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This paper discusses two simplified analytical models for automotive disc brake vibration which can be used to complement more
complex finite element methods. The first model approximates the brake disc as a simple beam structure with cyclosymmetric
boundary conditions. Since the beam model is a one-dimensional approach, modelling of the inner boundary condition of the
brake disc, at the interface of the brake rotor and the central hat, is not possible. The second model, which is established based
upon Kirchhoff ’s thin plate theory, is presented in this paper in order to incorporate the vibrational deformation at the hat-disc
interface. The mode shapes, natural frequencies, and forced response of a static disc are calculated using different inner boundary
conditions. Among others, the spring-supported boundary condition is proposed and applied in this paper to make appropriate
predictions. The predicted results are compared with measurements of the vibration characteristics of a solid brake disc mounted
upon a static test rig. These comparisons demonstrate that the most appropriate model for the inner boundary condition of the
measured brake disc is the proposed spring-supported inner boundary condition.

1. Introduction

The investigation of brake squeal is of continuing interest
to the automotive industry due to the high warranty costs
that have to be paid every year to replace complete or
individual parts of the brake systems. References [1–6]
present a useful review of current knowledge within the
public domain. Chen [1] noted that brake squeal is generated
by a dynamic instability within the brake system. The
mechanisms of this instability can be broadly categorised
into two groups: (i) friction force-induced excitation and
(ii) friction force-induced structural coupling. Modelling of
brake disc vibration is one of the key factors in understanding
and controlling squeal generation, as the squeal frequencies
are almost always at or near to the resonant frequencies of
the disc [1].

Finite element models are widely used to investigate
brake system instability and have given considerable insight
to the problem. Specific examples of how the geometric
complexity of a braking system can be modelled using finite
elements is discussed by Trichês Jr et al. [7] and Dai and

Lim [8]. To complement the use of finite element models
various lumped parameter or continuous system analytical
models have been developed. For example, in modelling
the brake disc, Flint and Hultén [9, 10] have used a one-
dimensional beam-bending model whilst Ouyang and his
colleagues [11–13] have applied a flat plate bending model.
Previous research has noted that the in-plane vibrations of
a disc can also contribute to brake squeal generation [1].
However, Cao et al. [14] reported that the in-plane motion
was found to have a low influence in the frequency range
below 6 kHz. Chen et al. and Bae and Wickert [2, 15] present
a good illustration of the variation in the natural frequencies
of bending and in-plane modes of a solid annular disc as a
function of thickness to diameter ratio. For a relatively thick
disc the lowest in-plane mode may fall in the same frequency
range as the lowest bending mode. A detailed theoretical
description of the in-plane vibration of circular annular discs
is presented by Bashmal et al. [16].

In this paper two analytical models for automotive
disc brake vibration are presented. Of course, simplified
analytical models will not be able to represent the complexity
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of mechanisms involved in practical brake system vibration.
However, as noted by Papinniemi and his coauthors [5] they
can provide insight by highlighting the physical phenomena
that occur. They can also assist in the interpretation of
experimental results and the development of improved
computational tools. The first model presented in this paper
approximates the brake disc as a simple beam structure with
cyclosymmetric boundary conditions. This model follows
the approach presented by Flint and Hultén [9, 10]. The
aim of this investigation is to assess whether any further
guidance can be provided on the appropriate frequency range
of applicability of the cyclosymmetric beam model. Predicted
results from a travelling wave model are compared to
predictions of the forced response from a separately derived
modal-based model of the structure. Predicted results are
also compared to experimental measurements made upon
a large diameter ring, a solid brake disc with its central hat
removed, and a standard production nonvented brake disc.

Since the beam model is a one-dimensional approach
and, therefore, the modelling of the inner boundary con-
ditions of the brake disc is impossible, a second model
based upon Kirchhoff ’s thin plate theory is also presented.
The mode shapes and natural frequencies of a static disc
with clamped, simply-supported, and free inner boundary
conditions are calculated. A novel approach of simulating the
inner boundary by using an infinite number of springs with
a spring stiffness calculated using the geometry of the central
hat is also developed. The purpose of this investigation is
to discuss the appropriateness of an alternative boundary
condition in comparison to the commonly applied clamped
inner boundary condition. It is hoped that this boundary
condition may approximate some of the deformation at the
hat-disc interface while avoiding the complexity of a fully
coupled hat-disc analytical model. Predicted natural fre-
quencies are compared to experimentally measured resonant
frequencies of a brake disc rigidly mounted upon a static test
rig. Using the spring-supported inner boundary condition
a forced vibration model is developed and compared to the
experimentally measured forced response of the structure. As
noted above, in-plane vibrations become more significant at
higher frequencies and for relatively thick discs. In this paper
only the out-of-plane vibrations of the disc are modelled,
and, thus, the investigation is relevant to the lower-frequency
modes of a brake disc.

