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Abstract From the perspective of four dimensional effec-
tive theory on a two brane warped geometry model, we exam-
ine the possibility of “bouncing phenomena”on our visible
brane. Our results reveal that the presence of a warped extra
dimension lead to a non-singular bounce on the brane scale
factor and hence can remove the “big-bang singularity”. We
also examine the possible parametric regions for which this
bouncing is possible.

1 Introduction

Over the last two decades models with extra spatial dimen-
sions [1–13] have been increasingly playing a central role
in physics beyond the standard model of particle [14] and
cosmological [15] physics. Apart from the phenomenologi-
cal approach, higher dimensional scenarios occur naturally
in string theory. Depending on different possible compacti-
fication schemes for the extra dimensions, a large number of
models have been constructed, and their predictions are yet to
be observed in the current experiments. In all these models,
our visible universe is identified as one of the three branes
embedded within a higher dimensional spacetime. The low
energy effective description [16–18] of the dynamical three
brane turned out to be a very powerful tool in studying the
dynamics ranging from particle to cosmology. In our present
work we will take this ansatz to understand cosmological
bouncing phenomena in the early universe cosmology con-
sidering the Randall–Sundrum two brane model.

Among various extra dimensional models proposed over
the last several years, the Randall–Sundrum (RS) warped
extra dimensional model [6] earned special attention since it
can resolve the gauge hierarchy problem without introduc-
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ing any intermediate scale (between Planck and TeV) in the
theory. The RS model is a five dimensional AdS space with
S1/Z2 orbifolding along the extra dimension while two three
branes are placed at the orbifold fixed points. The bulk nega-
tive cosmological constant along with appropriate boundary
conditions generate exponentially warped geometry along
the extra dimension. Due to this exponential warping, the
Planck scale on one brane gets suppressed along the extra
dimension and emerges as TeV scale [6] on the visible brane.
In the RS model the interbrane separation (known as modu-
lus or radion) is ∼ Planck length and generates the required
hierarchy between the branes. Subsequently, Goldberger and
Wise (GW) proposed a modulus stabilzation mechanism
[19] by introducing a massive scalar field in the bulk with
appropriate boundary conditions. Different variants of the RS
model and its modulus stabilization are extensively studied
in [21–28]. In this paper we will consider a specific variant
of RS scenario and study the cosmological dynamics from
the perspective of low energy effective field theory induced
on the visible brane.

It is well known that standard Big Bang scenario is quite
successful in explaining many aspects of cosmological evolu-
tion of our universe. However, the big-bang model is plagued
with a singularity (known as “cosmological singularity”) in
the finite past. Resolving this time like cosmological singular-
ity is an important issue which is a subject of great research
in theoretical cosmology for the last several decades. It is
widely believed that quantum theory of gravity, if any, should
play very important role in resolving this singularity. One
of the important aspects of all the known non-singular cos-
mological models is the existence of pre Big-Bang universe
[29]. In terms of effective theory, different models of non-
singular cosmologies, such as ekpyrotic universe [30,31],
loop quantum cosmology [32,33], Galileon genesis [34–36],
or the classical bouncing model, can be described by grav-
ity coupled to a scalar field which generically violates the
null energy condition at the background level. Therefore, the
scale factor of the universe undergoes a non-singular bounce
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from a pre-existing universe to the present universe. This fact
resulted in a reasonable amount of work on classical bounc-
ing cosmology [37–43], with/without the presence of matter
components (see also [44–47]).

In the present work, we will study the dynamics of the
induced low energy theory which contains modes originat-
ing from bulk physics. The dynamics of such a mode in the
context of usual cosmology [48–53] has been studied exten-
sively. However, here we ask the following question:

• Can the effect of extra dimension trigger a non-singular
bounce on the brane scale factor and allow one to remove
the “big-bang singularity” ?

In the context of a two brane scenario, the ekpyrotic model
[30,31] and its various other variants are known to have cos-
mological bouncing solutions. An important point to empha-
size is that in those scenarios the bounce occurs at the time
when two branes collapse. However, in this paper we will
be studying the possibility of bouncing phenomena strictly
in the Randall–Sundrum framework, where the gauge hier-
archy will impose a further restriction on the moduli (radion)
dynamics. In this regard, we have employed the radion stabi-
lization mechanism in the time dependent RS background so
that it does not spoil the bouncing phenomena. Our classical
effective field theory computation shows that the required
gauge hierarchy can be obtained in the asymptotic limit after
the bounce.

