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Abstract Due to the finite-size effects, the localization of
the phase transition in finite systems and the determination
of its order, become an extremely difficult task, even in the
simplest known cases. In order to identify and locate the
finite-volume transition point T0(V ) of the QCD deconfine-
ment phase transition to a colorless QGP, we have developed
a new approach using the finite-size cumulant expansion of
the order parameter and the Lmn-method. The first six cumu-
lants C1,2,3,4,5,6 with the corresponding under-normalized
ratios (skewness �, kurtosis κ , pentosis Π±, and hexo-
sis H1,2,3) and three unnormalized combinations of them,
(O = σ 2κ�−1,U = σ−2�−1,N = σ 2κ) are calculated and
studied as functions of (T, V ). A new approach, unifying in
a clear and consistent way the definitions of cumulant ratios,
is proposed. A numerical FSS analysis of the obtained results
has allowed us to locate accurately the finite-volume transi-
tion point. The extracted transition temperature value T0(V )

agrees with that expected T N
0 (V ) from the order parameter

and the thermal susceptibility χT (T, V ), according to the
standard procedure of localization to within about 2 %. In
addition to this, a very good correlation factor is obtained
proving the validity of our cumulants method. The agree-
ment of our results with those obtained by means of other
models is remarkable.

1 Introduction

1.1 Phase transitions and finite size scaling (FSS)

During the evolution of our beautiful universe from the big-
bang instant until now many phase transitions have occurred
at different space–time scales. For this reason, the physics of
phase transitions phenomena is considered in general to be
a subject of great interest to physicists. It is easy to under-
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stand the importance of this subject because first, the list of
systems exhibiting interesting phase transitions continues to
expand, including the universe itself, and second the theoreti-
cal framework of equilibrium statistical mechanics has found
applications in very different areas of physics like string field
theories, cosmology, elementary particle physics, physics of
the chaos, condensed matter, etc. Phase transitions occur in
nature in a great variety of systems and under a very wide
range of conditions.

Phase transitions are abrupt changes in the global behav-
ior and in the qualitative properties of a system when certain
parameters pass through particular values. At the transition
point, the system exhibits, by definition, a singular behavior.
As one passes through the transition region the system moves
between analytically distinct parts of the phase diagram.
Depending on which external parameter of interest, there are
various measurable quantities which are based on the reaction
of a system to its change. We call them response functions
(RF). If the external parameter corresponds to the tempera-
ture, then the response function is called thermal response
function (TRF). Technically, temperature driven phase tran-
sitions are characterized by the appearance of singularities
in some TRF, only in the thermodynamic limit where the
volume V and the number of particles N go to infinity,
while the density ρ = N/V remains constant. That is, at
the transition point, some global behavior is not analytic in
the infinite-volume limit. This singularity is according to the
standard classification [1] given by the δ-function for a first-
order phase transition, while for a continuous phase transition
(second-order), the singularity has the form of a power-law
function. We shall frequently refer to the concepts of tran-
sition region and transition point in the case of a first-order
phase transition. By against, in the case of a second-order
phase transition, we rather use the concept of critical region
and critical point. The singularity in a first-order phase transi-
tion is entirely due to the phase coexistence phenomenon, for
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against the divergence in a second-order phase transition is
intimately caused by the divergence of the correlation length.
Now, if the volume is finite at least in one dimension with
a characteristic size L = V 1/d , the singularity is smeared
out into a peak with finite mathematical properties and four
finite-size effects (4FSE) can be observed [2]:

1. the rounding effect of the discontinuities,
2. the smearing effect of the singularities,
3. the shifting effect of the transition point,
4. and the widening effect of the transition region around

the transition point.

These 4FSE have an important consequence putting the
first and the second-order phase transitions on an equal foot-
ing. The behavior of any physical quantity at the first-order
phase transition is qualitatively similar to that of the second-
order phase transition. However, even in such a situation,
it is possible to obtain information on the critical behavior.
Large but finite systems show a universal behavior called
“finite-size scaling” (FSS), allowing one to put all the physi-
cal systems undergoing a phase transition in a certain number
of universality classes. The systems in a given universality
class display the same critical behavior, meaning that certain
dimensionless quantities have the same values for all these
systems.Critical exponents are an example of these universal
quantities. The knowledge of the finite-size dependence of
the various TRF in the vicinity of the phase transition region
provides a very important way to compute, using finite-size
scaling extrapolation, the properties of systems in the ther-
modynamic limit.

1.2 Finite size effects (FSE) in QCD deconfinement phase
transition

It is well established that quantum chromo-dynamics (QCD)
at finite temperature exhibits a typical behavior of a sys-
tem with a phase transition. At sufficiently high tempera-
tures and/or densities, quarks and gluons are no more con-
fined into hadrons, and strongly interacting matter seems
to undergo a phase transition from hadronic state to what
has been called the quark–gluon plasma (QGP) or “partonic
plasma” (PP). This is a logical consequence of the parton
level of the matter’s structure and of the strong interactions
dynamics described by the QCD theory [3]. The occurrence
of this phase transition is important from a conceptual point
of view, as it implies the existence of a novel state of matter,
believed present in the early universe up to times ∼10−5 s.
Indeed, the only available experimental way to study this
QCD phase transition is to try to create in a laboratory, using
ultra-relativistic heavy-ion collisions (URHIC), conditions
similar to those in the early moments of the universe, right
after the big bang. Due to its similarity to the early universe,

an URHIC is often referred to as “little bang”. The analy-
sis of the whole results obtained in all experiments at SPS,
RHIC, and LHC revealed that indeed a new state of matter
is formed, consisting of strongly interacting partons [4–11].
The existence of this finite-volume hot deconfined matter
is strongly indicated because some important signatures are
observed. One example is the jet quenching phenomenon.
According to QCD, high-momentum colored partons pro-
duced in the initial stage of a nucleus-nucleus collision will
undergo multiple interactions inside the finite-volume col-
lision region, generating a parton shower before hadroniza-
tion. Due to thermal effects the cross section of the hadrons
formation and the fragmentation process decrease [12–15]
and to the color confinement property of QCD, only the
color singlet part of the quark configurations would mani-
fest themselves as physically observed particles. All hadrons
created in the final stage are colorless. Therefore the whole
partonic plasma fireball needs to be in a color singlet state
called colorless QGP (CQGP). For this reason, one can con-
sider the QCD deconfinement phase transition as a transi-
tion from local color confinement (d ∼1 fm) to global color
confinement (d �1 fm). Lattice QCD, a theory formulated
on lattice of points in space and time, is another important
framework for investigation of non-perturbative phenomena
such as confinement and deconfinement of partons, which
are intractable by means of analytic quantum field theories.
As is well known, the lattice’s space–time volume is finite.
In both cases, of experimental and lattice simulation mod-
els, we are dealing with finite systems and, therefore, they
require the development of theoretical approaches that can
rigorously define the phase transition in a finite-volume tak-
ing into account the color singlet condition. Locating the
finite-volume QCD transition point is a challenge in both
theoretical and experimental physics.

1.3 Motivation

In the thermodynamic limit there is no problem to locate
the transition point since it manifests itself as a singularity
point. By cons, in finite volume this singularity is smoothed
and is shifted away, consequently the location of the phase
transition and the determination of its order become very dif-
ficult. The idea of a phase transition is always related to the
idea of locating the transition point. Two fundamental ques-
tions appear to be very important that we try to answer in
the present work. First, how to locate the transition point in
finite systems? And second, how can we say for sure that
a certain physical quantity has a particular behavior when
approaching certain point, which may be conceived as the
transition point? It is important to have a precise knowl-
edge of the region around the transition point, since many
quantities of physical interest are just defined in the vicin-
ity of this point. It therefore seems very important to find
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more sensible quantities to construct new definitions of the
finite-volume transition point involving a minimum of cor-
rections. Recently, many works have shown the importance
of studying the high-order cumulants of thermodynamic fluc-
tuations. For this reason and even in the finite-volume case
higher-order cumulants and/or generalized ratios of them
have been suggested as suitable quantities because they are
highly related to the nature of the phase transition and serve as
good indicators for a real location of the finite-volume tran-
sition point. Mathematically speaking, the thermodynamical
fluctuations of any quantity are quantified by cumulants in
statistics and are related to generalized ratios of them. Gen-
erally, they are defined as derivatives of the logarithm of the
partition function with respect to the appropriate chemical
potentials. The cumulant expansion method is then consid-
ered by many physicists to be very sensitive to the behavior
of the system in the transition region and then is viewed as
a promising powerful method to analyze the deconfinement
phase transition in finite system [16,17]. Therefore finding
new observables to permit us an accurate localization of the
transition point in QCD phase diagram is more than neces-
sary. From our hadronic probability density function (hpdf)
which is related to the total partition function and which con-
tains the whole information as regards the phase transition
as pointed first by Gibbs [18], it seems logical to believe that
this information survives when the volume of the system
becomes finite. Our basic postulate is that it should be possi-
ble to locate the finite-volume transition point by defining it
as a particular point in each term of the finite-size cumulant
expansion of the order parameter, suggesting a new approach
to solve the problem. We believe that the finite-volume cumu-
lant expansion should show some characteristics as signals
of the finite-volume transition point. Indeed and in order to
identify and locate the finite-volume transition point T0(V ) of
the QCD deconfinement phase transition, we have developed
a new approach using the finite-size cumulant expansion of
the order parameter with the Lmn-method [2] whose defini-
tion has been slightly modified. The two main outcomes of
the present work are: (1) The finite-size cumulant expansion
of our hpdf gives better estimations than the Binder cumulant
[19], for the transition point and even for very small systems.
(2) The singularity of the phase transition in the thermody-
namic limit survives in a clear way even when the volume of
the system becomes finite.

