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Abstract We consider cosmological inflation generated by
a scalar field slowly rolling off from a de Sitter maximum
of its potential. The models belong to the class of hill-
top models and represent the most general model of this
kind in which the scalar potential can be written as the
sum of two exponentials. The minimally coupled Einstein-
scalar gravity theory obtained in this way is the cosmolog-
ical version of a two-scale generalization of known holo-
graphic models, allowing for solitonic solutions interpolat-
ing between an AdS spacetime in the infrared and scal-
ing solutions in the ultraviolet. We then investigate cosmo-
logical inflation in the slow-roll approximation. Our model
reproduces correctly, for a wide range of its parameters,
the most recent experimental data for the power spectrum
of primordial perturbations. Moreover, it predicts inflation
at energy scales of four to five orders of magnitude below
the Planck scale. At the onset of inflation, the mass of the
tachyonic excitation, i.e. of the inflaton, turns out to be
seven to eight orders of magnitude smaller than the Planck
mass.

1 Introduction

Nowadays, inflationary cosmology [1–5] represents the eas-
iest way to solve the problems of the standard Friedmann–
Robertson–Walker (FRW) cosmology, such as the horizon
and flatness problems – for a review, see e.g. Ref. [6].

The simplest way to generate inflation is to minimally
couple Einstein gravity to a scalar field (the inflaton) with
a self-interaction potential. There exist a plethora of sin-
gle field inflationary models that can be classified accord-
ing to the features of the potential [7]. Other alternatives
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include more scalar fields, as in the curvaton mechanism
[8–10].

Nevertheless, the most recent data of the Planck satel-
lite exclude non-Gaussian perturbations and give a striking
experimental confirmation of the simplest single-field infla-
tionary scenario [11–15], and in particular the Starobinsky
model [1,17,18], or more in general, the so-called cosmolog-
ical attractors [19–22], characterized by a “red” power spec-
trum for primordial perturbations and a small tensor/scalar
amplitude ratio.

The accuracy of the observational data concerning the
power spectrum of primordial quantum fluctuations rep-
resents an efficient guide to select inflation models. But,
despite the recent remarkable improvements, the impor-
tant questions about the microscopic origin of the infla-
ton and about the physics before inflation are still unan-
swered. This lack of knowledge does not allow one to single
out a unique inflationary model, i.e. a specific form of the
potential. In fact, although the Planck data can be used to
strongly constrain the inflationary model, mainly through
the values of the spectral index ns and the tensor/scalar
amplitude ratio r , they are not sufficient to select a unique
model.

In view of this situation, it is natural to look for hints
coming from somewhere else in gravitational physics, for
instance supergravity and string theory [23–26].

In recent times, minimally coupled Einstein-scalar grav-
ity has been intensively investigated for holographic appli-
cations [27–32]. A class of Einstein-scalar gravity models
of particular interest are those allowing for solitonic solu-
tions interpolating between anti de Sitter (AdS) vacua and
domain wall (DW) solutions with scale-covariant symme-
tries. The holographically dual QFT has scaling symmetries,
which have a nice interpretation in terms of features of phase
transitions in condensed matter systems (hyperscaling viola-
tion). These solitonic solutions are naturally related to cos-
mological solutions by the so-called DW/cosmology duality,
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a sort of analytic continuation, which maps the soliton in a
FRW solution [33–35].

The cosmological duals of solitons which interpolate
between an AdS spacetime at large distances of the bulk
theory (the ultraviolet of the dual QFT) and a scale-covariant
geometry at small distances in the bulk theory (the infrared
of the dual QFT) are natural candidates for describing dark
energy [31]. On the other hand, the cosmological duals of
solitons interpolating between AdS in the infrared and scale-
covariant geometries in the ultraviolet [28,29] may be rele-
vant for describing inflation. It has been shown that the cos-
mological solutions of this class of models generate infla-
tion as the scalar field rolls down from a de Sitter (dS)
spacetime [36]. In this context, inflation can be described
as an instability of the dS spacetime rolling down to a
scaling solution. Such models are known as hilltop mod-
els [37,38] and inflation is generated by a scalar field rolling
off from a local maximum to the potential. In such a sce-
nario, since inflation starts from a local maximum, the slow-
roll conditions can be satisfied more easily. On the exper-
imental side, hilltop models are a subset of the small-field
models, which are characterized by a potential with neg-
ative curvature. This behaviour of the potential is typical
of spontaneous symmetry breaking and phase transitions,
e.g. quartic potentials, natural inflation models [39] and
Coleman–Weinberg potentials [40]. Although hilltop mod-
els have been widely used to generate cosmological infla-
tion, in most of them the potential is constructed using pow-
ers of the the inflaton field. To our knowledge, little atten-
tion has been given to hilltop models in which the poten-
tial is built as a combination of two exponentials. In this
paper we discus the most general, holographically moti-
vated, hilltop model, for which the potential can be writ-
ten as the sum of two exponentials. We will show that
although near the maximum our model has the well-known
behaviour of hilltop models with a parabolic potential, at
late times it gives predictions of the spectral parameters of
the CMB radiation, which are specific for a two-exponential
potential.