The aim of this paper is to address the aforementioned
question in the backdrop of a generalized scenario of the RS
model proposed in [16]. The effective on-brane action we
used in this paper has been formulated by Kanno and Soda
in [16] by the method of a “low energy expansion scheme”.

Our paper is organized as follows: in Sect. 2, we briefly
describe the generalized RS model and its effective action
on the visible brane. In Sect. 3, we present the cosmological
solutions of the effective Friedmann equations. The stabi-
lization mechanism of the radion field is discussed in Sect. 4
and finally we end the paper with some conclusive remarks.

2 Low energy effective action on the visible brane

In the RS model, the Einstein equations are derived for a fixed
interbrane separation as well as for flat three branes. How-
ever, the scenario changes if the distance between the branes
becomes a function of spacetime coordinates and the brane
geometry is curved. These generalizations are incorporated
while deriving the effective action on the TeV brane via the
“low energy expansion scheme” proposed in [16].

The model we considered in the present paper is described
by a five dimensional anti-de Sitter (AdS) spacetime with two
three branes embedded within the spacetime. The spacetime

geometry has S1/Z2 orbifolding along the extra dimension.
Taking ϕ as the extra dimensional angular coordinate, the
branes are situated at orbifolded fixed points i.e. at ϕ = 0
(Planck brane) and ϕ = π (TeV brane), respectively, while
our visible universe is identified with the TeV scale brane.
The proper distance between the branes is considered as a
function of spacetime coordinates. The action of this model
[16] is the following:

S = 1

2κ2

∫
d4xdϕ

√−G

[
R(5) + (12/ l2)

]

−
∫

d4x

[√−ghidVhid + √−gvisVvis

]
(1)

with xμ = (x0, x1, x2, x3) the brane coordinates. 1
2κ2 = M3,

M is the five dimensional Planck mass. R(5) and l (∼ Planck
length) are the Ricci scalar and curvature radius of the five
dimensional spacetime, respectively. Critical brane tensions
of hidden and visible brane are, respectively, given by Vhid

and Vvis.
We use the following metric ansatz [16]:

ds2 = b2(x)dϕ2 + e−2A(ϕ,x)hμν(x)dx
μdxν, (2)

where A(ϕ, x) is the spacetime dependent warp factor along
the extra dimension, andb(x) is the radius of the compactified
extra dimension.

Equation (2) leads to the separation between hidden and
visible brane along the path of constant xμ as follows:

d(x) =
∫ π

0
dϕb(x) = πb(x). (3)

Equation (3) clearly indicates that the proper distance
between the branes depends on the brane coordinates and
that is why d(x) can be treated as a field. From the perspec-
tive of four dimensional effective theory, this field is termed
the ’radion field’ (or modulus field).

For the metric ansatz in Eq. (2), the five dimensional Ein-
stein equations are given by

e−2ξ

b
(Kμ

ν ),ϕ−e−2ξ KKμ
ν +R(4)μ

ν (h)−∇μ∇νξ − ∇μξ∇νξ

= − 4

l2
δμ
ν + κ2

(
1

3
δμ
ν Vhid

)
e−ξ

b
δ(ϕ)

+ κ2
(

1

3
δμ
ν Vvis

)
e−ξ

b
δ(ϕ − π), (4)

e−2ξ

b
K,ϕ − e−2ξ KμνKμν − ∇μ∇μξ − ∇μξ∇μξ

= − 4

l2
+ 4κ2e−ξ

3b
Vhidδ(ϕ) − 4κ2e−ξ

3b
Vvisδ(ϕ − π),

(5)

∇ν(e
−ξ K ν

μ) − ∇μ(e−ξ K ) = 0, (6)
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where R(4)μ

ν (h) is the Ricci curvature, formed by the metric
hμν . Kμν = 1

b(x) A
′(ϕ)e−2Ahμν denotes the extrinsic curva-

ture of the ϕ = constant hypersurface and ∇μ is the covari-
ant derivative with respect to hμν . Moreover, we introduce
eξ = b(x)

l π .
In order to solve the five dimensional Einstein equations,

it is assumed that the brane curvature radius L is much larger
than the bulk curvature l i.e. ε = ( l