2 Statistical description of the system containing
the hadronic phase and the colorless QGP

2.1 Exact colorless partition function

In our previous work, a new method was developed which
has allowed us to accurately calculate physical quantities

which describe efficiently the deconfinement phase transi-
tion within the colorless-MIT bag model using a mixed phase
system evolving in a finite total volume V [2]. The fraction
of volume (defined by the parameter h) occupied by the HG
phase is given by VHG = hV, and the remaining volume:
VQGP = (1 − h)V contains then the CQGP phase. To study
the effects of volume finiteness on the thermal deconfine-
ment phase transition within the QCD model chosen, we will
examine in the following the behavior of some TRF of the
system at a vanishing chemical potential (μ = 0), consider-
ing the two lightest quarks u and d

(
N f = 2

)
, and using the

common value B1/4 = 145 MeV for the bag constant. In the
case of a non-interacting phases, the total partition function
of the system can be written as follows:

ZTOT(h, V, T, μ) = ZCQGP(h)ZHG(h)ZVac(h), (1)

where

ZVac(h, V, T ) = exp(−(1 − h)BV/T ) (2)

accounts for the confinement of quarks and gluons by the real
vacuum pressure exerted on the perturbative vacuum (B) of
the bag model. For the HG phase, the partition function is
just calculated for a pionic gas and is simply given by

ZHG(h, V, T ) = exp aHGhVT 3. (3)

The exact partition function for a CQGP contained in a
volume VQGP, at temperature T and quark chemical potential
μ, is determined by

ZCQGP(T, VQGP, μ) = 8

3π2

+π∫

−π

+π∫

−π

d
(ϕ

2

)
d

(
ψ

3

)
M(ϕ, ψ)

× Tr
[
exp

(− β
(
Ĥ0−μ(N̂q− N̂q

))

+ iϕ Î3 + iψ Ŷ8)
]
, (4)

where M(ϕ, ψ) is the weight function (Haar measure) given
by

M(ϕ, ψ) =
[

sin

(
1

2

(
ψ + ϕ

2

))
sin
(ϕ

2

)

× sin

(
1

2

(
ψ − ϕ

2

))]2

, (5)

β = 1
T (with the units chosen as kB = h̄ = c = 1), and Ĥ0

is the free quark–gluon Hamiltonian, N̂q
(
N̂q
)

denotes the
(anti-) quark number operator, and Î3 and Ŷ8 are the color
“isospin” and “hypercharge” operators, respectively. Its final
expression, in the massless limit, can be put in the form

ZCQGP(T, VQGP, μ) = 4

9π2

∫ +π

−π

∫ +π

−π

dϕdψM(ϕ, ψ)

× eG(ϕ,ψ,
μ
T )VQGPT 3

, (6)
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with

G
(
ϕ,ψ,

μ

T

)
= G(0, 0,

μ

T
) + GQG

(
ϕ,ψ,

μ

T

)
. (7)

The two functions are given in terms of (T, V, μ) variables
as follows:

G
(

0, 0,
μ

T

)
= aQG + N f Nc

6π2

(
μ4

2T 4 + π2μ2

T 2

)
(8)

and

GQG

(
ϕ,ψ,

μ

T

)

= π2dQ
24

∑

q=r,b,g

⎧
⎨

⎩
−1 +

((
αq − i( μ

T )
)2

π2 − 1

)2
⎫
⎬

⎭

−π2dG
24

4∑

g=1

((
αg − π

)2

π2 − 1

)2

. (9)

The two factors aHG and aQG, which are related to the
degeneracies of the particles in the system, are given by
⎧
⎨

⎩

aQG = π2

12

( 7
10dQ + 16

15dG
)
,

aHG = π2

90 dπ ,
(10)

dQ = 2N f ,dG = 2, anddπ = 3 being the degeneracy factors
of quarks, gluons, and pions, respectively. αq (q = r, b, g)
are the angles determined by the eigenvalues of the color
charge operators in Eq. (7):

αr = ϕ

2
+ ψ

3
, αg = −ϕ

2
+ ψ

3
, αb = −2ψ

3
, (11)

and αg (g = 1, . . . , 4) where α1 = αr − αg, α2 = αg −
αb, α3 = αb − αr , α4 = 0. Thus, the partition function of
the CQGP is then given by

ZCQGP (h) = ZQGP (q) ZCC (q) , (12)

where

ZCC (q) = 4

9π2

×
∫ +π

−π

∫ +π

−π

dϕdψM(ϕ, ψ)eqGQG(ϕ,ψ,
μ
T )VQGPT3

(13)

is the colorless part and

ZQGP (h) = exp (1 − h)VT3GQG

(
0, 0,

μ

T

)
(14)

is the QGP part without the colorless condition.
Finally the exact total partition function with the colorless

condition is given by

ZTOT (h) = Z0 (h) ZCC (h) (15)

with

Z0 (q) = ZHG(h)ZVac(h)ZQGP(h). (16)

The latter is only the total partition function of the system
without the colorless condition, which can be rewritten in its
most familiar form obtained in the earliest papers [20,21]:

LnZ0(T, V, μ,h) =
[{

aQG + NcN f

6π2

(
π2 μ2

T 2 + μ4

2T 4

)

− B

T 4

}
(1 − h) − aHGh

]
VT 3.

(17)

2.2 Finite-size hadronic probability density function
and Lmn-method

The definition of the hadronic probability density function in
our model is given by

p(h) = ZT OT (h)

1∫

0
ZT OT (h)dh

. (18)

Since our hpdf is directly related to the partition function
of the system, it is believed that the whole information con-
cerning the deconfinement phase transition is self-contained
in this hpdf. This hpdf should certainly have different behav-
ior in both sides of the phase transition and then we should be
able to locate the transition point just by analyzing some of
its basic properties. Then we can perform the calculation of
the mean value of any thermodynamic quantity Q(T, μ, V )

characterizing the system in the state h by

〈Q(T, μ, V )〉 =
1∫

0

Q (h, T, μ, V ) p (h) dh. (19)

In our previous work, as mentioned above, a new method
was developed, which has allowed us to calculate easily phys-
ical quantities describing well the deconfinement phase tran-
sition to a CQGP in a finite volume V [2]. The most important
result consists in the fact that practically all thermal response
functions calculated in this context can be simply expressed
as a function of only a certain double integral coefficient Lmn .
The principal idea of these Lmn has emerged in the beginning
when we performed the calculation of the 〈h(T, V )〉 and then
we consider that it will be very interesting if we chose the
definition of Lmn in a judicious way so that all thermody-
namic quantities can, in one way or the other, be written as a
function of these Lmn’s:

Lm,n (q) =
∫ +π

−π

∫ +π

−π

dϕdψM(ϕ, ψ)(G(ϕ, ψ, 0))m

× eq R(ϕ,ψ;T,V )

(R (ϕ, ψ; T, V ))n
, (20)
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where the function R (ϕ, ψ; T, V ) is given by

R (ϕ, ψ; T, V ) =
(
G(ϕ, ψ, 0) − aHG − B

T 4

)
VT 3. (21)

We can clearly see that these Lm,n (q) can be considered
as a state function depending on (T , V ) and of course on state
variable q, and they can be calculated numerically at each
temperature T and volume V . As we will see later, the mean
value of any physical quantity Q(T, μ, V ) can therefore be
calculated as a simple function of these Lm,n (q) evaluated
in the hadronic phase: Lm,n (0) and in the CQGP phase:
Lm,n (1). Another important property of these Lmn coeffi-
cients relies on the fact that any derivative within the T vari-
able and V variable giving rise to other Lm,n (q) coefficients,
it is like making a connection between different Lm,n (q) and
mixing them in a simple recurrent relation [22,23].

2.3 Reminder of some thermal response functions obtained
previously

The first quantity of interest for our study was the mean value
of the hadronic volume fraction 〈h(T, V )〉, which can be
considered as the order parameter for the phase transition
investigated in this work. According to (18), 〈h(T, V )〉 can
be expressed as [2,22–24]

〈h(T, V )〉 = L02 (1) − L02 (0) − L01 (0)

L01 (1) − L01 (0)
, (22)

which shows the two limiting behaviors when approaching
the thermodynamical limit,

lim
(T )→∞ 〈h(T, V )〉 = 0, lim

(T )→ 0
〈h(T, V )〉 = 1. (23)

The asymptotic behaviors of 〈h(T, V )〉, can be related
analytically to the Heaviside step function in the thermody-
namical limit,

lim
(V )→∞〈h (T, V )〉 ≡ 1 − Θ(T − T0(∞)). (24)

The second quantity of interest was the energy density
ε(T, V ), whose mean value was also calculated in the same
way, and was found to be related to 〈h(T, V )〉 by the expres-
sion

〈ε(T, V )〉 = T 2

V

〈(
∂LnZ

∂T

)〉
. (25)

From our FSS analysis of the whole results, the 4FSE
have been observed [2,24]. These same effects have also
been noticed in the present work. We also wish to recall the
definitions of the specific heat, cT (T, V ) = ∂〈ε(T,V )〉

∂T , and

the thermal susceptibility, χT (T, V ) = ∂〈h(T,V )〉
∂T , represent-

ing the thermal derivatives of both 〈ε(T, V )〉 and 〈h(T, V )〉.
These TRF are very sensitive to the phase transition.