The structure of the paper is as follows. In Sect. 2 we gen-
eralize the model proposed in Ref. [36] and we construct the
most general potential given by the sum of two exponentials.
We show that the minimally coupled Einstein-scalar gravity
theory constructed in this way is the cosmological version of
a two-scale generalization of the holographic models of Refs.
[28,29]. In Sect. 3 we discuss the cosmological solution of
our model. Inflation and the spectral parameters of the power
spectrum of primordial perturbations are discussed in Sect.
4 using the slow-roll approximation. In Sect. 5 we compare
the theoretical predictions of our model with observations.
Finally, in Sect. 6 we state our conclusions and in Appendix
A we briefly repeat our calculations for a model in which the
potential has a constant additive term.

2 The model

The simplest way to fuel inflation into a cosmological sce-
nario is to couple, minimally, Einstein gravity to a scalar
field φ with an appropriate self-interaction potential V (φ):

A =
∫

d4x
√−g

(
m2

P

16π
R − 1

2
(∂φ)2 − V (φ)

)
. (1)

In this paper we focus on inflation generated by a scalar
field rolling off from a maximum of V . This class of models
is very natural from a physical point of view because inflation
can be thought of just as an instability of the dS spacetime,
generated by a scalar perturbation.

Our first goal is to construct the general form of the poten-
tial belonging to this class. Without loss of generality we can
assume that the maximum of the potential occurs at φ = 0,
so that the basic necessary conditions to be imposed on the
potential read

V (0) > 0, V ′(0) = 0, V ′′(0) < 0. (2)

Obviously, the previous conditions are very loose and do not
select any specific form of V (φ). We further constrain the
form of the potential by requiring it to be a linear combina-
tion of two exponentials. This is a rather strong assumption,
but it is supported by several arguments. Exponential poten-
tials for scalar field appear quite generically in a variety of
situations: compactification of extra dimensions, f (R) grav-
ity theories (which on-shell are equivalent to Einstein-scalar
gravity) and low-energy effective string theory. The double
exponential potential appears in the context of dimensional
reduction of gravity with non-trivial four-form flux on a max-
imally symmetric internal space – see e.g. Ref. [41] and ref-
erences therein. Moreover, exponential potentials have been
shown to be the source of brane solutions of Einstein-scalar
gravity called DWs [27–30], which can be analytically con-
tinued into FRW cosmological solutions [35,36].

We are therefore led to consider the following general
form of the inflation potential1:

V (φ) = �2
(
a1e

b1μφ + a2e
b2μφ

)
, (3)

where � and μ are some length scales, whose physical mean-
ing will be clarified in short, and a1,2, b1,2 are some dimen-
sionless constants characterizing the model. They are con-
strained by Eq. (2), giving

a1 + a2 > 0, a1b1 = −a2b2, a1b
2
1 + a2b

2
2 < 0. (4)

Modulo trivial symmetries interchanging the two expo-
nentials in the potential, the most general solution of the
previous equations is a1 > 0, a2 < 0, b2 > 0, b1 > 0 and

1 One could also consider a potential with an added constant term. This
case will be discussed in Appendix A.
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Fig. 1 Plot of the potential (5) for the following values of the param-
eters in Planck units: � = 2, β = 3/4, μ = √

3/3

a2/a1 = −β2, where we have defined a new dimension-
less parameter β2 ≡ b1/b2 < 1. The parameter rescaling
�2 → 2�2/(3a2γ ), μ → √

