 3-D parallel decomposition, especially for problems on

meshes with a finer vertical resolution.

Uniform vs. graded vertical spacing

The reader may observe in comparing Tables 4 and 5 that

there is no significant difference between the errors in the so-

lutions on the meshes with a uniform vertical resolution and

www.geosci-model-dev.net/8/1197/2015/ Geosci. Model Dev., 8, 1197–1220, 2015
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Table 4. Relative errors for the GIS mesh convergence study with uniform vertical spacing.

Vertical 5 10 20 40 80

layers

Horizontal

resolution

8 km 2.0× 10−1

4 km 9.0× 10−2 7.8× 10−2

2 km 4.6× 10−2 2.4× 10−2 2.3× 10−2

1 km 3.8× 10−2 8.9× 10−3 5.5× 10−3 5.1× 10−3

500 m 3.7× 10−2 6.7× 10−3 1.7× 10−3 3.9× 10−4 8.1× 10−5

Table 5. Relative errors for the GIS mesh convergence study with graded vertical spacing.

Vertical 5 10 20 40 80

layers

Horizontal

resolution

8 km 2.0× 10−1

4 km 8.3× 10−2 7.8× 10−2

2 km 3.3× 10−2 2.4× 10−2 2.3× 10−2

1 km 2.2× 10−2 7.3× 10−3 5.3× 10−3 5.1× 10−3

500 m 2.1× 10−2 4.7× 10−3 1.2× 10−3 2.6× 10−4 –

Figure 11. Convergence in the continuous L2 norm Eq. (46) for the

realistic GIS problem with full 3-D refinement.

those on meshes with a graded vertical resolution. Nonethe-

less, there is some value (at no additional computational cost)

in using a graded mesh over a uniform mesh for some mesh

resolutions.

Practical recommendations on mesh resolution

The data in Tables 4 and 5 suggest that, depending on the

selected mesh resolution, there can be more value in refin-

ing vertically than horizontally. For example, for the uniform

mesh spacing (Table 4), the solution on a 2 km resolution

mesh with 10 vertical layers is more accurate than that on

a 1 km resolution mesh with 5 vertical layers. Similarly, the

solution on a 1 km resolution mesh with 20 vertical layers is

more accurate than that on a 500 m resolution mesh with 10

vertical layers. For the graded mesh spacing scenario (Ta-

ble 5), a solution refined two times in z is comparable in

accuracy to the solution refined two times in the horizontal

direction; however, the former problem is smaller, as refin-

ing two times vertically leads to a doubling of the number

of dofs, whereas refining two times horizontally leads to a

quadrupling of the number of dofs.

Although there can be value in refining vertically, this is

true only up to some level of refinement. For each horizon-

tal resolution in Tables 4 and 5 except the finest, the errors

plateau beyond a certain vertical resolution. The data in the

last row of the tables should be considered very cautiously,

as here we are using the same horizontal resolution as the

reference solution.

The results in Tables 4 and 5 can be used by readers to de-

termine the horizontal and vertical mesh resolution required

to attain a desired convergence rate. We note that the errors

are for a controlled study, where the ice geometries are not

changing with the horizontal resolution and the fields are

smoother than in reality. When both the mesh resolution and

the geometric data resolution increase simultaneously, hori-
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zontal refinement will likely be more important than Tables 4

and 5 suggest.

6.1 Code performance and scalability

Having demonstrated the numerical convergence of our code

on a realistic, large-scale ice sheet problem, we now study

the code’s robustness, performance and scalability.

6.1.1 Robustness

In Sect. 3.1.1, we described our approach for improving the

robustness of the nonlinear solver using a homotopy continu-

ation of the regularization parameter (denoted by γ ) appear-

ing in the effective viscosity law expression Eq. (22). Here,

we perform a numerical study of the relative robustness of

Newton’s method with and without the use of this continua-

tion procedure on a realistic, 5 km resolution Greenland ice

sheet problem. Three approaches are considered:

(a) full Newton with no homotopy continuation.

(b) Newton with backtracking but no homotopy continua-

tion.

(c) full Newton with homotopy continuation.

For all three methods, a uniform velocity field is specified

as the initial guess for Newton’s method. To prevent the ef-

fective viscosity Eq. (8) from evaluating to “not-a-number”

for this initial guess, we replace µ by µγ in Eq. (2), where

µγ is given by Eq. (22) and γ = 10−10 for the first two ap-

proaches. The third approach implements Algorithm 1, in

which we use a natural continuation algorithm to reach γ

= 10−10 starting with α0 = 0.1.