3 Finite size cumulant expansion: theoretical
calculations

3.1 Definitions of the moments, central moments,
and cumulants

Let us briefly recall the standard cumulant expansion and
review some of its main properties. In probability theory and
statistics, the cumulants Cn of a probability distribution are a
set of quantities that provide an alternative to the moments of
the distribution. The moments determine the cumulants in the
sense that any two probability distributions whose moments
are identical have identical cumulants. Similarly the cumu-
lants determine the moments. In some cases theoretical treat-
ments of problems in terms of cumulants are simpler than
those of moments [25,26]. The nth moment of a probability
density function f (x) of a variable x is the mean value of xn

and is mathematically defined by

an = 〈xn 〉 =
+∞∫

−∞
xn f (x)dx . (26)

As is well known, the set of moments fully characterizes a
probability density function provided that they are all finite.
At the same time the set of cumulants that is another alterna-
tive and, for some problems is a more convenient description.
Once the set of moments are known, the probability distribu-
tion may be obtained via the reverse Fourier transform, that
is, the function Ω(t) which is nothing but the mean value
of the eitx, depending only on the t variable and called the
characteristic function of the distribution f (x):

Ω(t) =
〈
eitx
〉
=

+∞∫

−∞
eitx f (x)d(x) = 1 +

∞∑

n=1

an
n! (i t)n . (27)

So, once Ω(t) is known, all moments are known. New
coefficients Cn , which were introduced by Thiele [27–29],
can be defined from the Maclaurin development of the
ln Ω(t),

ln Ω(t) =
∞∑

n=1

Cn

n! (i t)n . (28)

They are called the semi-invariants or cumulants of the
distribution f (x). Stated otherwise, we can define the central
moments Mn , relatively to the mean value of x (a1 = 〈x〉)
we get,

Mn =
+∞∫

−∞
(x−a1)

n f (x)dx=
n∑

k=0

(−1)k
(n
k

)
(a1)

k an−k . (29)

where
(n
k

) = n!
k!(n−k)! are the standard binomial coefficients.

Using (27), (28), and (29) one can easily express the cumu-
lants Cn and the central moments Mn via the moments an ,
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⎧
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1 =a1,

C2 =a2 − (a1)
2 ,

C3 =a3 − 3a1a2 + 2 (a1)
3 ,

C4 =a4 − 3 (a2)
2 − 4a1a3 + 12 (a1)

2 a2 − 6 (a1)
4 ,

C5 =a5 − 5a1a4 − 10a2a3 + 20a3 (a1)
2 ,

+ 30 (a2)
2 a1 − 60 (a1)

3 a2 + 24(a1)
5,

C6 =a6 − 6a1a5 − 15a2a4 + 30a4 (a1)
2 − 10 (a3)

2 ,

+ 120a1a2a3 − 120(a1)
3a3 + 30(a2)

3

− 270(a1)
2(a2)

2 + 360(a1)
4a2 − 120(a1)

6,

C7 =a7−7a1a6−21a2a5 + 42a2
1a5 − 35a3a4

+ 210a4a2a1 − 210a4a3
1 + 140a1a2

3 + 210a3a2
2

− 1260a2
1a2a3+840a4

1a3−630a3
2a1+2520a3

1a
2
2

− 2520a5
1a2 + 720a7

1,

C8 =a8 − 8a1a7 − 28a2a6 + 56a2
1a6 − 56a3a5

+ 336a5a2a1 − 336a5a3
1 − 35a2

4 + 560a1a4a3

+ 420a4a2
2 − 2520a4a2a2

1 − 1680a4
1a4 + 560a2

3a2

− 1680a2
1a

2
3 − 5040a3a2

2a1 + 13440a3a3
1a2

− 6720a5
1a3 − 630a4

2 + 10080a2
1a

3
2 − 25200a4

1a
2
2

+ 20160a6
1a2 − 5040a8

1, . . .

(30)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M1 =0,

M2 =a2 − (a1)
2 =σ 2,

M3 =a3 − 3a1a2 + 2 (a1)
3 ,

M4 =a4 − 4a1a3 + 6 (a1)
2 a2 − 3 (a1)

4 ,

M5 =a5−5a4a1−10(a1)
3a2+10a3 (a1)

2 + 4 (a1)
5 ,

M6 =a6 − 6a5a1 + 15(a1)
2a4 − 20a3 (a1)

3

+ 15 (a1)
4 a2 − 5 (a1)

6 ,

M7 =a7 − 7a6a1 + 21a1
2a5 − 35a4a3

1 + 35a4
1a3

− 21a5
1a2 − 6a7

1,

M8 =a8 − 8a7a1 + 28a1
2a6 − 56a5a3

1 + 70a4
1a4

− 56a5
1a3 + 28a6

1a2 − 7a8
1, . . .

(31)

We can also write the cumulants in terms of central
moments:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1 =a1,

C2 =M2,

C3 =M3,

C4 =M4 − 3 (M2)
2 ,

C5 =M5 − 10M2M3,

C6 =M6 − 15M4M2 − 10M2
3+30M3

2,

C7 =M7 − 21M5M2 − 35M4M3 +210M3 M2
2,

C8 =M8 − 28M6M2 − 56M5M3 −35 M2
4

+ 420M4 M2
2 + 560M2 M2

3 − 630M4
2, . . .

(32)

which can be combined into a single recursive relationship,

Cn = Mn −
n−1∑

m=1

Cn−1
m−1CmMn−m . (33)

General expressions for the connection between cumu-
lants and moments may be found in [30]. A very convenient
way to write the central moments and the cumulants in terms
of determinants is

Cn =(−1)n−1

∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣

M1 1 0 0 0 . . .

M2 M1 1 0 0 . . .

M3 M2
(2

1

)M1 1 0 . . .

M4 M3
(3

1

)M2
(3

2

)M1 1 . . .

M5 M4
(4

1

)M3
(4

2

)M2
(4

3

)M1 . . .

. . . . . . . . . . . . . . . . . .

∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣
n

(34)

and

Mn =

∣∣
∣∣∣∣∣
∣∣∣∣∣∣
∣∣

C1 −1 0 0 0 . . .

C2 C1 −1 0 0 . . .

C3
(2

1

)
C2 C1 −1 0 . . .

C4
(3

1

)
C3

(3
2

)
C2 C1 −1 . . .

C5
(4

1

)
C4

(4
2

)
C3

(4
3

)
C2 C1 . . .

. . . ... . . . . . . . . . . . .

∣∣
∣∣∣∣∣
∣∣∣∣∣∣
∣∣
n

, (35)

where the determinants contain n rows and n columns.
Then we can say that some important features of the sys-
tem’s partition function can be deduced only by knowing all
the moments. Each pth-order cumulant can be represented
graphically as a connected cluster of p points. If we write
the moments in terms of cumulants by inverting the relation-
ship (30) or by expanding the determinant (35), the pth-order
moment is then obtained by summing all possible ways to
distribute the p points into small clusters(connected or dis-
connected). The contribution of each way to the sum is given
by the product of the connected cumulants that it represents.
Due to the very important mathematical properties of the
connected cumulants, it is often more convenient to work in
terms of them. Henceforth and solely for simplicity, the word
cumulant, implicitly means connected cumulant.

3.2 Connected cumulant ratios formalism

In a symmetric distribution, every moment of odd order about
the mean (if it exists) is evidently equal to zero. Any similar
moment which is not zero may thus be considered as a mea-
sure of the distribution’s asymmetry or skewness. The sim-
plest of these measures is M3, which is of the third dimen-
sion in units of the variable. In order to reduce this to zero
dimension, and so construct an absolute measure, we divide
by σ 3. Reducing the fourth moment to zero dimension in
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the same way as above we define the coefficient of excess
(kurtosis), which is a measure of the flattening degree of the
distribution. In the literature, other expressions of skewness
and kurtosis are used instead of what we have defined. Many
other measures of skewness and kurtosis have been proposed
(see for example Pearson in [27]).

3.2.1 General definitions

The cumulants are considered as important quantities in
physics but cumulant ratios are more important. Suggesting
to review their definitions and deduce the most useful. Up to
the present state of things, no formalism that would give the
definitions of cumulant ratios in an unified way exists. For
this reason, it appeared to us instructive to try to standardize
and unify the definition of the cumulant ratios in a clear and
consistent way [31]. We start by the following definition:

K{( i
αi 	=0)}

{( j
β j 	=0)}

=
∏

j=1

C
β j
j

∏

i=1

C−αi
i , (36)

which represents the generalized connected cumulant ratio
between the cumulants {C j } and the cumulants {Ci } with
positive exponents {∀i, αi ≥ 0 and β j ≥ 0}. From this defi-
nition we can distinguish four cases, namely the following.