3/(b1b2) μ brings the potential
in the form

V (φ) = 2�2

3γ

(
e
√

3βμφ − β2e
√

3μφ/β
)

, (5)

where γ ≡ 1 − β2. The potential (5) is a two-scale general-
ization of the model proposed in Refs. [28,29], to which
it reduces for the particular value of the parameter μ =
4
√

π lP . The cosmology of the latter model has been inves-
tigated in Ref. [36].2 We will see in the next section that for
generic values of the parameter μ �= 4

√
π lP the cosmolog-

ical equations resulting from the model (5) do not give rise
to an exactly integrable system.

The potential (5) is invariant both under the transforma-
tion β → 1/β, which corresponds to interchanging the two
exponentials in the potential (5) and under the transforma-
tion β → −β, φ → −φ. These symmetries allow us to
limit our consideration to 0 < β < 1. The two limiting cases
β = 0, 1 correspond, respectively, to a pure exponential and
to a potential behaving at leading order as

V = (2�2/3)
(

1 − √
3μφ

)
e
√

3μφ. (6)

The potential V (φ) has a maximum at φ = 0 correspond-
ing to an unstable dS solution with V (0) = (2/3)�2 and a
corresponding tachyonic excitation, the inflaton.

The potential V (φ) is depicted in Fig. 1 for selected values
of the parameters �, β and μ.

One can therefore use this model to describe inflation as
generated by an unstable dS solution. Inflation starts as a
quantum fluctuation of the dS solution and is initially driven
by a tachyonic excitation of the dS spacetime and proceeds as
the scalar field rolls off from the maximum of the potential.

2 Notice that our notation differs from that of Ref. [36] for the units
used and for a rescaling of the parameter μ by a factor of 2.

2.1 Physical scales

Besides the Planck length lP = 1/mP , the model is paramet-
rized by the two length scales �−1/2 and μ and by the dimen-
sionless parameter β. The presence of two length scales is
a characteristic feature of small-field models of inflation. In
the present context the two scales have a simple interpreta-
tion in terms of geometric properties of the function V (φ).
They give, respectively, the height and the curvature of the
φ = 0 maximum of the function V (φ). Correspondingly,
�−1/2 and μ determine the two physical scales relevant for
inflation: the vacuum energy EV at the beginning of inflation
and the inflaton mass squared M2

I . We have

M2
I = V ′′(0) = −2�2μ2 = −32π

3

λ4

h2 m
2
P , (7)

EV = [V (0)]1/4 = (2/3)1/4λmP , (8)

where we have introduced the two dimensionless parameters
h−1 and λ,

h = 4

√
π

3

(
lP
μ

)
, λ = �1/2

mP
, (9)

representing the measures of μ and �1/2 in Planck units.
Conversely, β is a purely dimensionless parameter and

plays a role which is drastically different from λ and h. It is
not linked to any physical scale of the model but quantifies the
deviation of the potential from a pure exponential behaviour
attained for β near 0.

In the following we use instead of the negative quantity

M2
I , the inflaton mass defined as mI =

√
−M2

I .

3 Cosmological solutions

The cosmology of our model can be investigated using the
usual FRW parametrization of the metric

ds2 = −dt2 + a(t)2dS2
(3), (10)

The dS spacetime with constant inflaton is an exact solu-
tion of cosmological equations. The dS solution has the usual
exponential form, with the scale factor given by

a = e8lP
√

π�t/3. (11)

This solution describes a scalar field sitting forever at the
maximum of the potential, generating an exact exponential
expansion of the universe, i.e. we have never ending inflation.

The most interesting cosmological solutions are those
describing inflation lasting for a finite amount of time. In
this case the scalar rolls off from the maximum of V , gener-
ating a quasi-exponential expansion of the universe as long as
the potential energy of the scalar dominates the kinetic one.
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This kind of solutions would be the cosmological counter-
part of the solitonic solutions interpolating between an AdS
spacetime in the infrared and a DW in the ultraviolet [28,29].

Searching for these solutions, following Ref. [36], one can
try to find exact cosmological solutions by using a different
parametrization for the time variable and linear combinations
of the fields in such way that the equations for the scalar field
and for the scale factor decouple. However, one can easily
realize that the decoupling works only for the particular value
of the parameter μ = 4

√
π lP (corresponding to h = 1/

√
3).

