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Abstract

Background: Last generations of Single Nucleotide Polymorphism (SNP) arrays allow to study copy-number
variations in addition to genotyping measures.

Results: MPAgenomics, standing for multi-patient analysis (MPA) of genomic markers, is an R-package devoted to:
(i) efficient segmentation and (ii) selection of genomic markers from multi-patient copy number and SNP data
profiles. It provides wrappers from commonly used packages to streamline their repeated (sometimes difficult)
manipulation, offering an easy-to-use pipeline for beginners in R.
The segmentation of successive multiple profiles (finding losses and gains) is performed with an automatic choice of
parameters involved in the wrapped packages. Considering multiple profiles in the same time, MPAgenomicswraps
efficient penalized regression methods to select relevant markers associated with a given outcome.

Conclusions: MPAgenomics provides an easy tool to analyze data from SNP arrays in R. The R-package
MPAgenomics is available on CRAN.
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Background
Genome-wide Single Nucleotide Polymorphism (SNP)
arrays have been widely used over the past few years
[1]. First generations were measuring only genetic vari-
ations of Single Nucleotide Polymorphisms, which are
single base pair mutations at specific loci. Last genera-
tions (e.g. SNP5.0, SNP6.0) also include non-polymorphic
probes in order to study copy-number variations along the
genome in addition to genotyping measures. These arrays
are especially used to study the impact of diseases, e.g.
cancer, on the human genome.
Analyzing data from genome-wide SNP arrays within

R requires several packages, e.g. aroma for normaliza-
tion of Affymetrix® SNP arrays [2,3], changepoint or
cghseg for segmentation of copy number profiles [4],
cghcall for labelling segments [5], and glmnet for
penalized regressions [6]. Each package performs a spe-
cific task along the whole analysis but none of them is
related to the others. Output formats of given packages
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are often not compatible with input formats required by
the other, making their use tricky for beginners in R. One
main contribution of the MPAgenomics R package is
to aggregate these commonly used packages, providing
wrappers to inter-relate them automatically.
At each step of the analysis a large amount of packages

are available to perform normalization, segmentation or
marker selection. A careful choice of only a few methods
is required to provide an easy-to-use and efficient tool.
In this software article, we describe two different

pipelines implemented in the R package MPAgenomics.
Both of them perform the whole analysis from raw data
to normalization, and then either successive segmented
profiles, or a list of genomic markers selected from all
available profiles.

Implementation
MPAgenomics is implemented in R [7]. The package is
divided in four main parts: data normalization, segmenta-
tion, calling and marker selection. Each part depends on
different packages. MPAgenomics provides wrappers for
some functions of these packages and facilitates the inter-
action between outputs and inputs of different functions.
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It remedies some problems with the wrapped packages
such as confusing parameter names.

Data normalization
The normalization process in MPAgenomics contains
technical biases correction and copy number and allele B
fraction estimation. Following [8], allele B fraction refers
to the proportion of the total signal coming from allele
B. Normalization methods are available for Affymetrix®
arrays (10K, 100K, 500K, GenomeWideSNP 5 & 6, and
CytoScanHD). The estimation of the total copy number
and allele B fraction is made by CRMAv2 [9] originally
implemented in the aroma packages. For studies with
matched normal-tumor samples, a better estimation is
suggested and implemented for the allele B fraction of the
tumoral sample with the TumorBoost method [8].
The use of aroma packages is difficult for neophytes

due to the strict folder architecture it requires and the
documentation of the project which is mainly dedicated
to experts able to criticize each method proposed and
understand details of each procedure.
MPAgenomics provides documentation with a detailed

example explaining how to quickly analyze data. The
tutorial can be accessed in R by running the following
commands:
library(MPAgenomics)
vignette(“MPAgenomics”)
More details on each step or wrapper are given to help

advanced users to run each function separately.
Several features in the original aroma packages create

new folders and files within the architecture. Matching
files from different processes associated with a given sam-
ple can be tricky for neophytes. MPAgenomics imple-
ments a wrapper to build the folder architecture, check
filenames automatically, process CRMAv2 and Tumor-
Boost normalization steps. Miscellaneous functions are
also provided to ease some actions like signal extraction.
Furthermore, different graphs such as the copy number
profile can be saved in the working directory for further
visualization.
The following steps (segmentation, calling and/or selec-

tion of genomicmarkers) are available in two settings. One
is aroma-based and exploits the folder architecture and
the files generated along the process. The second does not
depend on aroma and allows advanced users to use their
own normalized data.

Segmentation
Although the use of manual annotations provides the best
segmentation results [10], it appears essential for multi-
patient analysis to avoid relying on them since they are
time-consuming.
Therefore, following simulation results of [10],

MPAgenomics wraps the CGHSEG [11,12] and PELT

(Pruned Exact Linear Time) [13] segmentation meth-
ods which appeared to be those with the best overall
performance.
PELT and CGHSEG methods fit a Gaussian maximum

likelihood model but they differ in the way they choose
the number of segments. CGHSEG requires the maximal
number of segments as input. In MPAgenomics, the opti-
mal number of segments is chosen according to a penalty
C × K × (

2.5 + log
( P
K

))
with a profile of length P, K the

number of segments and C > 0 a parameter to choose
[14]. This choice is performed using slope heuristics [15].
The PELT method returns a segmentation with a num-
ber of segments automatically chosen by the algorithm
according to a penalty Kρ log(P) with ρ > 0 a param-
eter to choose. The choice of the penalty parameter has
been raised in [4]. MPAgenomics suggests an automatic
sample-specific choice of ρ chromosome by chromo-
some (see package vignette for details on the method). In
MPAgenomics, the twomethods, CGHSEG with the slope
heuristic and PELT with our calibration method, are pro-
posed. By default, CGHSEG is used because it is quicker
than PELT due to the multiple execution required by the ρ

calibration method we propose.
The implemented segmentation methods are indepen-

dently available for both copy number and allele B fraction
profiles. In the case of allele B fraction segmentation, only
heterozygous SNPs are kept. First, a naive genotype call [8]
is performed on each normal sample in order to separate
heterozygous SNPs from homozygous SNPs. Naive geno-
typingmethod assumes SNPs are bi-allelic and therefore is
not recommended for tumor samples. Thus allele B frac-
tion segmentation in MPAgenomics requires matched
normal-tumor pairs. Then, following [16], the resulting
signal is centered on 0.5 and symmetrized, which makes it
similar to the usual copy number.