The normalized cumulant ratios are obtained from (36)
when the following condition is fulfilled:
∑

i=1

αi × (i) =
∑

j=1

β j × ( j). (37)

The unnormalized cumulant ratios are those ratios in
which we have the contrary case,
∑

i=1

αi × (i) 	=
∑

j=1

β j × ( j). (38)

In this case we can distinguish two types of unnormal-
ized cumulants: over-unnormalized cumulants in the case of∑

i=1 αi × (i) <
∑

j=1 β j × ( j) and under-unnormalized
cumulants in the case of

∑
i=1 αi × (i) >

∑
j=1 β j × ( j).

The pth-order normalized cumulant ratios correspond to
those in which only a pth-order cumulant is suitably normal-
ized,

∀ j ∈ [1,m]/β j 	=p = 0 and βp = 1; (39)

thus

K{( i
αi 	=0)}

p = Cp

∏

i=1

C−αi
i , (40)

with
n∑

i=1

αi × (i) = p. (41)

The pth-order under-normalized cumulant ratios which
are the most useful ones. This time, we have a particular
form of the latter case, in which the indices {i} are all less
than or equal to p,

K{( i
αi 	=0)}

≤p = Cp

p∏

i=1

C−αi
i , (42)

with

p∑

i=1

αi × (i) = p. (43)

The numbers αi are either integers or rational numbers.
If we solve the last algebraic equation (43), we obtain the
values of {αi } for every definition. For example for n = 4

4∑

i=1

αi × (i) = α1 + 2α2 + 3α3 + 4α4 = 4. (44)

When solving this equation in the set of natural numbers
N we find only five possibilities:

{(α1, α2, α3, α4) = (0, 2, 0, 0); (1, 0, 1, 0); (0, 0, 0, 1);
(2, 1, 0, 0); (4, 0, 0, 0)}. (45)

From Eqs. (36) and (42) we derive the relationship which
combines two different definitions of the pth-order under-

normalized cumulant K{( i
αi 	=0)}

≤p and K
{( j

β j 	=0)}
≤p , which is given

by

K{( i
αi 	=0)}

≤p = K
{( j

β j 	=0)}
≤p K{( i≤p

αi 	=0)}
{( j≤p

β j 	=0)}
(46)

with

p∑

i=1

αi × (i) =
p∑

j=1

β j × ( j) = p. (47)

From Eq. (42) we see that the number of possible defini-

tions of K{( i
αi 	=0)}

≤p increases with the order p. However, we
shall not consider all definitions, but we focus only on those
mostly used. Generically, the structures of all cumulants are
related to each other and the behavior including the magni-
tudes can be deduced from the preceding.

3.2.2 The first-order under-normalized cumulant ratio:
normalized mean value

Because the first cumulant is the mean value of x , C1 =
a1 = 〈x〉, the first-order under-normalized cumulant ratio is

K{( 1
α1=1)}

≤1 = 1.
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3.2.3 The second-order under-normalized cumulant ratio:
normalized variance

The second-order under-normalized cumulant ratio may be
referred to the normalized variance and defined as

K{( 1
α1=2)}

≤2 = σ 2

〈x〉2 = C2

C2
1

= M2

C2
1

= 〈x2〉
〈x〉2 − 1. (48)

3.2.4 The third-order under-normalized cumulant ratio:
skewness

The third-order under-normalized cumulant ratio is a mea-
sure of symmetry, or more precisely, the lack of symmetry.
A distribution, or data set, is symmetric if it looks the same
at the left and the right of the center point. Thethird cumulant
for a normal distribution is zero, and any symmetric distribu-
tion will have a third central moment, if defined, near zero.
Then the third under-normalized cumulant ratio is called the
skewness � and is defined as

K{( 2
α2=3/2)}

≤3 = � = C3

(C2)
3/2 = M3

M3/2
2

. (49)

A distribution is skewed to the left (the tail of the distribu-
tion is heavier on the left) will have a negative skewness. A
distribution that is skewed to the right (the tail of the distri-
bution is heavier on the right) will have a positive skewness.

3.2.5 The fourth-order under-normalized cumulant ratio:
kurtosis

The fourth-order under-normalized cumulant ratio is a mea-
sure of whether the distribution is peaked or flat relatively
to a normal distribution. Since it is the expectation value to
the fourth power, the fourth central moment, where defined,
is always positive. Because the fourth cumulant of a nor-
mal distribution is 3σ 4, the most commonly definition of the
fourth-order under-normalized cumulant ratio called kurto-
sis, κ , is

K{( 2
α2=2)}

≤4 = κ = C4

(C2)
2 =M4

M2
2

− 3, (50)

so that the standard normal distribution has a kurtosis of zero.
Positive kurtosis indicates a “peaked” distribution and neg-
ative kurtosis indicates a “flat” distribution. Following the
classical interpretation, kurtosis measures both the “peaked-
ness” of the distribution and the heaviness of its tail [32].

In addition to this, Binder was the first to propose and
study the fourth cumulant as it was defined in [19,33] using
the moments of the energy probability distribution:

B4 = 1 − a4

3 a2
2

. (51)

This was introduced as a quantity whose behavior could
determine the order of the phase transition. If we replace the
moments by the central moments, we get another completely
different physical quantity, which is related to the kurtosis as

Bc
4 = 1 − M4

3 M2
2

= − 1

3
κ (52)

and can easily be derived from our general definition of con-
nected cumulant ratios (36). This new cumulant, as we have
mentioned before, is called connected Binder cumulant or
conventional Binder cumulant. However, to avoid confusion
in the appellations we simply keep the name of Binder cumu-
lant for the first quantity. Historically, this new cumulant was
first introduced and studied by Binder in 1984 [34]. Seven
years later, this new cumulant was reconsidered in an inde-
pendent and important paper by Lee and Kosterlitz in the
context of a different model [35]. The difference between
the two Binder cumulants attracted little attention in its early
years. But, in 1993, Janke has illuminated the most important
difference in a comparative and fruitful study between the
two cumulants [36]. The great significance of the connected
Binder cumulant relative to the Binder cumulant is summed
up in the following points: (1) the thermal behaviors of two
Binder cumulants are very different, particularly in the tran-
sition region, (2) the connected Binder cumulant has a richer
structure than the Binder cumulant, (3) the connected Binder
cumulant is more efficient in locating the true finite-volume
transition point than the Binder cumulant. This cumulant is
a finite-size scaling function [19,34,37–39], and it is widely
used to indicate the order of the transition in a finite volume.
In ordered systems, a good parameter to locate phase tran-
sitions is exactly this connected Binder cumulant, which is
the kurtosis of the order-parameter probability distribution.
The uniqueness of the ground state in that case is enough to
guarantee that the Binder cumulant takes the universal value
at zero temperature for any finite volume.

3.2.6 The fifth-order under-normalized cumulant ratios:
pentosis

The fifth-order under-normalized cumulant ratio, which is
called pentosis, can be defined in two ways. The first one is
given by

K{( 2
α2=1),(

3
α3=1)}

≤5 = Π+= C5

C2C3
= M5

M2M3
− 10 (53)

and the second definition is given by

K{( 2
α2=5/2)}

≤5 = Π−= C5

(C2)
5/2

= M5

M5/2
2

− 10�. (54)

The two forms of pentosis are of course related by

Π− = �Π+. (55)
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a relation that we can deduce from the general relationship
(46).

3.2.7 The sixth-order under-normalized cumulant ratios:
hexosis

The sixth-order under-normalized cumulant ratio is, analo-
gously to pentosis and kurtosis, coined hexosis. It can be
defined in one of the following ways [31,40]:

K{( 2
α2=3)}

≤6 = H1 = C6

(C2)
3 = M6 − 15M4M2−10M2

3

M3
2

+ 30, (56)

K{( 3
α3=2)}

≤6 = H2 = C6

(C3)
2 = M6 − 15M4M2 + 30M3

2

M2
3

− 10, (57)

K{( 2
α2=1),(

4
α4=1)}

≤6 = H3 = C6

C4C2
= M6 − 10M2

3−15M3
2[M4 − 3 (M2)

2]M2

− 15. (58)

It is easy to show that the three definitions of hexosis are
related to each other by the relations

H3 = κ−1H1 = �2κ−1H2, (59)

which can be deduced from the general relationship (46).

3.2.8 The seventh-order under-normalized cumulant ratios:
heptosis

In the same spirit and by analogy to pentosis, kurtosis and
hexosis, we can term the seventh-order under-normalized
cumulant ratio as heptosis [31] η. One of the possible defi-
nitions of heptosis is given by

K{( 2
α2=2),(

3
α3=1)}

≤7 = η3 = C7

C2
2C3

= M7

M2
2M3

− 21
M5

M2M3
− 35

M4

M2
2

+ 210.