L )2 � 1. Then the bulk
Einstein equations can be solved perturbatively where ε is
taken as the perturbation parameter. This method is known
as “low energy expansion scheme” [16] in which the metric
is expanded with increasing power of ε. The zeroth order per-
turbation solution replicates the RS situation where the inter-
brane separation is constant. The effective on-brane action
can be obtained up to first order perturbation, and it incorpo-
rates the fluctuation of modulus as well as non-zero value of
the brane matter. Taking these generalizations into account,
the ϕ dependence of the warp factor can be obtained as fol-
lows (due to Kanno and Soda; see [16]):

A(ϕ, x) = b(x)

l
ϕ. (7)

However, Eqs. (4), (5) and (6) lead to the junction condi-
tions:

(
Kμ

ν − δμ
ν K

)
ϕ=0

= −κ2

2
Vhidδ

μ
ν , (8)

(
Kμ

ν − δμ
ν K

)
ϕ=π

= κ2

2
Vvisδ

μ
ν , (9)

where we use the property that the spacetime is S1/Z2 orb-
ifolded along the extra dimension. Using the solution of the
warp factor A(ϕ, x) = b(x)

l ϕ (see Eq. (7)), we obtain the
extrinsic curvature as follows:

Kμν = 1

l
exp

( − 2bϕ/ l
)
hμν,

and we have

K = Kμν exp
(
2bϕ/ l

)
hμν = 4

l
.

Plugging the above expression of Kμν and K into the junction
equations yields the brane tensions:

Vhid = −Vvis = 6

κ2l
. (10)

Furthermore, using the five dimensional line element (shown
in Eq. 2) along with the solution of warp factor (see Eq. (7)),
one determines the five dimensional Ricci scalar R(5), which
contains a constant part = − 20

l2
. As a result:

• The effective four dimensional action from the constant
part of R(5) is

S1 = 1

2κ2

∫
d4x

×
∫ π

−π

dϕ
√−G

[
16

bl

[
δ(ϕ) − δ(ϕ − π)

] − 20

l2

]

= 3

κ2l

∫
d4x

√−h

[
1 − e−4 b

l π

]
(11)

where we use the expression of A(ϕ, x) (see Eq. (6)
below) and the fact that the spacetime has S1/Z2 orb-
ifolding along ϕ.

• The effective action from the bulk cosmological constant
is

S2 = 1

2κ2

∫
d4x

∫ π

−π

dϕ
√−G

12

l2

= 3

κ2l

∫
d4x

√−h

[
1 − e−4 b

l π

]
. (12)

• The effective action from the brane tensions is

S3 = −
∫

d4x
√−h

[
Vhid + e−4 b

l πVvis

]

= − 6

κ2l

∫
d4x

√−h

[
1 − e−4 b

l π

]
(13)

where we use the expressions of the brane tensions
obtained in Eq. (10).

From the above three equations, it is clear that S1, S2

and S3 cancel among each other. This indicates that, while
deriving the effective four dimensional action from Eq. (1),
the contribution comes only from the R(5) term. As a con-
sequence the original five dimensional action (in Eq. (1))
yields the effective four dimensional action for the visible
brane (see [16]),

Seff = l

2κ2

∫
d4x

√− f

[
	(x)R(4)( f )

− 3

2(1 + 	)
hμν∂μ	∂ν	

]
(14)

where 	(x) = [exp (2π
b(x)
l ) − 1] and R(4)( f ) is the Ricci

scalar formed by the induced metric of the visible brane
i.e. fμν (= e−A(π,x)hμν). It may be noticed from Eq. (14)
that upon projecting the bulk gravity on the brane, the extra
degrees of freedom of R(5) (with respect to R(4)( f )) appear
as a scalar field 	(x) which directly couples with the four
dimensional Ricci scalar. Hence the effective on-brane action
is a Brans–Dicke like theory. For such an effective four
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dimensional theory, we now explore the cosmological evo-
lution of the universe.