2. Beam Model

2.1. Wave-Based Approach. In this approach the brake disc
is modelled as a ring, which is assumed to be unwrapped
into a straight Euler-Bernoulli beam with cyclosymmetric
boundary conditions at each end. The derivation below
follows the approach of Flint and Hultén [9, 10] who
modelled the disc as an Euler-Bernoulli beam with and
without an elastic foundation. However, unlike [9, 10], in this
paper the boundary conditions at the ends of the beam are
solved explicitly to obtain the amplitudes of the constituent
waves in the vibration. Further details of this approach are
given in [17, 18].

Consider a straight beam of finite length 2L excited by
a force at the point x = 0 as shown in Figure 1. A1 and
A2 represent the amplitudes of the near field waves close
to the force, and A3 and A4 represent the amplitudes of
the propagating waves, which travel away from the forced
excitation. Cyclosymmetric boundary conditions at both
ends imply that the coefficients A8, A7, A6, and A5 represent
the amplitudes A1, A2, A3, and A4, respectively, continuing
beyond the boundaries. The equation of motion of the
system is given by

∂2

∂x2
·
[
E · I(x) ·

(
∂2u(x, t)

∂x2

)]
+ ρ · A(x) · ∂

2u(x, t)
∂t2

= f (x, t),

(1)

where E is Young’s modulus, I is the moment of inertia, ρ
is the density, A(x) is the area of cross-section of the beam,
u(x) is the displacement, and f (x, t) is the applied force. The
solution of the matrix system of equations for the boundary
conditions yields the following wave amplitude relationships:

A1 = A2 = − F0 · ek·L
4 · E · I · k3 · (ek·L − e−k·L)

,

A3 = A4 = − j · F0

4 · E · I · k3
· e j·k·L(

e j·k·L − e− j·k·L) ,

A5 = A6 = − j · F0

4 · E · I · k3
· e− j·k·L(

e j·k·L − e− j·k·L) ,

A7 = A8 = − F0 · e−k·L
4 · E · I · k3 · (ek·L − e−k·L)

,

(2)

where F0 is the amplitude of the force, k is the wavenumber,
and L is half of the length of the beam. As expected, these
amplitude coefficients show the symmetry of wave motion
around the excitation location, x = 0. Thus, a prediction of
the theoretical value of the point receptance at the excitation
location can be obtained by assuming unit force, F0 = 1.0,
and summing the derived wave amplitudes, A1–A8 to form
the total displacement, u(0).

2.2. Modal-Based Approach. In an alternative to the wave-
based approach, the cyclosymmetric beam was also modelled
using a modal summation approach [19]. Thus, the velocity
response, v(x), to any arbitrary excitation in terms of the
eigenfunctions and eigenfrequencies of the system, is given
by

v(x) = j · ω ·
∞∑
n=0

ϕn(x)
Λn ·

(
ω2
n ·
(
1 + j · η)− ω2

)

·
∫
p(x) · ϕ(x) · dx,

(3)

where η is the loss factor, p(x) is defined as the exciting
pressure, and the norm or modal mass Λ is defined as

Λn =
∫ L

−L
ρ · A · ϕn(x)2dx. (4)
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Figure 1: A cyclosymmetric beam of length 2L excited by a point
force, f (t), at the origin, x = 0.

For the case of a point force excitation at the centre of the
beam the eigenfunctions are defined as

ϕn(x) = cos(k · L). (5)

For the case of free vibration additional eigenfunctions,
φn(x) = sin(k · L) should also be included. Using the
cyclosymmetric boundary conditions a matrix system of
equations can be constructed and setting the determinant of
this matrix system equal to zero gives the eigenfrequencies of
this system as

ωn = n · π
L

. (6)

At the point of excitation x′ the force integral can be reduced
to ∫

p(x) · φ(x) · dx = F0 · φ(x′). (7)

Thus, using (3) a prediction of the theoretical value of the
point mobility at the excitation location can be obtained by
assuming unit force, F0 = 1.0. In Figure 2 the modulus of
the point mobility of the cyclosymmetric beam predicted
by the modal summation approach is compared to a
prediction made using the wave-based approach. For the
modal summation approach the modes from n = 0 to
n = 15 are included. The geometrical values and material
properties used are those of the large diameter experimental
ring described in Section 3. It can be seen in Figure 2 that
both the wave-based approach of Flint and Hultén [9, 10]
and the modal summation approach predict identical results.