Figure 12 illustrates the performance of Newton’s method

for the three approaches considered by plotting the norm of

the residual as a function of the total number of Newton iter-

ations. The reader can observe that full Newton with no ho-

motopy continuation diverges. If backtracking is employed,

the algorithm converges to a tolerance of 10−4 in 43 non-

linear iterations. With the use of homotopy continuation, the

number of nonlinear iterations is cut almost in half, to 24

nonlinear iterations. The natural continuation method leads

to four homotopy steps.

It is well known that, for Newton’s method to converge

to the root of a nonlinear function (i.e., the solution to the

discrete counterpart of Eq. 21), it must start with an initial

guess that is reasonably close to the sought-after solution.

The proposed homotopy continuation method is particularly

useful in the case when no “good” initial guess is available

for Newton’s method, in which case the nonlinear solver may

fail to converge (see Sect. 3.1.1 and Algorithm 1). Homotopy

continuation may not be needed for robust convergence in the

case that a “good” initial guess is available (e.g., from obser-

vations or from a previously converged model time step).

Figure 12. The robustness of Newton’s method nonlinear solves

with homotopy continuation.

Table 6. Meshes used in the GIS controlled weak scalability study.

Horizontal No. of vertical No. of dofs No. of cores

resolution layers

8 km 5 3.34K 4

4 km 10 2.43M 32

2 km 20 18.4M 256

1 km 40 143M 2048

500 m 80 1.12B 16 384

6.1.2 Controlled weak scalability study on successively

refined meshes with coarse mesh data

First, we report results for a controlled weak scalability

study. For this experiment, the 8 km GIS mesh with 5 ver-

tical layers described in Sect. 6 was scaled up to a 500 m GIS

mesh with 80 vertical layers using the uniform 3-D mesh re-

finement discussed earlier. A total of five meshes were gener-

ated, as summarized in Table 6. The term “controlled” refers

to the fact that the resolution of the data describing the ice

sheet geometry used for initial conditions was held fixed for

all the grids considered and equal to the polygonal bound-

ary determined by the coarsest 8 km mesh. Moreover, to-

pography, surface height, basal friction and temperature data

have been smoothed and then interpolated as described in

Sect. 6. Each resolution problem was run in parallel on the

Hopper6 Cray XE6 supercomputer at the National Energy

Research Scientific Computing (NERSC) Center. The num-

ber of cores for each run (third column of Table 6) was cal-

culated so that, for each size problem, each core had ap-

proximately the same number of dofs (≈ 70–80 K dofs per

core). For a detailed discussion of the numerical methods

6More information on the Hopper machine can be found here:

http://www.nersc.gov/users/computational-systems/hopper.
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Figure 13. Controlled, weak scalability study on Hopper: (a) total linear solve, finite element assembly, and total run times in seconds, and

(b) additional timing information (X = time or number of iterations).

employed, the reader is referred to Sect. 3. In particular, re-

call that the linear solver employed is based on the precondi-

tioned CG iterative method. The preconditioner employed is

the algebraic multilevel preconditioner based on the idea of

semi-coarsening that was described in Sect. 3.1.2. This pre-

conditioner is available through the ML package of Trilinos

(Heroux et al., 2005).

Figure 13a reports the total linear solver time, the finite

element (FE) assembly time and the total time (in seconds)

for each resolution problem considered, as a function of the

number of cores. Figure 13b shows more detailed timing in-

formation, namely

• the normalized preconditioner generation time (“Prec Gen

Time”);

• the normalized Jacobian fill time, not including the Jaco-

bian export time7 (“Jac Fill - Jac Export Time”);

• the normalized number of nonlinear solves (“No. of Non-

lin Solves”);

• the normalized average number of linear iterations (“Avg

no. of Lin Iter”); and

• the normalized total time not including I/O (“Total Time –

IO”).

The run times and iteration counts have been normalized

by the run time and iteration count (respectively) for the

smallest run (8 km GIS with five vertical layers, run on four

cores). Figure 13 reveals that the run times and iteration times

scale well, albeit not perfectly, in a weak sense.

7“Jacobian export time” refers to the time required to transfer

(“export”) data from an element-based decomposition, which can

be formed with no communication, to a node-based decomposition,

where rows of the matrix are uniquely owned by a single processor.

6.1.3 Strong scalability for realistic Greenland initial

conditions on a variable-resolution mesh

For the performance study described in the previous para-

graph, the data have been smoothed and the lateral boundary

was determined by the coarsest (8 km resolution) mesh. We

now perform a scalability study for the GIS by directly in-

terpolating the original data sets into the mesh considered.

This results in better resolved topography, basal friction and

temperature fields in regions of the domain with higher res-

olution. As before, the surface topography and temperature

fields are from Bamber et al. (2013) and were generated as

a part of the Ice2Sea project (Ice2sea, 2014); the optimized

basal friction coefficient (β) field is from Perego et al. (2014).