3 Cosmological solution for effective on-brane theory

Considering the effective four dimensional action presented
in Eq. (14), one obtains the equations of motion for gravita-
tional and scalar field as follows:

Eμν = 1

	

[
− fμν[�	 + 3

4(1 + 	)
∇α	∇α	]

+∇μ∇ν	 + 3

2(1 + 	)
∇μ	∇ν	

]
(15)

where Eμν is the Einstein tensor and the covariant deriva-
tives are formed by the visible brane metric fμν . It is clear
from the above equation that the radion field 	 acts as an
energy-momentum tensor on the brane. Furthermore, the
scalar radion field equation of motion is given by

3

(1 + 	)
�	 − 3

2(1 + 	)2 ∇μ	∇μ	 = 0. (16)

Consider the on-brane metric ansatz as the FRW metric
with negative curvature parameter,

ds2
(4) = fμνdxμdxν

= −dt2 + a2(t)

[
dr2

(1 + r2)
+ r2d�2

]
(17)

where a(t) is the scale factor and xμ = (t, r,�) are the
spherical polar coordinates. Using this metric ansatz, the field
equations (Eqs. (15) and (16)) take the following form:

H2 = 1

a2 − H
	̇

	
− (	̇)2

4	(1 + 	)
(18)

and

	̈ = −3H	̇ + (	̇)2

2(1 + 	)
. (19)

An overdot denotes d
dt , H = ȧ/a is known as the Hubble

parameter and we assume that the radion field 	 is homoge-
neous in space.

In order to solve the above coupled equations (Eqs. (18)
and (19)), we adopt the procedure formulated in [54]. Intro-
ducing the conformal time through

adη = dt (20)

and denoting d
dη

by a prime, Eq. (19) becomes

	′′ + 2
a′

a
	′ = (	′)2

2(1 + 	)
. (21)

Integrating Eq. (21), we have the following solution:

	′a2 = B
√

1 + 	 (22)

where B is a constant. Defining a new variable,

y = 	a2 (23)

Eq. (18) becomes

(y′)2 = 4y2 + (	′)2a4

1 + 	
,

which, along with Eq. (22) yields

(y′)2 = 4y2 + B2. (24)

Once the Friedmann equations are expressed in terms of
the variable y, the solutions of the scale factor (a(t)) and
radion field (	(t)) can be obtained by performing the fol-
lowing steps:

3.1 Step 1: solution for y = y(η)

Integrating Eq. (24), we obtain the solution for y = y(η):

y(η) = 1

2
B sinh[2(η + η0)] (25)

where η0 is an integration constant.

3.2 Step 2: solution for 	 = 	(η)

Dividing both sides of Eq. (22) by y, we get the integral of
	(η):∫

d	

	
√

1 + 	
= B

∫
dη

y(η)

where we use the definition y = 	a2. By putting the solu-
tion of y(η) into the above equation, one ends up with the
following form of 	 = 	(η):

	(η) = 4D tanh(η + η0)

[1 − D tanh(η + η0)]2 (26)

with D an integration constant.

3.3 Step 3: solution for a = a(η)

Plugging the solutions of y(η) and 	(η) into the expression
y = 	a2, the solution of the scale factor with respect to the
conformal time is found to be

a2(η) = B

4D

[
cosh(η + η0) − D sinh(η + η0)

]2

. (27)
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3.4 Step 4: solution for a = a(t) and 	 = 	(t)

From the above solutions of a(η), 	(η) and using Eq. (20),
we obtain the scale factor and radion field with respect to
cosmic time (t):

a(t) =
[
t2 + B

4D
(1 − D2)

]1/2

, (28)

	(t) = D

(1 − D2)2

×
[32 D2

B t2 − 8
√

D
B (1 + D2)t

√
4t2 D

B +(1 − D2)

4t2 D
B + (1 − D2)

]
.

(29)

It is evident from Eq. (28) that a(t) has a non-zero mini-
mum at t = 0 for 0 < D < 1, where the minimum value is
given by

a(0) =
[

B

4D
(1 − D2)

]1/2

.

Thus the presence of a warped extra dimension allows for
a non-singular bounce of the scale factor (at t = 0) in our
four dimensional universe, as long as the parameter D is
constrained to be less than unity.

However, it can be checked from Eq. (29) that 	(t) has
a positive asymptotic value as t → −∞ and goes to zero

at t =
√
BD
2 . Using Eq. (29) and the relation 	(t) =

[exp
(
2π

b(t)
l

)− 1], we obtain Fig. 1, demonstrating the vari-
ation of the interbrane separation (b(t)) with time.

Figure 1 clearly reveals that the branes collapse into each

other within a finite time t =
√
BD
2 , which indicates the insta-

bility of the entire set-up. Thus we need a suitable mechanism
to stabilize the modulus. Following the procedure adopted in
[19,20], the stabilization method for the present set-up is
discussed in the next section.