3. Annular Plate Model

The scope of this section is to develop free and forced
vibration models for a solid, nonvented, and brake disc by
using annular plate theory. Four different cases for the inner
boundary are considered: (i) free, (ii) simply supported;
(iii) clamped, and (iv) spring supported. In each case
the outer boundary is assumed to be free. The standard
boundary conditions for a brake disc model assume that the
displacement at the inner boundary is zero. This assumption
has been applied successfully by many researchers [1, 2].
However, this assumption may not be true for all designs
of brake disk. In [4] an example was reported where the
undercut of the rotor at the hat-disc interface was deepened
in order to help reduce brake disc squeal. A design change
such as this may well violate the clamped inner boundary
assumption.
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Figure 2: Predicted modulus of the point mobility of the large
diameter experimental ring modelled as a cyclosymmetric beam
with L = 1428 mm using the wave based approach (solid line) and
the modal based approach (dashed line).

In the following section a brief summary of annular
plate theory relevant to a disc with different boundary
conditions is given. This is followed by a presentation of the
existing models of disc vibrations used by various authors
[20–22] to model boundary conditions (i)–(iii) above. To
extend this analysis, a novel approach based on case (iv), a
spring-supported inner boundary, is developed. Finally, in
Section 3.2, equations for the forced response of the structure
are developed by incorporating the spring-supported inner
boundary condition.

3.1. Free Vibration Model. The theory used, following Kirch-
hoff, assumes small deflections and neglects the influence
of rotary inertia and the additional deflections caused by
shear deformation. In Figure 3 a sketch of a free-free disc is
shown, where a and b are the inner and outer radii distances,
respectively, from the centre of the disc, r = 0, and the
thickness is stated as h. The differential equation of motion
governing the displacement u(r, θ, t) of a point along the
central plane of the plate can be written in polar coordinates,
(r, θ), in the form

D · ∇4 · u(r, θ, t) + ρ · h · ∂
2u(r, θ, t)

∂t2
= 0, (8)

where the flexural rigidity D and the Laplacian operator ∇2

are defined as

D = E · h3

12 · (1− ν2)
,

∇2 = ∂2

∂r2
+

1
r
· ∂

∂r
+

1
r2
· ∂2

∂θ2
,

(9)

where ν is Poisson’s ratio and∇4 is defined as

∇4 = ∇2 · ∇2. (10)

A solution of the following type for a typical mode can be
assumed as

u(r, θ, t) = U(r, θ) · sin(ω · (t − t0)). (11)
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The general solution can be written in polar coordinates as

U(r, θ) =
∞∑
n=0

[A · Jn(kr) + B · Yn(kr) + C · In(kr)

+ D∗ · Kn(kr)] · cos(n · θ)+

∞∑
n=1

[A∗ · Jn(kr) + B∗ · Yn(kr) + C∗ · In(kr)

+ D∗∗ · Kn(kr)] · sin(n · θ),
(12)

where the wavenumber, k, is given by

k4 = ρ · ω2

D
, (13)

where Jn is a Bessel function of the first order, Yn is a
Bessel function of the second order, and In and Kn are
modified Bessel functions of the first and second order,
respectively. The unknown wave amplitudes of the Bessel
functions are given by A, A∗, B, B∗, C, C∗, D∗, and
D∗∗. For this analysis, the terms involving sin(nθ) are not
taken into consideration, since the boundary conditions
possess symmetry with respect to one or more diameters
of the annular plate. Therefore, the following displacement
expression can be made for a typical mode of the disc as
follows:

U(r, θ) =
(
A · Jn(kr) + B · Yn(kr)

+ C · In(kr) + D∗ · Kn(kr)
)
· cos(n · θ).