We consider a tetrahedral mesh with a variable resolu-

tion of between 1 km and 7 km and with approximately

14.4 million elements, leading to approximately 5.5 million

dofs (Fig. 14a). The mesh was created by first meshing the

base of the GIS using the 2-D meshing software Triangle

(Shewchuk, 1996). The 2-D mesh generated using Triangle

was a nonuniform Delaunay triangulation in which the areas

of the triangles were constrained to be roughly proportional

to the norm of the gradient of the surface velocity data. This

yields meshes with better resolutions in places where the so-

lution has larger variations. The 2-D mesh is then extruded in

the z direction as prisms and each prism is divided into three

tetrahedra (Fig. 14b).

First, we verify that velocities computed on the 1–7 km

variable resolution tetrahedral mesh, shown in Fig. 15a, agree

with observations to within expectations. The reader can ob-

serve that there is generally good agreement between the

modeled velocities and those from the target field observa-

tions, shown in Fig. 15b (from Joughin et al., 2010). Dif-

ferences between the modeled and observed velocities occur

as a result of the objective function used during model opti-
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(a) (b) (c)

Figure 14. (a) Variable-resolution 1–7 km GIS mesh, (b) close-up

of the variable-resolution 1–7 km GIS mesh (boxed region in a), and

(c) subdivision of the hexahedral finite element into three tetrahedra.

(a) (b)

Figure 15. Solution magnitude |u| in meters per year: (a) Al-

bany/FELIX solution (surface speed) on the variable resolution (1–

7 km) tetrahedral mesh, and (b) observed surface speeds (from

Joughin et al. (2010)).

mization, which takes into account factors other than just the

velocity mismatch8.

Next, a strong scaling study on the 1–7 km variable res-

olution GIS problem is performed. The problem is run on

different numbers of cores on Hopper, from 64 to 512. The

total solve, linear solve and finite element assembly times

for each of the runs are reported (in seconds) in Table 7. The

speed-up relative to the smallest (64 core) run is plotted as

a function of the number of cores in Fig. 16. Good strong

scalability is obtained: a 3.75 times speed-up is observed

with 4 times the number of cores (up to and including 256

8The optimization procedure, discussed in more detail in Perego

et al. (2014), minimizes the difference between modeled and ob-

served velocities and between the modeled flux divergence and a

target surface mass balance field. The latter constraint, which is in-

troduced so that the optimized model is in quasi-steady state with

climate model forcing, results in the small differences between the

modeled and observed velocities observed in Fig. 15.

Table 7. Total, linear solve and finite element assembly times (s) for

variable resolution 1–7 km resolution GIS problems as a function of

the number of cores of Hopper.

No. of cores Total Linear Finite element

solve time solve time assembly time

64 268.1 119.9 148.3

128 139.9 63.12 76.78

256 78.41 37.92 40.49

512 56.83 33.81 23.02

Figure 16. Strong scalability for the 1–7 km resolution GIS prob-

lem: speed-up relative to the 64-core run.

cores), and a 6.64 times speed-up is observed with 8 times

the number of cores (up to and including 512 cores). In these

results, the linear solver employed was the preconditioned

CG iterative method, with the aforementioned algebraic mul-

tilevel preconditioner based on the idea of semi-coarsening

(see Sect. 3.1.2).

7 Conclusions

In this paper, we have presented a new, parallel, finite el-

ement solver for the first-order accurate, nonlinear Stokes

ice sheet model. This solver, Albany/FELIX, has been writ-

ten using a component-based approach to building applica-

tion codes. The components comprising the code are modular

Trilinos libraries, which are put together using abstract inter-

faces and template-based generic programming. Several ver-

ifications of the code’s accuracy and convergence are carried

out. First, a mesh convergence study is performed on sev-

eral new methods of manufactured solution test cases derived

for simplified 2-D versions of the first-order Stokes equa-

tions. All finite elements tested exhibit their theoretical rate

of convergence. Next, code-to-code comparisons are made

on several canonical ice sheet benchmarks between the Al-

bany/FELIX code and the finite element solver of Perego et
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al. (2012). The solutions are shown to agree to within ma-

chine precision. As a final verification, a mesh convergence

study on a realistic Greenland geometry is performed. The

purpose of this test is two-fold: (1) to demonstrate that the

solution converges at the theoretical rate with mesh refine-

ment, and (2) to determine how many vertical layers are re-

quired to accurately resolve the solution with a fixed x–y res-

olution, when using (low-order) trilinear finite elements. It is

found that the parallel decomposition of a mesh has some

effect on the linear and nonlinear solver convergence: better

performance is observed on the finer meshes if a horizon-

tal decomposition (i.e., a decomposition in which all nodes

with the same x and y coordinates are on the same proces-

sor) is employed for parallel runs. Further performance stud-

ies reveal that a robust nonlinear solver is obtained through

the use of homotopy continuation with respect to a regular-

ization parameter in the effective viscosity in the governing

equations, and that good weak scalability can be achieved by

preconditioning the iterative linear solver using an algebraic

multilevel preconditioner constructed based on the idea of

semi-coarsening.