2.0 1.5 1.0 0.5
t

0.05

0.10

0.15

0.20

0.25

0.30

0.35
modulus

Fig. 1 b(t) vs. t for B = 1 and D = 0.5

4 Radion stabilization

In order to address the stabilization of the time dependent
radion field, one needs to consider a dynamical stabilization
mechanism, which can be achieved by a time dependent gen-
eralization of the Goldberger–Wise (GW) mechanism [19].
Earlier, a similar approach was adopted in [20]. Introducing a
time dependent scalar field (with quartic brane interactions)
in the bulk [19,20], we address the dynamics of modulus
stabilization without sacrificing the conditions necessary to
resolve the gauge hierarchy problem.

The action for the time dependent bulk scalar field is given
by

S5 = 1

2

∫
d4xdϕ

√−G

[
GMN ∂M�∂N� + m2�2

]
(30)

where M and N symbolize (μ, ϕ). The hidden and visible
brane interaction terms with the bulk stabilizing scalar field
can be written as

S4 =
∫

d4x
∫ +π

−π

dϕ
√−ghλv

[
�2 − ṽ2

h

]2

δ(ϕ − 0) (31)

and

S4 =
∫

d4x
∫ +π

−π

dϕ
√−gvλh

[
�2 − ṽ2

v

]2

δ(ϕ − π) (32)

where gh, gv are the determinants of the metrics induced
on the hidden and visible brane, respectively. The scalar
field action (in Eq. (30)) leads to the field equation for
� = �(ϕ, t) as follows:

∂

∂t

[
e−2Aa3(t)b(t)

∂�

∂t

]
− ∂

∂ϕ

[
e−4A a

3(t)

b(t)

∂�

∂ϕ

]

+m2e−4Aa3(t)b(t)� + 4e−4Aa3(t)λhψ

(
�2 − ṽ2

h

)
δ(ϕ)

+ 4e−4Aa3(t)λvψ

(
�2 − ṽ2

v

)
δ(ϕ − π) = 0. (33)

In the limit of large λh and λv , the boundary conditions for
�(ϕ, t) turns out to be

�(0, t) = ṽh(t) = F(t)vh �(π, t) = ṽv(t) = F(t)vv

(34)

where F(t) carries the time dependence of ṽh(t) and ṽv(t).
We choose a generalized solution for the stabilizing scalar
field as

�(ϕ, t) = F(t)

[
P(t)e(2+ν)A + Q(t)e(2−ν)A

]
(35)
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where ν =
√

4 + m2

k2 , k = 1
l and recall that A(ϕ, t) =

kb(t)ϕ. Using the boundary conditions we obtain

P(t) = vve
−(2+ν)kπb(t) − vhe

−2νkπb(t) (36)

and

Q(t) = vh(1 + e−2νkπb(t)) − vve
−(2+ν)kπb(t). (37)

Moreover, using the scalar field solution presented in Eq.
(35), the time dependent part of the differential Eq. (33) takes
the following form:

a3(t)b(t)

[
eνA

{
F(t)Pt + P(t)

(
Ft + (ν + 2)F(t)At

)}

+ e−νA
{
F(t)Qt + Q(t)

(
Ft + (2 − ν)F(t)At

)}]

= C(ϕ) (38)

where Ft , Pt , Qt , At are the derivatives of F, P, Q, A with
respect to t and C(ϕ) is a ϕ dependent integration constant.
Plugging back the solutions of P(t) and Q(t) (obtained in
Eqs. (36) and (37)) into Eq. (38), one obtains a differential
equation for F(t) as follows:

∂F

∂t
∝ k

e2kπb(t)

a3(t)
(39)

where we assume that the scalar field mass (m) is less than
the bulk curvature (k). Finally,

∂F

∂t
= f0k

e2kπb(t)

a3(t)
(40)

with f0 a dimensionless constant. Using the solutions of a(t)
and b(t) obtained in Eqs. (28) and (29), the function F(t) can
be determined (from Eq. (40)) as follows:

F(t) =
[
f0k

( 8D
√

D
B

√
D
B − DB + 4t2

3(1 − D2)3
[
4Dt2 + B(1 − D2)

]2

)

×
(

4D(3 + 10D2 + 3D4)

+
√

D

B
t3 − 3(D4 − 1)B

{
(1 + D2)