(14)

Expressions for the shear force, the bending moment,
and the twisting moment are needed to define the boundary
conditions. The bending moment in radial direction can be
expressed as

Mr(r, θ, t) = D·
(
∂2u(r, θ, t)

∂r2

+ ν ·
(

1
r
· ∂u(r, θ, t)

∂r
+

1
r2
· ∂

2u(r, θ, t)
∂θ2

))
,

(15)

where the shear force in radial direction is defined as

Qr(r, θ, t) = −D · ∂

∂r
· ∇2u(r, θ, t), (16)

and the twisting moment is defined as

Mrθ(r, θ, t) = −D · (1− ν) · ∂

∂r
·
(

1
r
· ∂u(r, θ, t)

∂θ

)
. (17)

Defining the boundary condition at a free edge is more
complex, because at a free edge the shear force, the bending
moment, and the twisting moment must all be equal to zero.
In order to avoid an overdetermined systems of equations

r = 0

a

b

h

Figure 3: Sketch of the free-free disc, sectional view.

only two boundary conditions for each edge are required.
Therefore, the Kelvin-Kirchhoff edge reaction has been
defined, which incorporates both the shear force in the radial
direction and the twisting moment. Thus,

Vr(r, θ, t) = Qr(r, θ, t) +
1
r
· ∂Mrθ(r, θ, t)

∂θ
. (18)

The simply supported and clamped inner boundary condi-
tions assumed by previous authors [20–22] are listed in Table
1. For completeness, the free-free inner and outer boundary
conditions of a ring are also shown.

In the following approach a novel inner boundary is
developed whereby the hat is modelled as springs with an
equivalent stiffness relating the geometry of the hat and
its Young’s modulus. At the inner boundary of the disc a
spring force is assumed to act as a distributed force per unit
length along a tiny element of the circumference of length
dU , and, hence, to be equal to the Kelvin-Kirchhoff edge
condition Vr(r, θ, t), acting along the same tiny element of
the circumference dU as shown in Figure 4. Since the Kelvin-
Kirchoff edge condition, Vr(r, θ, t), is defined as force per
unit length parallel to the circumferential direction θ [23],
then

fs(r, θ, t) · dU = Vr(r, θ, t) · dU , (19)

with the spring force per unit length, fs(r, θ, t), given by

fs(r, θ, t) = ks · u(r, θ, t). (20)

By applying Hook’s law to a tiny element of length dU along
the circumference of the cylindrical wall of the central hat as
shown in Figure 4 the following equation can be derived:

u(r, θ, t) = fs(r, θ, t) · dU · L0

E · Ae
, (21)

where L0 is the height of the hat of the disc. The cross-
sectional area, Ae, of a tiny element of the cylindrical wall of
the hat can be approximated by the rectangular dimensions

Ae = dU · (ri2 − ri1), (22)

where ri2 is defined as the outer radius of the hat and ri1 as
the inner radius. By using (20)–(22) an expression for the
equivalent spring stiffness per unit length, ks, can be found
as

ks = E · (ri2 − ri1)
L0

. (23)
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Table 1: Boundary conditions for the brake disc model.

Free-free Simply supported free Clamped free

Inner boundary, r = a
Mr(a, θ, t) = 0 u(a, θ, t) = 0 u(a, θ, t) = 0

Vr(a, θ, t) = 0 Mr(a, θ, t) = 0 ∂u(a, θ, t)/∂r = 0

Outer boundary, r = b
Mr(b, θ, t) = 0

Vr(b, θ, t) = 0

 

ri1

ri2

L0dU

Figure 4: Sketch of the brake disc including the hat dimensions:
inner radius, ri1; outer radius, ri2; height, L0; element length, dU .

Substituting (23) into (19) leads to the following boundary
condition at the inner edge of the disc, r = a:

Vr(a, θ, t)− u(a, θ, t) · E · (ri2 − ri1)
L0

= 0. (24)

Thus, for the first inner boundary condition of the disc, the
Kelvin-Kirchoff edge condition is related to the displacement,
the geometry of the hat, and its Young’s modulus. Note that
the inner radius of the disc, r = a, is at the same distance
as the inner radius of the hat, r = ri1. For the second inner
boundary condition the bending moment in radial direction,
Mr(a, θ, t), is assumed to be zero at r = a.