Calling
From each segmented profile, the CGHcallmethod [17] is
run to label every copy-number segment in terms of loss,
normal, and gain.
CGHcall depends on a parameter, named cellularity,

corresponding to the contamination of a sample with
healthy cells. In MPAgenomics, this parameter can be
modified by users, by default its value is 1 meaning that
tumor samples are pure.
In the aroma-dependent function, segmentation and

calling are performed with the same wrapper. The calling
is run for each profile separately. Results are saved in text
format in the working folder architecture.

Selection of genomic markers
The goal is to select genomic markers (e.g. SNPs or CNV)
associated with a given response from all patient profiles
simultaneously. There is no need to perform segmentation
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and calling before themulti-patient analysis, marker selec-
tion is made over all copy-number profiles. However,
segmentation can be performed before marker selection if
wanted, in order to reduce the noise and the dimensional-
ity of the problem.
Assuming I individuals and P potential markers, then

for each individual i, yi denotes the response and xi,p the
corresponding normalized value of copy number or allele
B fraction signal at genomic position p.
Due to the huge number of markers (P >> I),

MPAgenomics uses by default the lasso [18] regulariza-
tion method to select very few ones. This method offers
two advantages: (i) it selects only few variables, easing the
interpretability of results, (ii) there exist some algorithms
such as the lars [19] to solve quickly the lasso problem and
support high-dimensional data.
The lasso regularization method consists in minimizing

gλ : β ∈ R
P �→ gλ(β), where

gλ(β) =
I∑

i=1
(yi − (Xβ)i)

2 + λ

P∑

p=1
|βp| ,

with (Xβ)i = ∑
p xi,pβp and λ > 0 controlling the number

of non-zero coordinates of β . After minimization, non-
zero coefficients βp correspond to influential positions to
predict the response.
MPAgenomics genomic marker selection drastically

improves currently available packages in terms of compu-
tation time.With the linear regression model, it efficiently
provides the exact solution by using the new R package
HDPenReg, which is an optimized implementation of the
lars algorithm [19] specially dedicated to a huge number
of markers.
Since the theoretical grounding of Lasso when P >> I

relies on a theoretical condition (see [20]) that cannot be
easily checked in practice, the spike and slab algorithm
[21,22] – a three steps algorithm performing filtering,
estimation and variable selection – is also provided in
MPAgenomics as an alternative.
Logistic regression is also available for binary responses.

In this case, MPAgenomics wraps the glmnet package
[6] in the whole process. Unlike HDPenReg it does not
provide the exact solution but is computationally very effi-
cient. With glmnet and HDPenReg, the regularization
parameter λ is chosen by k-fold cross-validation [23]. The
selected variables are the most relevant ones regarding the
response.

Discussion
MPAgenomics is mainly dedicated to beginners in SNP
array analyses. It solves problems commonly encountered
by neophytes such as interaction between different pack-
ages or specialized documentation dedicated to experts in
the field. In addition, MPAgenomics suggests careful and

automatic choices of crucial parameters at each part of the
analysis.
To achieve simplicity of usage, MPAgenomics does not

propose all options implemented in the wrapped pack-
ages, especially for normalization. However, outputs are
generated in such a way that interaction between wrapped
packages and MPAgenomics is facilitated. For example,
the strict directory structure of aroma packages is built by
MPAgenomics. Therefore, advanced users may directly
use specific options of aroma to enhance their analysis
without renormalizing data from scratch.
As specified in the data normalization section, segmen-

tation, calling and marker selection steps can be per-
formed without the use of aroma. This allows users to
provide their own normalized data into matrices. This is
useful for non-Affymetrix® SNP arrays, CGH arrays or
high-throughput sequencing data. For the latter, count
datamight need a variance-stabilizing transformation into
Gaussian data before using current segmentation, calling
and marker selection. For example, the Anscombe trans-
form [24] can be used in addition to appropriate normal-
ization specific to the used technology (target sequencing,
whole-genome sequencing).
Currently, copy number and allele B fraction are seg-

mented independently from each other. Research is ongo-
ing to propose joint segmentation methods allowing to
detect uniparental disomies, fragments which present a
normal copy number but a loss of heterozygosity in the
corresponding allele B fraction.

Conclusions
MPAgenomics provides user-friendly wrappers for nor-
malization and multi-patient analysis of high-throughput
genomic data. It offers a guideline for beginners in copy-
number variation analysis focusing on proven methods
for their effectiveness. MPAgenomics also provides auto-
matic choices of crucial parameters for segmentation and
selection of markers.
Even though normalization is provided for Affymetrix®

arrays, other steps (segmentation, calling, and marker
selection) can be applied to normalized data from other
DNA arrays and next-generation sequencing data.

Availability and requirements
Project name:MPAgenomics
Project home page: http://cran.at.r-project.org/package=
MPAgenomics
Operating system(s): Platform independent
Programming language: R
Other requirements: none
License: GNU GPL (>=2)
Any restrictions to use by non-academics: None
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