√
D

B
t

+ D

√
1 − D2 + 4

D

B
t2

})
+ E0

]
(41)

where E0 is an integration constant. After obtaining the
explicit form of F(t), the GW stabilization mechanism can
be implemented in this framework, where �(ϕ, t) acts as
a stabilizing field. Plugging the solution of �(ϕ, t) (see Eq.
(35)) in the five dimensional scalar field action (Eq. (30)) and

integrating over ϕ yield the effective radion potential (Vef f )
as follows:

Veff =
(

vve
−(2+ν)kπ b(t)

F(t) − vhe
−2νkπ b(t)

F(t)

)2

× k(2 + ν) exp

(
2νkπ

b(t)

F(t)

)

+
(

vh(1 + e−2νkπ b(t)
F(t) )−vve

−(2+ν)kπ b(t)
F(t)

)2

k(ν−2).

(42)

Minimizing this radion potential, we obtain the value of
bmin(t):

kπbmin(t) = 4
k2

m2 ln

(
vh

vv

)
× F(t) (43)

where bmin(t) is the stabilized value of the modulus and F(t)
is given in Eq. (41). It can be checked that bmin(t) is positive
for all t and has asymptotic values at t → ±∞. Thus the
branes are never going to be collapsed in the presence of the
bulk massive scalar field (�(ϕ, t)) and the stabilized inter-
brane separation (i.e. bmin(t)) acquires a saturated value at
large time.

Determination of the constants: f0 and E0

The solution of F(t) (in Eq. (41)) immediately leads the
asymptotic values of bmin(t) as follows:

kπbmin(t → −∞) = 4
k2

m2 ln

(
vh

vv

)

×
[

− f0k

(
4D

3B

)
(1 + 3D2)(3 + D2)

(1 − D2)3 + E0

]
(44)

and

kπbmin(t → ∞) = 4
k2

m2 ln

(
vh

vv

)

×
[
f0k

(
4D

3B

)
(1 + 3D2)(3 + D2)

(1 − D2)3 + E0

]
. (45)

Now, the constants ( f0 and E0) can be determined by
equating these asymptotic values (as shown in Eqs. (44) and
(45)) with that obtained in Eq. (29) (for t → −∞) and with
the GW result (for t → +∞), as follows:

• kπbmin(t → −∞) = ln

(
1+D
1−D

)
, obtained from Eq.

(29).

• kπbmin(t → +∞) = 4 k2

m2 ln

(
vh
vv

)
(in consonance with

the GW result [19]).
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With the help of the above two conditions, one finds the
constants f0 and E0 (in terms of B, D) as follows:

E0 =
[

1

2
+ m2/8k2

ln(vh/vv)
ln

(
1 + D

1 − D

)]
(46)

and

f0 =
(

1

k

)
(1 − D2)3

(3 + D2)(1 + 3D2)

×
[

1 − m2/8k2

ln(vh/vv)
ln

[
1 + D

1 − D

]]
. (47)

Using the above expressions of f0, E0 and Eq. (43), we
obtain Fig. 2 showing the stabilized modulus ( bmin(t)

bGW
) versus

t (where kπbGW = 4 k2

m2 ln(vh/vv)).
Figure 2 clearly depicts bmin(t), showing it to be non-

vanishing for the entire range of t (−∞ < t < ∞) and
saturating at the Goldberger–Wise value (bGW) at large time.
Thus the time dependent modulus can be stabilized by impos-
ing a time dependent massive scalar field in the bulk. More-
over, we fix the integration constants ( f0, E0) in such a way
that the solution of the gauge hierarchy problem is ensured.

However, the question may arise whether the introduction
of stabilizing scalar field can affect the bouncing phenomena
or not. To examine this, we substitute the solution of the
stabilized modulus (i.e. bmin(t)) into the effective Friedmann
equation and find

(
ȧ

a

)2

= 1

a2 − 8
k2

m2 ln

(
vh

vv

)
Ḟ(t)

ȧ

a

[ (
vh
vv

)8 k2

m2 F(t)

(
vh
vv

)8 k2

m2 F(t) − 1

]

+
(

8
k2

m2 ln

(
vh

vv

)
Ḟ(t)

)2[ (
vh
vv

)8 k2

m2 F(t)

(
vh
vv

)8 k2

m2 F(t) − 1

]
. (48)

t

bmin t bGW

6 4 2 2 4 6

1.2

1.4

1.6

1.8

2.0

Fig. 2 bmin(t) vs. t for B = 1 and D = 0.5

Solid Curve : with stabilizing field
Dashed Curve : without stabilizing filed

t

H t

10 5 5 10

1.0

0.5

0.5

1.0

Fig. 3 H(t) vs. t , with/without the stabilizing field for B = 1, D =
0.5, vh

vv
= 1.5 and m

k = 0.2

Using the form of F(t) given in Eq. (41), we solve the
Hubble parameter (= ȧ/a) numerically and compare this
numerical solution with the Hubble parameter obtained ear-
lier (in the absence of �(ϕ, t); see Eq. (28)). This comparison
is shown in Fig. 3.