Figure 5 shows the effect of the length of the hat, L0,
on the predicted natural frequencies of a disc modelled
with a spring-supported inner boundary condition. The
natural frequencies are plotted for the second, third, fourth,
and fifth diametral modes. The disc is assumed to have
the same material properties as the standard production
nonvented brake disc listed in Table 2. Similarly the inner
and outer hat radii and the disc thickness are the same as
the standard production nonvented brake disc. It can be seen
in Figure 5 that as the hat length decreases, the predicted
natural frequency for each mode increases. This is to be
expected as (23) indicates that as the length L0 decreases
the stiffness, ks, increases. Hence, the spring supported
boundary condition approaches that of the simply supported
boundary condition. Conversely, as the hat length increases
the predicted natural frequency for each mode decreases.
This also is to be expected as (23) indicates that as the
length L0 increases the stiffness, ks, decreases. Hence, the
spring supported boundary condition approaches that of the
free edge, where the Kelvin-Kirchoff edge condition, Vr , is
zero. The hat length, L0, marked with a vertical line is the
actual length of the hat of standard production nonvented
brake disc. At this typical hat length the predicted natural
frequencies of the spring supported model lie closer to that
of the simply supported boundary condition given by the
extremely short lengths at the left hand side of Figure 5
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Figure 5: Effect of the length of hat, L0, on the predicted natural
frequencies of the 2nd, 3rd, 4th, and 5th diametral mode of a disc
modelled with a spring supported inner boundary condition.

rather than the free boundary condition represented by the
extremely long lengths at the right had side of the Figure 5.

3.2. Forced Vibration Model. For the forced vibration model
the modal summation approach of Section 2.2 is extended to
the case of a disc with a spring-supported inner boundary.
The response velocity of the disc at location (r, θ) is given by

v(r, θ, r′, θ′) = j · ω ·
∞∑
c=1

∞∑
n=1

Rcn(r) · cos(n · (θ − θ′))
Λcn ·

(
ω2
cn ·

(
1 + j · η)− ω2

)

·
∫
p(r′, θ′) · Rcn(r′) · r′ · dr,

(25)

where Rcn is a linear combination of Bessel functions. The
modal mass or norm Λ is defined as

Λcn =
∫ b

a

∫ 2·π

0
ρ ·h · (Rcn(r) · cos(n · (θ − θ′)))2· r · dr· dθ.

(26)

The force integral at the point of excitation, (r′, θ′), can be
simplified to∫

p(r′, θ′) · Rcn(r′) · cos(n · (θ − θ′)) · r · dr · dθ

= Rcn(r′) · F0.

(27)
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Table 2: Dimensions and material properties of the experimental test structures.

Test structure
Young’s

modulus,
E N/m2

Density,
ρ kg/m3

Poisson’s
ratio, ν

Outer
diameter,
øoutside m

Inner diameter,
øinside m

Thickness,
h m

Large diameter ring 2.1 × 1011 7850 0.3 950 × 10−3 850 × 10−3 5 × 10−3

Small diameter
annular plate

1.2 × 1011 7250 0.26 262.3 × 10−3 160 × 10−3 14 × 10−3

Standard production
nonvented brake disc

1.2 × 1011 7250 0.26 262.3 × 10−3
152/140 × 10−3

excluding/including
contact area with hat

14 × 10−3

The spring-supported inner boundary condition at r = a
derived in the Section 3.1 can now be used to predict the
vibration response of the structure. The time-independent
part, Rcn, is defined by (28), where the subscript c stands for
the circular and the subscript n for the diametral modes as
follows:

Rcn(r) =
(
Jn(kcnr) +

B

A
· Yn(kcnr)

+
C

A
· In(kcnr) +

D∗

A
· Kn(kcnr)

)
.

(28)

4. Experimental Apparatus and
Measurement Method

To verify the predictions made from the cyclosymmetric
beam model described in Section 2 measurements were
made of the vibrational behaviour of a number of test
structures: (i) a large diameter ring, (ii) a small diameter
annular plate, and (iii) a standard production nonvented
brake disc. The dimensions and material properties of the
test structures are listed in Table 2.

The large diameter steel ring was selected because of
its mild curvature and small ring width of 50 mm. Hence,
this structure would be expected to exhibit the vibrational
characteristics of a straight beam with cyclosymmetric
boundary conditions over a wide frequency range. To mea-
sure the frequency response function the ring was suspended
vertically on thin wires from a large frame and excited by
an electrodynamic exciter using a random noise input over
the frequency range from 0 to 3200 Hz. The point response
of the ring was measured by using a force transducer and a
lightweight accelerometer at excitation location. To identify
the relevant mode shapes accelerometer measurements were
made at sixteen equidistant locations around the centre line
of the ring midradius distance between the inner and outer
edges.

The small diameter annular plate was obtained by taking
a nonvented brake disc and removing its central hat, thus,
forming an annular plate with the dimensions and material
properties similar to that of a standard production brake disc.
The frequency response functions and mode shapes were
measured in the same manner as for the large diameter ring.