(60)

3.2.9 The eighth-order under-normalized cumulant ratios:
octosis

Concerning the eighth-order under-normalized cumulant
ratio, which can be termed octosis [31] and described by
one of the eight definitions from Table 1,

Table 1 Some p-order under-normalized cumulants

pth-order {αi } K{( i
αi 	=0)}

≤p

2 {α1 = 2} K{( 1
α1=2)}

≤2 = σ̃ 2

3 {α2 = 3/2} K{( 2
α2=3/2)}

≤3 = �

4 {α2 = 2} K{( 2
α2=2)}

≤4 = κ

5 {α2 = 5/2} K{( 2
α2=5/2)}

≤5 = Π−

{α2 = 1, α3 = 1} K{( 2
α2=1),(

3
α3=1)}

≤5 = Π+

6 {α2 = 3} K{( 2
α2=3)}

≤6 = H1

{α3 = 2} K{( 3
α3=2)}

≤6 = H2

{α2 = 1, α4 = 1} K{( 2
α2=1),(

4
α4=1)}

≤6 = H3

7 {α2 = 7/2} K{( 2
α2=7/2)}

≤7 = η1

{α2 = 1, α5 = 1} K{( 2
α2=1),(

5
α5=1)}

≤7 = η2

{α2 = 2, α3 = 1} K{( 2
α2=2),(

3
α3=1)}

≤7 = η3

{α3 = 1, α4 = 1} K{( 3
α3=1),(

4
α4=1)}

≤7 = η4

8 {α2 = 4} K{( 2
α2=4)}

≤8 = ω1

{α2 = 1, α6 = 1} K{( 2
α2=1),(

6
α6=1)}

≤8 = ω2

{α2 = 2, α4 = 1} K{( 2
α2=2),(

4
α4=1)}

≤8 = ω3

{α3 = 1, α5 = 1} K{( 3
α3=1),(

5
α5=‘)}

≤8 = ω4

{α2 = 1, α3 = 2} K{( 2
α2=1),(

3
α3=2)}

≤8 = ω5

{α4 = 2} K{( 4
α4=2)}

≤8 = ω6

K{( 2
α2=1),(

3
α3=2)}

≤8 = ω5 = C8

C2C2
3

= M8

M2
3M2

− 28
M6

M2
3

− 56
M5

M3M2
− 35

M2
4

M2
3M2

+ 420
M4M2

M2
3

− 630
M3

2

M2
3

+ 560. (61)

3.2.10 Three unnormalized cumulant ratios

We are also interested in studying different unnormal-
ized combinations of the cumulants. Their importance was
revealed and emphasized in several recent works [16,17,41,
42]. The first combination contains the variance σ 2, kurtosis
κ , and skewness � and is defined as,

O = σ 2κ

�
= C1/2

2 C4

C3
= K{(1

4)},{(1/2
2 )}

{(1
3)}

= M
1
2
2

(M4 − 3M2
2

)

M3
. (62)
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The second one contains only the variance σ 2 and skew-
ness � and is given by

U = 1

σ 2�
= C1/2

2

C3
= K{(1/2

2 )}
{(1

3)}
= M

1
2
2

M3
. (63)

However,the third combination contains the variance σ 2

and kurtosis κ and is given by

N = σ 2κ = C4

C2
= K{(1

4)}
{(1

2)}
= M4 − 3M2

2

M2
. (64)

3.3 Finite-size cumulant expansion of the hadronic
probability density function p(h) as a function
of Lmn(q, T, V )

Using our hadronic probability density function p(h), we
derive the general expression of the mean value 〈hn〉
as a function of Lmn(q, T, V ) [43]. Afterward, one can
express the different cumulants Cn(T, V ) in terms of these
Lmn(q, T, V ) using (29) and (35). One should keep in mind
that these double integrals Lmn(q, T, V ) are state functions
depending on the temperature T , on the volume V , and on
the state variable q. One can hide their dependence on (T, V )

just to avoid overloading relationships. After some algebra,
we get the result

〈
hn
〉
(T, V ) = n!L0,n+1 (1) −∑n

k=0

(n
k

)
k!L0,k+1 (0)

L0,1 (1) − L0,1 (0)
. (65)

Using this general expression of the mean value and from
(30) we derive the six first cumulants (see the “Appendix”),
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1(T, V ) = 〈h〉,
C2(T, V ) =

〈
h2
〉
− 〈h〉2 ,

C3(T, V ) =
〈
h3
〉
− 3 〈h〉

〈
h2
〉
+ 2 〈h〉3 ,

C4(T, V ) =
〈
h4
〉
− 3

〈
h2
〉2 − 4 〈h〉

〈
h3
〉
+ 12 〈h〉2

〈
h2
〉

− 6 〈h〉4 ,

C5(T, V ) =
〈
h5
〉
− 5 〈h〉

〈
h4
〉
− 10

〈
h2
〉 〈
h3
〉

+ 20
〈
h3
〉
〈h〉2 + 30

〈
h2
〉2 〈h〉

− 60 〈h〉3
〈
h2
〉
+ 24〈h〉5,

C6(T, V ) =
〈
h6
〉
− 6 〈h〉

〈
h5
〉
− 15

〈
h2
〉 〈
h4
〉

+ 30
〈
h4
〉
〈h〉2 − 10

〈
h3
〉2 + 120 〈h〉

〈
h2
〉 〈
h3
〉

− 120 〈h〉3
〈
h3
〉
+ 30

〈
h2
〉3 − 270〈h〉2〈h2〉2

+ 360〈h〉4
〈
h2
〉
− 120〈h〉6,

. . .

(66)

Afterward we derive the final expression of both pth-order
under-normalized and unnormalized cumulants under con-
sideration. The first cumulant is none other than the order
parameter 〈h〉 (T, V ) and is given by (85). The variance
σ 2 (T, V ) is given by

σ 2 (T, V ) =
[
〈h2〉 − 〈h〉2

]
. (67)

The skewness, � (T, V ), is given by

� (T, V ) = 〈(h − 〈h〉)3〉
σ 3 =

[〈h3〉 − 3〈h〉〈h2〉 + 2〈h〉3
]

[〈h2〉 − 〈h〉2
]3/2 ,

(68)

and the kurtosis κ (T, V ) is given by

κ (T, V )

= 〈(h − 〈h〉)4〉
σ 4 − 3

=
[〈h4〉 − 4〈h〉〈h3〉 − 6〈h〉4 + 12〈h〉2〈h2〉 − 3〈h2〉2

]

[〈h2〉 − 〈h〉2
]2 .

(69)

The pentosis Π+ (T, V ) is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Π+ (T, V ) = N1/D1

N1 =
[
〈h5〉 − 5〈h4〉〈h〉 + 20〈h3〉〈h〉2 − 60〈h2〉〈h〉3

−10〈h2〉〈h3〉 + 30〈h2〉2〈h〉 + 24〈h〉5
]

D1 =
[
〈h2〉〈h3〉 − 3〈h〉〈h2〉2 + 5〈h2〉〈h〉3

−〈h〉2〈h3〉 − 2〈h〉5
]

.

(70)

Finally, the hexosis H1(T, V ) is given by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H1 (T, V ) = N2/D2,

N2 =
[
〈h6〉 − 6〈h5〉〈h〉 − 15〈h2〉〈h4〉 + 30〈h〉2〈h4〉

−10〈h3〉2 + 120 〈h〉
〈
h2
〉 〈
h3
〉
− 120 〈h〉3

〈
h3
〉

+ 30
〈
h2
〉3 − 270〈h〉2〈h2〉2 + 360〈h〉4

〈
h2
〉

− 120〈h〉6
]
,

D2 =
[
〈h2〉3 + 3〈h〉4〈h2〉 − 3〈h2〉2〈h〉2 − 〈h〉6

]
.

.

(71)

The expressions of Π− (T, V ) andH2,3(T, V ) can be derived
easily from those of (55) and (56) using (59). Let us now go
to the unnormalized cumulants as defined in (62), (63), and
(64). The final expressions of O,U ,N are
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O (T, V ) = σ 2 (T, V ) κ (T, V )

� (T, V )

=
[
〈h4〉 − 4〈h〉〈h3〉 − 6〈h〉4 + 12〈h〉2〈h2〉

− 3〈h2〉2
] [〈h2〉 − 〈h〉2

]1/2

[〈h3〉 − 3〈h〉〈h2〉 + 2〈h〉3
] , (72)

U (T, V ) = 1

σ 2 (T, V )� (T, V )

=
[〈h2〉 − 〈h〉2

]1/2

[〈h3〉 − 3〈h〉〈h2〉 + 2〈h〉3
] , (73)

and

N (T, V )

= σ 2 (T, V ) κ (T, V )

=
[〈h4〉 − 4〈h〉〈h3〉 − 6〈h〉4 + 12〈h〉2〈h2〉 − 3〈h2〉2

]

[〈h2〉 − 〈h〉2
] .

(74)

We will see after studying these new thermodynamic func-
tions that their FSS analysis will allow one to identify the
transition region, to define judiciously the finite-volume tran-
sition point, and to analyze its behavior when approaching
the thermodynamic limit.

4 Finite-size cumulant expansion: results and discussion

First, one may notice a clear sensitivity, of all quantities stud-
ied in this work, to the finite volume of the system. Exactly
as in the case of the results obtained in our previous work
[2,22,23], the 4FSE cited above are observed.

The variation of the different cumulants and cumulant
ratios versus temperature are illustrated in Figs. 1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12 and 13, respectively, for various finite sizes.