Figure 3 clearly demonstrates that the feature of the bounc-
ing phenomena remains unaffected due to the effect of the
stabilizing scalar field.

Before concluding we want to mention that the free kinetic
energy density of the radion field remains always positive
while the interaction energy between radion and gravita-
tional field becomes negative for a certain time regime, which
causes the bounce at t = 0. Equation (18) immediately leads
to the effective energy density (ρeff ) as follows:

ρeff = 3

4

([
− 	̇

	
−

(
	̇2

	2(1 + 	)
+ 4

a2

) 1
2
])2

. (49)

Now the curvature energy density is given by ρcur = 3
a2

and the expression of the effective action Seff (see Eq. (14))
leads to the free kinetic energy density of the radion field,
ρrad = 3

4 	̇2, which is always positive definite. Therefore
ρeff can be written as

ρeff = ρcur + ρrad + ρcoup

where ρcoup denotes the interaction energy density between
gravitational field and radion field. Using the solution of the
stabilized radion field (see Eq. (43)) and the scale factor
(obtained numerically from Eq. (48)), we obtain Fig. 4, which
gives the variation of energy densities (ρcur, ρrad, ρcoup) with
time (t).

Figure 4 clearly demonstrates that the free kinetic energy
density of the radion field remains always positive while the
interaction energy density (between radion and gravitational
field) becomes negative for a certain regime of time. The
negativity of ρcoup along with the positive value of ρcur and
ρrad cancel each other to generate a zero effective energy
density at t = 0, which causes the bounce.
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Blue Curve : eff

Brown Curve : cur
Red Curve : rad

Green Curve : coup

Energy density

time (t)

5 0 5

0.5

0.0

0.5

1.0

Fig. 4 ρeff , ρcur, ρrad and ρcoup vs. t for B = 1, D = 0.5

5 Conclusion

We consider a five dimensional AdS compactified warped
geometric model with two three branes residing at the orb-
ifold fixed points. Our universe is identified with the visible
brane. Instead of considering the five dimensional dynam-
ics of the brane under gravity, we studied the low energy
effective theory induced on our brane following Ref. [16]. In
the high bulk curvature limit, the induced four dimensional
effective theory appeared to be a Brans–Dicke type theory
where the scalar field is playing the role of the distance mod-
ulus between the two branes. In this paper, we investigate
the possibility of having a classical bouncing solution in the
visible three brane (i.e. our universe). Out of three possi-
ble spatial curvatures of the Friedmann–Robertson–Walker
brane, the bouncing solution exists only for hyperbolic spa-
tial curvature (κ = −1). Following the procedure as men-
tioned in Sect. III, it can be shown easily that, for κ = 0 and
for κ = +1, one cannot have any bouncing solution. While
finding the solution for κ = −1, we also introduce the stabi-
lization mechanism to make sure that the two branes do not
collapse, and maintain the hierarchy of scale in the asymp-
totic limit. In addition, we also need to satisfy the specific
constraint 0 < D < 1 to ensure the real valued bouncing
solution for the scale factor.
As the solution of the radion field presented in Eq. (29)
clearly implies, in the epoch after the bouncing, (depicted
in Fig. 1), the two branes would collapse, leading to
instability. Therefore, in order to stabilize this, a time
dependent massive scalar field is introduced in the bulk.
Thus we have a dynamical stabilization of the RS model,
where in the asymptotic past the hierarchy of scales was
larger than that of the present Goldberger–Wise value,
which is achieved in the asymptotic future. This is clearly
demonstrated in Fig. 2. We have determined the stabi-
lization condition in Eq. (39), and finally taking this into
account, we numerically solve the Hubble parameter as

shown in Fig. 3. This clearly reveals that the “bounc-
ing” phenomenon is not affected by the stabilizing scalar
field.
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