In order to compare the simply supported-free, clamped-
free and spring supported-free annular plate models, devel-
oped in Section 3 with experimental measurements a stan-
dard production brake disc was attached with fixing bolts
onto a wheel rigidly mounted onto a large and heavy steel
frame. Applied force and response acceleration measure-
ments were taken in the same manner as before. In order to
distinguish between the different circumferential modes of
the disc, response acceleration measurements were taken in
the radial as well as the circumferential directions.

5. Results and Discussion

5.1. Large Diameter Steel Ring versus Cyclosymmetric Beam
Model. Figure 6 shows a comparison of the modulus of
the measured point mobility of the experimental steel ring
(dashed line) with a theoretical prediction of the point
mobility from the cyclosymmetric beam model developed
in Section 2 (solid line) over a frequency range from 1 to
3200 Hz. The cyclosymmetric beam model was assumed to
have a half-length, L, of 1428 mm. Also shown in Figure 6 is
the modulus of the point mobility, Y(ω), of the equivalent
“infinite” beam, given in [19] as

Y(ω) =
(
1− j

)
4 · A · ρ · √ω ·

(
A · ρ
E · I

)1/4

. (29)

It can be seen in Figure 6 that both the theoretical prediction
(solid line) and the measured data (dashed line) follow the
trend of the equivalent “infinite” structure, thus, indicating
beam-like behaviour. It can also be seen in Figure 6 that
above 100 Hz the predicted natural frequencies of the
structure correspond approximately to the measured reso-
nant frequencies of the experimental ring. Figure 7 shows
the percentage difference between the measured resonant
frequencies and the predicted natural frequencies. Above
100 Hz the difference is relatively small. Above the frequency
of 500 Hz it is approximately constant 5%. This may be due
to incorrect values of the material properties used in the
beam model as their values were obtained from standard
texts.

At low frequencies it is likely that the effect of curvature
will become more significant on the measured data. Previous
work on curved beams has shown that curvature effects are
important for predominantly flexural waves below approxi-
mately 10% of the ring frequency [24]. For the experimental
ring this value is 183 Hz. Although for the experimental steel
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Figure 6: Modulus of the point mobility of the large diameter
experimental steel ring: (solid line) theoretical prediction from the
cyclosymmetric beam model; (dashed line) measured results; and
(dotted line) equivalent “infinite” beam.
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Figure 7: Difference in percentage between the measured resonant
frequencies of the large diameter steel ring and the predicted natural
frequencies of the cyclosymmetric beam model.

ring considered here the bending waves act in a different
direction to the curved beam considered in [24], this value
can act as a useful guide to the lower frequency limit
of the cyclosymmetric beam model. A calculation of the
frequency corresponding to half a bending wavelength across
the beam width (outer radius minus inner radius) indicates
that circumferential-mode behaviour can be expected above
4690 Hz. This is above the frequency range of interest shown
in Figure 6.

5.2. Small Diameter Annular Plate versus Cyclosymmetric
Beam Model. Figure 8 shows the measured modulus of the
point mobility of the small diameter annular plate (dashed
line) compared to the calculated modulus of the point
mobility predicted using the beam model with cyclosym-
metric boundary conditions (solid line) over the frequency
range from 100 to 12600 Hz. It can be seen in Figure 8
that both the theoretical prediction and the measured data
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Figure 8: Modulus of the point mobility of small diameter annular
plate: (solid line) theoretical prediction from the cyclosymmetric
beam model with L = 361 mm; (dashed line) measured results.

follow the 1/ω1/2 trend with increasing frequency of the
equivalent “infinite” beam structure. A comparison between
the measured resonant frequencies and calculated natural
frequencies predicted by the cyclosymmetric beam model for
the n = 2 to n = 5 diametral modes is shown in Table
3. It can be seen in Table 3 that apart from the n = 2
diametral mode the natural frequencies predicted by the
cyclosymmetric beam model are similar to the measured
resonant frequencies. The discrepancy for the n = 2 mode
is not surprising as the measured resonant frequency at
624 Hz lies close to the 10% ring frequency value of 613 Hz
for this structure. Thus, curvature effects may be significant
for the n = 2 diametral mode. However, curvature effects
are not included in the cyclosymmetric beam model. Flint
and Hultén [9] record a significant difference between
the measured resonant frequency and predicted natural
frequency for the n = 2 mode, whilst other diametral modes
have relatively good agreement. Thompson [25] has applied
a cyclosymmetric beam model to railway wheel bending
vibration and compared the predicted natural frequencies to
a finite element model of the structure. It is noted in [25]
that the n = 0 and n = 1 modes are not well represented
by the cyclosymmetric beam model. However, the natural
frequencies of modes with 1 < n < 7 are within 15% of the
corresponding finite element values. For modes with n > 6,
then shear deformation is important, and a Timoshenko
beam formulation should be used.