Fig. 1 Behavior of different cumulants Cn=1,2,3,4,5,6(T, V ) versus
temperature for volume = 1000 fm3

Fig. 2 Hadronic probability distribution function p(h, T, V =
1000 fm3) versus temperature for different values of h = 0.1, 0.5, 0.9
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Fig. 3 3-Dim plot of the order parameter 〈h(T, V )〉 versus temperature
and volume
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Fig. 4 3-Dim plot of variance σ 2 (T, V ) versus temperature and vol-
ume
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Fig. 5 3-Dim plot of skewness � (T, V ) versus temperature and vol-
ume
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Fig. 6 3-Dim plot of kurtosis κ (T, V ) versus Temperature and Volume

Fig. 7 Pentosis Π− (T, V ) versus temperature for different volumes
(+ zoom of the region close to zero)

They show interesting features. It can be clearly seen that
the different finite peaks appearing in the different quantities
have width δT (V ), becoming small when approaching the
thermodynamic limit. This result is expected, since the order
parameter looks like a step function when the volume V goes

Fig. 8 Pentosis Π+ (T, V ) versus temperature for different volumes
(+ zoom of the region close to zero)

Fig. 9 Pentosis Π+ (T, V ) versus temperature for volume = 100 fm3

Fig. 10 Hexosis H1,2,3 (T, V ) versus temperature for volume =
100 fm3 (+ zoom of the region close to zero)

to infinity, as it is well known. The rounding of the cumulants
behavior is a consequence of the finite-size effects of the bulk
singularity. We notice in all curves, the emergence of a transi-
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Fig. 11 O (T, V ) versus temperature for different volumes (+ zoom
of the region close to zero)

Fig. 12 U (T, V ) versus temperature for different volumes

Fig. 13 N (T, V ) versus temperature for different volumes

tion region, roughly bounded by two particular points, which
narrows as the volume increases. In this region, all thermo-
dynamical quantities present an oscillatory behavior which

becomes faster when approaching the thermodynamic limit.
Our previous works [2,22,23] have shown that both 〈h〉 and
〈ε〉
T 4 exhibit a finite sharp discontinuity, which is related to the
latent heat of the deconfinement phase transition, at bulk tran-

sition temperature T0 (∞) =
[

90B
34π2

]1/4 = 104.34796 MeV,

reflecting the first-order character of the phase transition. It
is well known that the latent heat is the amount of energy
density necessary to convert one phase into the other at the
transition point. In our case, the latent heat can be calculated:
LH (∞) = 4B. This finite discontinuity can be mathemat-
ically described by a step function, which transforms to a
δ-function in χT and cT . When the volume decreases, all
quantities vary continuously such that the finite sharp jump
is rounded off and the δ-peaks are smeared out into finite
peaks over a range of temperature δT (V ). Physically, we can
interpret these 4FSE as due to the finite probability of pres-
ence of the CQGP phase below the transition point and of the
hadron phase above it, induced by the considerable thermo-
dynamical fluctuations. In Fig. 1, we show the plot of the first
six cumulants as functions of temperature at fixed volume,
1000 fm3. A multiple peaks structure can be observed on
these curves, except in the case of the first cumulant C1(T ).
For each additional order, a new hump (peak) is introduced.
These peaks are broadened, smaller is the volume. Also, we
notice that the inflection point in the first cumulant C1(T )

becomes a maximum point for the second-order cumulant
C2(T ), a zero point in the third cumulant C3(T ) and so on.
The number of times that a given cumulant changes its sign is
directly related to the order of the cumulant. The sign change
for the cumulants starts at the third one. It happens twice in
the fourth-, thrice in the fifth- and four times in the sixth-
order cumulants. The common feature is that the higher the
order of the cumulant is, the higher the frequency of the fluc-
tuation pattern is. Also, we notice that all cumulants have
the same vanishing value at low or high temperatures. In the
middle region, which in principle is considered as the transi-
tion region, the value of the cumulants presents an oscillatory
behavior due to the thermodynamical fluctuations during the
phase transition. When we carefully analyze the behavior
of the hpdf for different values of h = 0.1, 0.5 and 0.9 on
Fig. 2, we note that in the case of h = 0.5 the hpdf looks
very symmetric and for these reasons we expect the skewness
to be zero. The hpdf distribution is skewed right before the
transition h = 0.1 and becomes skewed left after the occur-
rence of the phase transition h = 0.9. The peaks of the hpdf
are more pronounced when we go from a pure CQGP phase
to a pure hadronic phase passing through the mixed phase.
This feature is simply due to the fact that our hpdf is directly
connected to the density of states in each phase.

Let us now see what the plots of the normalized cumu-
lants in Figs. 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13 express.
The general behavior and the structure of the peaks are very
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different. However, the broadening effect of the transition
region with decreasing volume is also observed. The plots of
skewness, kurtosis and pentosis, show a double peaks struc-
ture, a big peak and a little one. These two peaks correspond
to the two states before and after the phase transition. When
the two peaks have the same sign, there are two vanishing
points limiting the transition region and containing a small
extremum, which is nothing other than the transition point.
This behavior is due to the fact that kurtosis is closely con-
nected the second derivative of the thermal susceptibility.
Otherwise there is only one vanishing point which is the
transition point. The only difference between the three curves
lies on the fact that the small peak becomes less pronounced
with increasing order of the cumulant. For this reason, the
latter does not appear practically on the curves. In the tran-
sition region the symmetric peak of p(h = 0.5, T ) becomes
very small by making the kurtosis negative and small. The
kurtosis manifests a very different behavior in both sides of
the transition region when approaching the thermodynamic
limit which is due to the high asymmetry of the variance,
as displayed clearly on the 3-Dim plot in Fig. 4. The vari-
ance decreases more sharply in the hadronic phase than in
the CQGP phase. When looking more closely at all the 3-
dimensional plots, we can clearly see that some particular
points exhibit a typical behavior that can be described by
the finite-size scaling law, which is consistent with what
has been obtained previously [2]. For example, the maxi-
mum of the variance, sketches the finite-size scaling behav-
ior described by T (σmax) − T0(∞) ∝ V−1. Concerning the
plots of the three hexosis, namely H1,2,3, we have the same
global behavior out of the transition region and a different
oscillatory behavior in it. The local maximum point in H1

becomes a singularity point in H2 and a local minimum in
H3. Moreover, the obvious change in the sign, observed in
our results, is in agreement with the results obtained by other
models [44,45]. Finally the plots in Figs. 11, 12, and 13 repre-
sent the variations of the three unnormalized cumulant ratios
O (T, V ) ,U (T, V ), and N (T, V ) as a function of tempera-
ture and volume. Their behaviors are very different compared
to the plots of the normalized ratios. The plots of N (T, V )

show a clear and rapid oscillatory behavior with two maxima
and one minimum in the transition region, which gradually
narrows as the volume increases. On the other side we can
clearly see the emergence of particular singular behavior on
the plots of O (T, V ) and U (T, V ) at certain values of tem-
perature. The same divergence is observed on the plot of the
pentosis Π+ (T, V ), exactly in the valley region between the
two maximums (Fig. 9). It is interesting to note the behavior
of O (T, V ), which is practically zero in the two phases and
is singular at the finite-volume transition point, with a small
local minimum before the transition and small local maxi-
mum after the transition. The location of the finite-volume
transition point is clear and simple, its shifting is obvious.

The same observations are valid for U (T, V ). Using an FSS
analysis, we will see below that these points will be iden-
tified as the finite-volume transition points. We summarize
by saying that O (T, V ) and U (T, V ) tend to zero rapidly
everywhere, except in the transition region and at the finite-
volume transition point where they diverge. This is due to
the zero of skewness in the transition point. These two cumu-
lant ratios can therefore serve as two good indicators of the
location of the finite-volume transition point. They will be
of great use in the analysis of experimental data of URHIC
where the context of initial conditions just before the phase
transition are unknown. We can see again from the figures
that change their values sharply from negative to positive and
oscillate greatly with temperature near the transition point.
These qualitative features, i.e., sign change and oscillating
structure, are consistent with effective models [46–51].

5 New method of localization of the finite-volume
transition Point

5.1 Natural method

It is important to have a precise knowledge of the region
around the transition point since many quantities of physical
interest are just defined in its vicinity. It therefore seems very
important to find the definition of a finite-volume transition
point which involves less corrections. Let us first recall the
logical and natural way to define the finite-volume transi-
tion point by viewing it as the point where we have equal
probabilities between hadronic phase and CQGP phase:〈
h
(
T N

0 (V )
)〉 = 1 − 〈h (T N

0 (V )
)〉

. This means that the value
of the order parameter is given by

〈
h
(
T N

0 (V )
)〉 = 1/2. We

know that in the thermodynamic limit the order parameter
manifests a finite discontinuity which can easily be described
by a step function (24). Therefore, the specific heat cT (T, V )

and the thermal susceptibility χT (T, V ) show δ-function sin-
gularities at the transition point,

lim
(V )→∞

{
cT (T, V )

χT (T, V )

}
∝ δ(T − T0(∞)). (75)

In a finite volume, these δ-singularities become rounded
peaks. Therefore χT (T, V ) and cT (T, V ) reach a local
extremum value at a certain temperature T N

0 (V ), which is
defined as the temperature of the finite-volume transition
point,
{
cT (T, V ) = max.