Finally, we note that the ultimate purpose for developing

Albany/FELIX is to integrate it into more complete land ice

modeling frameworks so that it can be used for prognostic

simulations, both in standalone mode and as a coupled com-

ponent of ESMs. In addition to the conservation of linear mo-

mentum being solved by Albany/FELIX, a complete prog-

nostic land ice model must also solve discretized PDEs for

the conservation of mass and energy, in addition to treating

other physical processes such as lithospheric heat exchange

and isostatic bedrock adjustment. To enable prognostic runs,

we have written interfaces for coupling Albany/FELIX to

two larger land ice modeling frameworks, which discretize

and solve the equations for mass and energy conservation:

the Community Ice Sheet Model version 2.0 (CISM2) (Price

et al., 2014) and the Model for Prediction Across Scales –

Land Ice (MPAS-LI) (Hoffman, 2013). We refer to the result-

ing complete land ice models as CISM-Albany and MPAS-

Albany respectively. Prognostic runs using these dycores are

iterative in nature, with a diagnostic solve for the velocity

field occurring in Albany/FELIX, followed by solutions for

the geometry and temperature evolution occurring in CISM2

or MPAS-LI. Further discussion of CISM-Albany and MPAS-

Albany and ongoing work involving their coupling to ESMs

will be deferred to subsequent papers. Similarly, these com-

bined codes will be publicly released at a later point in time.
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Appendix A: Nonlinear Stokes model for glaciers and ice

sheets

The model considered here, referred to as the first-order (FO)

Stokes approximation, or the Blatter–Pattyn model (Blat-

ter, 1995; Pattyn, 2003), is an approximation of the non-

linear Stokes model for glacier and ice sheet flow. In gen-

eral, glaciers and ice sheets are modeled as an incompress-

ible fluid in a low Reynolds number flow with a power-law

viscous rheology, as described by the Stokes flow equations.

The equations are quasi-static, as the inertial and advective

terms can be neglected due to the slow movement of the ice.

Let σ denote the Cauchy stress tensor, given by

σ = 2µε̇−pI ∈ R3×3, (47)

where µ denotes the “effective” ice viscosity, p the ice pres-

sure, I the identity tensor, and ε̇ the strain-rate tensor:

ε̇ij =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
, (48)

for i,j ∈ {1,2,3}. The effective viscosity is given by Glen’s

law (Nye, 1957; Cuffey and Paterson, 2010):

µ=
1

2
A−

1
n ε̇

(
1
n
−1
)

e , (49)

where

ε̇e =

√
1

2

∑
ij

ε̇2
ij (50)

denotes the effective strain rate, given by the second invari-

ant of the strain-rate tensor. A denotes the flow rate factor

(which is strongly dependent on the ice temperature), and n

denotes the power law exponent (generally taken equal to 3).

The nonlinear Stokes equations for glacier and ice sheet flow

can then be written as follows:{
−∇ · σ = ρg

∇ ·u= 0.
(51)

Here, ρ denotes the ice density, and g the gravitational ac-

celeration vector, i.e., gT = (0, 0, −g), with g denoting the

gravitational acceleration. The values of the parameters that

appear in the expressions above are given in Table 1. A stress-

free boundary condition is prescribed on the upper surface:

σn= 0, on 0s . (52)

On the lower surface, the relevant boundary condition is

the no-slip or basal sliding boundary condition{
u= 0, on 00,

u ·n= 0 and (σn+βu)|| = 0, on 0β ,
(53)

assuming 0b = 00 ∪0β with 00 ∩0β =∅, where β ≡

β(x,y)≥ 0. The operator (·)|| in Eq. (53) performs the tan-

gential projection onto a given surface.
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Code Availability

The Albany framework is an open-source development

project available for download on GitHub (http://gahansen.

github.io/Albany). Albany, currently on its 2.0 release, is re-

leased under a publicly available designation with a three-

term BSD license.

The Albany framework was written using many libraries

available through Trilinos, also publicly available (http://

trilinos.org). At the time this journal article was written, Trili-

nos was on its 11.12 release. The multigrid algorithm pre-

sented in this paper (Sect. 3.1.2) is implemented within the

ML package of Trilinos and is available for use with Trilinos

11.12 or later.

The Albany/FELIX solver described in this paper is not

publicly available at the present time. A public release of

the code as part of Albany is planned for 2015. The CISM

and MPAS ice sheet models with supported interfaces to Al-

bany/FELIX will also be made publicly available at a later

point in time.
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