Also apparent in Figure 8 is a smaller amplitude mea-
sured resonance at 2800 Hz. This is likely to be the (1,1)
circumferential mode predicted by the free-free annular plate
model at 2783 Hz. It can be seen in Figure 8 that all of the
modes are well separated, and, thus, the circumferential (1,1)
mode appears to have little influence upon the adjacent n = 3
and n = 4 diametral modes. Circumferential modes are not
included in the cyclosymmetric beam model.

The natural frequencies predicted by the free-free annu-
lar plate model are also shown in Table 3. The close
agreement between the natural frequencies of the free-free
annular plate model and the measured resonant frequencies
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Table 3: Comparison of the predicted natural frequencies with the measured resonant frequencies of the small diameter annular plate.

Diametral mode Cyclo-symmetric beam model, fcalc. Free-free plate model, fcalc. Measured, fmeas.

n Hz Hz Hz

2 780 620 624

3 1750 1700 1696

4 3200 3200 3140

5 4950 5000 4912

is a result of the estimation of Young’s modulus for the
structure. The unknown material properties of a brake disc,
which is made out of cast iron, were estimated by correlating
the measurement resonant frequencies to the analytical
results of the free-free plate model. For this correlation,
the Poisson’s ratio was kept constant at 0.26, which is
representative for cast iron, and the density was calculated
by weighing the structure and measuring its volume giving a
result of 7250 kg/m3. The Young’s modulus in the theoretical
model was then adjusted until an apparent “best fit” was
obtained between the predicted and measured values. The
best estimate of the Young’s modulus was found to be 1.2 ×
1011 N/m2.

5.3. Standard Production Brake Disc versus Cyclosymmetric
Beam Model and Annular Plate Models. Figure 9 shows the
measured modulus of the point mobility of the rigidly fixed
brake disc (solid line) as well as the trend line for the
equivalent “infinite” plate calculated from [19] as

Y(ω) =
√

12
8 · h2 · √ρ · √E/(1− ν2)

. (30)

It can be seen in Figure 9 that the measured point mobility of
the brake disc follows the trend line of the equivalent “infi-
nite” plate, thus, indicating plate-like vibrational behaviour
of the disc when its central hat is retained.

The main resonant frequencies and associated diametral
modes of the brake disc are labelled in Figure 9 and
listed in Table 4. The corresponding mode shapes were
identified from the accelerometer measurements around
the disc circumference and across its width. In Table 4 the
natural frequencies of a simply supported-free, a clamped-
free and a spring-supported-free disc calculated using the
theoretical models developed in Section 3.1 are compared
to the measured resonant frequencies of the brake disc. A
comparison between the results listed in Tables 3 and 4 shows
that there are considerable differences between the resonant
frequencies of the small diameter experimental ring, listed
in Table 3, and the resonant frequencies of the standard
production nonvented brake disc listed in Table 4. Coupled
with the difference in the trend of the point mobility data
shown in Figures 8 and 9, this suggests that the inclusion of
a central hat in the structure makes its vibrational behaviour
platelike in nature.

Comparing the predictions of the annular plate models,
it can be seen in Table 4 that there is a discrepancy between
the predicted clamped-free natural frequencies and the
measured resonant frequencies of the disc. The differences
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Figure 9: Modulus of the point mobility of the brake disc over
the frequency range 1000 to 6400 Hz, logarithmic scale: (solid line)
measured result; (dotted line) equivalent “infinite” beam.

between the simply supported-free model and the measured
resonant frequencies are smaller. Neubauer and Oleskiewicz
[26] model a brake disc using clamped, simply supported
and free inner boundary conditions. It is noted in [26] that
by tuning the height of the model, for the specific design
of brake under investigation, the simply supported inner
boundary provides the closest agreement to the measured
resonant frequencies over the frequency range of interest.

The closest agreement with the measured resonant
frequencies of the disc shown in Table 4 is with the natural
frequencies predicted by the spring supported-free model.
This result is, perhaps, surprising given the generally applied
assumption of a clamped inner boundary at the hat-disc
interface [1, 2]. However, as Chen et al. and Bae and Wickert
[2, 15] report the bending and in-plane modes of the hat-
disc structure change in response to the stiffness and inertia
of the hat. Some of this effect may be captured by the spring-
supported boundary condition.