χT (T, V ) = min.

}

when T = T N
0 (V ) (76)

Finally, we can assert without any problem that the finite-
volume transition point is logically the point where the fol-
lowing equations are satisfied (as is its temperature T N

0 (V )):

123



Eur. Phys. J. C (2015) 75 :431 Page 15 of 19 431

Table 2 Natural transition point temperatures

Volume V (fm3) T N
0 (V ) (MeV)

100 110.68007 ± 0.00001

200 108.02068 ± 0.00001

300 107.00271 ± 0.00001

400 106.44758 ± 0.00001

500 106.09471 ± 0.00001

700 105.66892 ± 0.00001

900 105.41823 ± 0.00001

1000 105.32709 ± 0.00001

2000 104.88739 ± 0.00001

5000 104.59347 ± 0.00001

10,000 104.48254 ± 0.00001

∞ 104.34796

⎧
⎨

⎩

〈h (T N
0 (V )

)〉 = 1/2

∂χT (T,V )
∂T

∣∣∣
T N

0 (V )
= 0 and ∂cT (T,V )

∂T

∣∣∣
T N

0 (V )
= 0.

(77)

From this we see that the finite-volume transition point
is associated to the appearance of an inflection point in
〈h(T, V )〉: 〈h(T N

0 (V ))〉 becoming a local extremum point
in both χT (T, V ) and cT (T, V ). According to this method,
we extract the different temperatures T N

0 (V ) of the transition
points and collect them in Table 2.

5.2 Cumulant method: particular points and correlations

In this section, we will try to propose a new method for
locating the finite-volume transition point using the whole
cumulants studied in this work. We shall show how this finite-
volume transition clearly manifests itself as a particular point
in each cumulant.

Our strategy consists of finding a judicious point where
the temperature T0(V ) seemingly tends to the bulk T0(∞)

with increasing volume and must be highly correlated with
T N

0 (V ):

lim
(V )→∞ T0(V ) = T0(∞). (78)

The definition of T0(V ) is not arbitrary but very dif-
ficult analytically and differs according to the quantity
being considered. After a careful analysis of the normalized
cumulants plots σ 2(T, V ), �(T, V ), κ(T, V ), Π±(T, V ),
H1,2,3(T, V ), O(T, V ), U(T, V ) and N (T, V ), we find that
the only points which can be considered in one way or another
as very particular are the local extrema points (local maxi-
mum and local minimum), the vanishing points (zeros), the
inflection points, and the singular points. These points are
called the particular points. Indeed, we have investigated the
behavior of these particular points. First, for each quantity

and for each particular point, we extract the temperature val-
ues {T0(V )} at different volumes and put them in the first
set. Second we put the temperature values

{
T N

0 (V )
}

given
in Table 2 in the second set. To probe more precisely the
location of the finite-volume transition point, a useful tool is
the scatter plot, in which the temperatures of the first set are
plotted against the temperatures of the second set. What we
are asking here is whether or not the variations in the first
set of T0(V ) are correlated or not with the variations in the
second set of T N

0 (V ). We have analyzed several particular
points and only good candidates are considered in this work
with details. If a particular point is considered as a good finite-
volume transition point, one would expect that its scatter plot
satisfies the following three criteria:

1. The fit should be linear.
2. The slope of the fit should equal unity and its vertical

intercept should equal zero.
3. The fit should have high linear correlation with a very

good correlation factor and a very good probability test.

If we consider the temperature {T0(V )} to be a dependent
variable, then we want to know if the scatter plot can be
described by a linear function of the form,

T0(V ) = λT N
0 (V ) + ν. (79)

Because we are discussing the relationship between the vari-
ables {T0(V )} and

{
T N

0 (V )
}
, we can also consider

{
T N

0 (V )
}

as a function of {T0(V )} and ask if the data follow the same
linear behavior,

T N
0 (V ) = λ′T0(V ) + ν′. (80)

The values of the coefficients λ′ and ν′ in (80) will be different
from the values of the coefficients λ and ν in (79), but they
are related if the two temperatures {T0(V )} and

{
T N

0 (V )
}

are correlated. If we consider solely the value of λ (or λ′),
it does not provide us a good measure of the degree of the
correlation. From (79) and (80), and in the case of a total
correlation, we can show that
{

λλ′ = 1,

λν′ + ν = 0.
(81)

If there is no correlation, the two parameters λ and λ′ are
lower than unity, even approaching zero value. We there-
fore can use the product λλ′ as a measure of the correlation
between the two sets of temperatures {T0(V )} and

{
T N

0 (V )
}
.

By definition the correlation factor is given by� ≡ √
λλ′. The

value of � ranges from 0, when the data are totally uncor-
related, to 1, when there is total correlation. The correla-
tion factor, alone, is not sufficient to indicate the quality or
the goodness of the linear fit. An additional calculation of
probability is necessary for more precision. This probability
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distribution enables us to go beyond the simple fit, and to
compute a probability associated with it. In the case of our
situation, a commonly used probability distribution for � is
given by [52,53]

P�(�, ζ ) = 1√
π

Γ [(ζ + 1)/2]
Γ [(ζ )/2] (1 − �2)(ζ−2)/2, (82)

where ζ = N − 2 is the number of degrees of freedom for
a sample of N data points, and Γ (x) is the standard Gamma
function. It gives the probability that any sample of uncor-
related data would yield to a linear behavior described by
a correlation factor equal to �. If this probability is small,
then the sample of data points can be considered as highly
correlated variables. More generally, this type of calculation
is often referred to as a goodness-of-fit test [54]. Another
significant and useful quantity which can be calculated from
the distribution (82) is given by

PC (�, N ) = 2

1∫

|�|
Px (x, ζ )dx . (83)

This PC (�, N ) represents the integral probability that a
sample of N uncorrelated data points would yield a linear
correlation factor larger than or equal to the calculated value
of |�|. This would mean that a small value of PC (�, N ) is
equivalent to a high probability that the two sets of variables
are linearly correlated. The fitting results obtained from the
correlations study shown on Fig. 14 are summarized in Table
3. In order to avoid overlapping between fitting curves and to
allow for a clear representation on the same graph, we have
added a shift of 2 MeV between each two consecutive curves.

It can be perceived from the scatter plots in Fig. 14 that
the points are closely scattered about an underlying straight
line, reflecting a strong linear relationship between the two

Fig. 14 Correlation scatter plot between T0(V ){Qn} + n(2MeV )

and T N
0 (V ) for different volumes (Q0 = σ 2

max, Q1 = �0, Q2 =
κmin, Q3 = (Π+)∞, Q4 = (Π−)0, Q5 = O∞, Q6 = U∞, Q7 =
Nmin)

Table 3 Correlation factor values obtained from linear fitting

N. cumulant Transition point λ λ′

σ 2(T, V ) σ 2
max(T0(V )) 0.98812 1.01202

�(T, V ) �0(T0(V )) 0.98798 1.01216

κ(T, V ) κmin(T0(V )) 0.98700 1.01317

Π+(T, V ) (Π+)∞ (T0(V )) 0.98788 1.01226

Π−(T, V ) (Π−)0 (T0(V )) 0.98753 1.01262

O(T, V ) O∞(T0(V )) 0.98787 1.01227

U(T, V ) U∞(T0(V )) 0.98787 1.01227

N (T, V ) Nmin(T0(V )) 0.98753 1.01262

sets of data and the numerical values of the slopes are close
to unity as expected. Also, we tried the fitting procedure with
a fixed intercept ν = 0 and we got better results, the value of
the slope being better than 0.999. From the values of both λ

and λ′ in Table 3, practically the same value of the correlation
factor �, which is equal to 0.99999, is obtained. Therefore
the evaluation of the two probabilities gives the following
results:
{

P�(� = 0.99999, ζ = 7) = 1.82209 × 10−12,

PC (� = 0.99999, N = 9) = 1.04119 × 10−17.
(84)

The extreme smallness of PC (�, N ) ≤ 1.178 × 10−16 indi-
cates that it is extremely improbable that the variables under
consideration are linearly uncorrelated. Thus the probability
is very high that the variables are correlated and the linear
fit is justified. The fact that such fittings yield results that are
consistent with each other is an important consistency check
on the accuracy of the calculations and gives an idea of the
FSE for the values of the temperature of finite-volume tran-
sition point. We would like to note that the numerical values
of temperature obtained by the cumulant method {T0(V )}
of the various transition points are comparable with an accu-
racy less than 2 %, with the temperatures

{
T N

0 (V )
}

extracted
using conventional procedures. Therefore the selected points
are indeed the true finite-volume transition points, namely:

1. the local maximum point in the variance σ 2(T, V ) and
in the first hexosis H1(T, V ): σ 2

max,H1,max,
2. the zero point in the skewness�(T, V ) and in the pentosis

Π−(T, V ): �0,Π−,0,
3. the local minimum point in the kurtosis κ(T, V ), in

N (T, V ) and in the third hexosisH3(T, V ):κmin,H3,min,

Nmin

4. and the singularity point in the pentosis Π+(T, V ),
in U(T, V ), in O(T, V ) and in the second hexosis
H2(T, V ): Π+,∞,U∞, O∞,H2,∞.

The temperature at which the skewness vanishes is
expected to represent the transition temperature, and tends
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apparently to T0(∞) with increasing volume, while the tem-
perature gap between the two extrema is expected to give the
width of the transition region.

We got an unexpected and important result. It concerns the
behavior of the connected Binder cumulant. Indeed from Eq.
(34) the whole discussion of the kurtosis can be translated
to the connected Binder cumulant. Therefore, the connected
Binder cumulant Bc

4(T, V ) has two minima and a little max-
imum between them as expected from the behavior of the
kurtosis κ(T, V ). The position of two minima should not
have a good correlation factor, however, the little maximum
will be the good finite-volume transition point. This would be
in striking contrast to conventional result obtained by Binder
[19]. The apparent discrepancy is completely due to the dif-
ference in the definition of the Binder cumulantB4(T, V ) and
the connected Binder cumulant Bc

4(T, V ). The local min-
imum point in the Binder cumulant is not the true finite-
volume transition point because it does not have the good
correlation factor (λ = 1.39). But it should approach the
bulk transition temperature asV becomes large, which means
that it is just a particular point. We have therefore shown that
the cumulants are more interesting than the moments and
the connected Binder cumulant is more efficient in locat-
ing the true finite-volume transition point than the Binder
cumulant. The same results have been obtained in many
papers [36,55,56] and the obtained thermal behaviors are
in complete agreement with ours. We know that all the par-
ticular points as they have been defined in our paper con-
verge toward the unique singularity in the thermodynamic
limit. Once the true finite-volume transition point has been
identified from the particular points, its signal is not neces-
sarily the highest, and even, maybe in some cases, is hard
to detect. The main property of the particular points in finite
volume is that they are correlated with the true finite-volume
transition point. Another important property relates to the
possibility of using them to define a transition region. It
has been claimed that the shift between the minimum of
the Binder cumulant and the maximum in its susceptibil-
ity in the case of a first-order phase transition is due to the
absence of phase coexistence phenomena in the double Gaus-
sian model and of the surface corrections [35,57]. In our case,
despite taking into account the phase coexistence within the
colorless-MIT bag model, the shift between the minimum
of the Binder cumulant and the true finite-volume transition
point still exists but its magnitude is different. The magnitude
of this shift is reflected in the numerical values of the corre-
lation parameters (λ, ν), which differ from the ideal values
(λ = 1, ν = 0) in the case of a total correlation. Indeed, when
we try to extract roughly the numerical values of λ parameter
from the results obtained in [19,35,36,58], we find differ-
ent values [λ = 1.55, 1.47, 1.57, 1.89], respectively, which
are not close to unity. This is certainly due to the fact that
our colorless-MIT bag model is very different from the dou-

ble Gaussian model used by Binder to study the finite-size
effects in the first-order phase transition [19]. Presumably
the shift of the minimum of B4(T, V ) from the true finite-
volume transition point T N

0 (V ) depends on the detailed form
of the partition function of the system under consideration as
quoted in [35], i.e., it is somewhere model dependent.

6 Conclusion

In order to identify and locate the finite-volume transition
point more accurately, we have studied in detail the finite-
volume cumulant expansion of the order parameter and have
shown how greatly this can be used to provide a clear defini-
tion of the finite-volume transition point in the context of the
thermal deconfinement phase transition to a CQGP. Starting
from the hadronic probability density function and using the
Lmn-method, a finite-size cumulant expansion of the order
parameter is carried out. The first six cumulants, their under-
normalized ratios and also some combinations of them, are
then calculated and analyzed as a function of temperature at
different volumes. To be more consistent and coherent in our
definitions of cumulant ratios, a new reformulation of these
cumulant ratios is proposed. It has been put into evidence that
all cumulants and their ratios showed deviations from their
asymptotic values (low and high temperature values), which
increase with the cumulant order. This behavior is essential
to discriminate the phase transition by measuring the fluctu-
ations. We have noticed that both cumulants of higher order
and their ratios, associated to the thermodynamical fluctua-
tions of the order parameter, in QCD behave in a particular
enough way revealing pronounced oscillations in the transi-
tion region. The sign structure and the oscillatory behavior
of these in the vicinity of the deconfinement phase transition
point might be a sensitive probe and may allow one to eluci-
date their relation to the QCD phase transition point. In the
context of our model, we have shown that the finite-volume
transition point is always associated to the appearance of a
particular point in whole cumulants under consideration. A
detailed FSS analysis of the results has allowed us to locate
the finite-volume transition points and extract accurate val-
ues of their temperatures T0(V ). We have tested the validity
of our results by performing linear correlations between the
set of T0(V ) and the known results obtained with the natural
definition T N

0 (V ) providing very good correlation factors. In
addition to the natural definition of the finite-volume transi-
tion point as the extrema of thermal susceptibility, χT and
specific heat cT , we have shown that the true finite-volume
transition point manifests itself as a different particular point
according to the quantity considered, namely as

1. a local maximum point in the variance σ 2(T, V ) and in
the first hexosis H1(T, V ): σ 2

max,H1,max,
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2. a zero point in the skewness �(T, V ) and in the pentosis
Π−(T, V ): �0,Π−,0,

3. a local minimum point in the kurtosis κ(T, V ), in
N (T, V ) and in the third hexosisH3(T, V ):κmin,H3,min,

Nmin

4. a singularity point in the pentosis Π+(T, V ), inU(T, V ),
in O(T, V ) and in the second hexosis H2(T, V ): Π+,∞,

U∞, O∞,H2,∞.

It is important to mention that the finite-volume transi-
tion point, using the connected Binder cumulant Bc

4(T, V ),
is given by the little maximum

(Bc
4

)
max between the two

minima. By against, the minimum of the Binder cumulant
B4(T, V ), (B4)min as obtained in [19,36,55,56,58,59], is
just a particular point and not the true finite-volume tran-
sition point. Obviously any particular point tends to the bulk
transition point as V becomes large. The apparent discrep-
ancy is completely due to the difference in the definition
of the Binder cumulant B4(T, V ) and the connected Binder
cumulant Bc

4(T, V ). The shift between (B4)min and the true
finite-volume transition point in our model is different from
those obtained by other models. This is probably due to the
fact that our hpdf is very different from the double Gaus-
sian distribution used by Binder [19] and that considered in
[35]. We therefore suspect that this shift is somewhere model
dependent as quoted in [35]. We will present a detailed study

of this point in a forthcoming work. Finally, we can conclude
that the finite-volume transition point that appears as a partic-
ular point, the emergence of the linear correlation between
different particular points, and the possibility to use them
to define a transition region are the features of a universal
behavior.

Acknowledgments This research work was supported in part by the
Deanship of Scientific Research at Taibah University (Al-Madinah,
KSA) under Contract 432/765 and also by the King Abdulaziz City
for Science and Technology under Contract No. (P-S-12-0660). M.L.
would like to dedicate this work in living memory of his daughter Ouzna
Ladrem (Violette), who died suddenly in March 24, 2010. May Allah
have mercy on her and greet her in his vast paradise. Many thanks to A.
Y. Jaber from M.L. and M.A.A.A. for his infinite availability and great
support during their stay at Al-Madinah.

OpenAccess This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

Appendix

From the general expression of the mean value 〈hn〉 (T, V )

(65), we can easily deduce the first eight mean values,

〈h〉(T, V ) = L02 (1) − L02 (0) − L01 (0)

L01 (1) − L01 (0)
, (85)

〈h2〉(T, V ) = 2L03 (1) − 2L03 (0) − 2L02 (0) − L01(0)

L01 (1) − L01 (0)
, (86)

〈h3〉(T, V ) = 6L04 (1) − 6L04 (0) − 6L03 (0) − 3L02 (0) − L01(0)

L01 (1) − L01 (0)
, (87)

〈h4〉(T, V ) = 24L05 (1) − 24L05 (0) − 24L04 (0) − 12L03 (0) − 4L02 (0) − L01(0)

L01 (1) − L01 (0)
, (88)

〈h5〉(T, V ) = 120L06 (1) − 120L06 (0) − 120L05 (0) − 60L04 (0) − 20L03 (0) − 5L02 (0) − L01(0)

L01 (1) − L01 (0)
, (89)

〈h6〉(T, V ) = 720L07 (1) − 720L07 (0) − 720L06 (0) − 360L05 (0) − 120L04 (0) − 30L03 (0) − 6L02(0) − L01(0)

L01 (1) − L01 (0)
, (90)

〈h7〉(T, V ) = 5040L08 (1)−5040L08 (0)−5040L07 (0)−2520L06 (0)−840L05 (0)−210L04 (0)−42L03(0)−7L02(0)−L01(0)

L01 (1)−L01 (0)
,

(91)

〈h8〉(T, V ) = 40320L09 (1) − 40320L09 (0) − 40320L08 (0) − 20160L07 (0) − 6720L06 (0) − 1680L05 (0) − 336L04(0)

L01 (1) − L01 (0)

−56L03(0) + 8L02(0) + L01(0)

L01 (1) − L01 (0)
. (92)
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