In Figure 10 the point mobility of the brake disc
predicted using the forced vibration model with a spring
supported inner boundary is compared to the measured
point mobility of the brake disc attached rigidly to a static
frame over the frequency range from 1000 to 6400 Hz.
For the predicted result, the diametral modes from 1 to 8
were included in the summation. The influence of modes
higher than the 8th diametral mode was neglected since
the modes are well separated, and, thus, their influence on
the point mobility prediction below 6400 Hz was assumed
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Table 4: Comparison of the predicted natural frequencies of the annular plate with different inner boundary conditions with the measured
resonant frequencies of the brake disc.

Diametral mode Clamped, fcalc. Simply supported, fcalc. Spring supported, fcalc. Measured, fmeas.

n Hz Hz Hz Hz

2 3198 1535 1325 1220

3 3784 2520 2248 2196

4 4798 3895 3599 3508

5 6273 5655 5367 5120
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Figure 10: Comparison of the modulus of the point mobility of the
rigidly mounted brake disc over the frequency range from 1000 to
6400 Hz, logarithmic scale: (dashed line) theoretical prediction for
the annular plate with a spring supported inner boundary; (solid
line) measured results.

to be marginal. Since the first circumferential (0,1) mode
was predicted to occur at 9599 Hz, circumferential modes
were not included in the summation. The modal damping
values, ηi, for the diametral modes from 2 to 5 were
estimated experimentally using the decay rate method. For
the remaining diametral modes a damping loss factor was
calculated by averaging the measured loss factors of the
2nd to 5th modes. It can be seen in Figure 10 that for
the diametral modes of interest, from n = 2 to n = 5,
the theoretical model indicates relatively good agreement
with the measured results. Differences between the predicted
natural frequencies and the measured resonant frequencies
may be due to the absence of torsional stiffness in the spring
supported inner boundary model where only a transverse
stiffness was included. The slight differences in peak ampli-
tudes and resonant frequencies between the measured results
shown in Figures 9 and 10 may be due to the different levels
of torque applied in the hub-mounting procedure between
tests.

6. Summary

The aim of this paper has been to investigate the effectiveness
of two simplified mathematical models that predict the

out-of-plane vibrational behaviour of an automotive brake
disc. In the first approach the disc vibration is assumed to
act in only one dimension. Thus, the disc is modelled as
a straight beam in flexure with cyclosymmetric boundary
conditions. Predictions of the point mobility made using
a wave-based approach and a modal summation approach
gave identical results. Comparison of the predicted results
with measurements made on both a large diameter ring
and a small diameter annular plate formed by removing
the central hat of a nonvented brake disc showed good
agreement over the frequency range covered by the n = 3
to n = 5 diametral modes. Both measured and predicted
results follow the trend line of the modulus of point mobility
of the equivalent infinite beam structure, indicating beam-
like bending wave vibrational behaviour of both structures.
Curvature effects appear significant at low frequencies, for
example, the frequency range covered by the diametral
n = 2 mode. A calculation of 10% of the ring frequency
can act as useful guide to the lower-frequency limit of the
cyclosymmetric straight beam model. As noted by Flint and
Hultén [9, 10], circumferential modes of the annular ring
are not included in the cyclosymmetric beam model. Thus,
care should be taken in interpreting the predicted results
of the beam model as the lowest circumferential modes of
a practical brake disc may occur in the frequency range of
interest covered by the n = 2 to n = 5 diametral modes.

In the second approach the brake disc was modelled as an
annular plate. The inner boundary of the disc at its central
hat location was modelled using four different boundary
conditions: (i) spring supported, (ii) simply supported,
(iii) clamped, and (iv) free. The inclusion of a nonfree
boundary condition at the central hat location changed
the character of the vibration from beam-like to plate-
like. Thus, the assumption of a free boundary condition
at the central hat location gave least agreement with the
measured results from a standard production brake disc.
Comparison of the calculated natural frequencies predicted
using these models and measurements made upon a standard
production nonvented brake disc showed the best agreement
with the spring supported boundary condition. The spring-
supported boundary condition was shown to vary in effect
between a free boundary and a simply supported boundary.
The clamped boundary condition was the least satisfactory.
A comparison of the measured point mobility of a rigidly
mounted disc and a prediction of the forced response of the
disc made using the spring supported boundary condition
showed good agreement over the frequency range covered
by the main diametral modes of interest, n = 2 to n = 5.
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Both measured and predicted results followed the trend line
of the equivalent infinite plate indicating platelike bending
wave vibration of the disc.
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