For this value of μ the Einstein-scalar gravity models give
rise to exactly integrable models both in the case of static
(brane) [28,29] and cosmological solutions [36]. In the static
case we have solitonic solutions interpolating between an
AdS spacetime in the infrared and a DW in the ultravio-
let [28–30]. Analogously, in the cosmological case we have
exact solutions which can be used to model inflation [36].

For generic values of the parameter μ the Einstein-scalar
system does not decouple, is not exactly integrable and a
cosmological solution cannot be found in analytic form.

Approximate solutions of the field equations can be found
for some limiting cases. Of particular interest is the case of
small β, for which the potential (5) behaves exponentially,

V (φ) ∼ −2β2�2

3γ
e
√

3μφ/β, (12)

the system can be solved analytically and we have scal-
ing (power-law) solutions, which are obtained from scale-
covariant (DW) solutions [27] using the transformation t →
ir, r → i t . In the gauge (10) this scaling solution has the
form

a ∝ th
2β2

, e2φ ∝ t
− hβ

lP
√

π . (13)

4 Inflation and slow-roll approximation

Lacking exact solutions to investigate the cosmology of our
model (5), we work in the slow-roll approximation [42]. In
this regime the potential energy of the scalar field domi-
nates over the kinetic energy and the universe has a quasi-
exponential accelerated expansion as the scalar field slowly
rolls off from the maximum of the potential. Following the
usual approach, we introduce the slow-roll parameters ε

and η,

ε = m2
P

16π

(
V ′

V

)2

, η = m2
P

8π

V ′′

V
− ε. (14)

Necessary conditions for the slow-roll approximation to be
valid are ε, |η| 	 1. We have inflation as long as 0 � ε < 1.
The parameter ε is zero on the maximum of the potential
(φ = 0) and the solution is exactly dS, whereas inflation
ends when ε = 1.

The potential (5) is not a monotonic function of the scalar
field φ: it goes to zero as φ → −∞, has a maximum at φ = 0
and crosses the axis for φ = φ∗ ≡ − 2β ln β√

3γμ
; V → −∞ as

φ → ∞ (see Fig. 1). Since slow-roll inflation cannot occur
for a negative inflaton potential, our model is valid up to
φ = φ∗ and the potential must be modified for values of φ

greater than φ∗. We have then two alternative branches that
we can use to generate inflation, i.e. I: 0 � φ � φ∗ and
II: −∞ < φ � 0. In the following, we investigate the first
branch and in Sect. 5.3 we briefly discuss branch II and show
that it cannot be compatible with observations.

Let us now introduce the variable

Y = e
√

3γμφ/β . (15)

In this parametrization the branch under consideration cor-
responds to 1 � Y � Y∗ ≡ 1/β2.

As a function of Y , the slow-roll parameters ε and η take
the form

ε = β2

h2

(
1 − Y

1 − β2Y

)2

, η = 2

h2

β2 − Y

1 − β2Y
− ε. (16)

The slow-roll parameter ε is zero for Y = 1, whereas 0 <

ε < 1 for 1 < Y < Y0, where

Y0 = β + h

β + β2h
. (17)

For Y = Y0 we have ε = 1 and the universe exits inflation.
One can easily check that Y0 < 1/β2, so that during infla-
tion we always have 1 � Y � 1/β2 and we can easily satisfy
the first slow-roll condition ε 	 1. On the other hand, the
parameter η, which gives a measure of the curvature of the
potential, is not small, but we have η = O(h−2). It follows
that the simplest way to satisfy the second slow-roll condi-
tion, |η| 	 1, is to choose

h � 10, (18)

in this way we can have η ≈ 10−2 as well as ε ≈ 10−2.
As already noted, the model discussed in Ref. [36] does not
satisfy Eq. (18) because it is characterized by h = 1/

√
3.

In the slow-roll regime, the universe expands quasi-expo-
nentially and the number of e-folds N = − log a, which
determines the duration of inflation, is determined by

N = −
∫

dt H = 8π

m2
P

∫ φb

φe

dφ
V

V ′ , (19)

where φe,b are, respectively, the inflaton-field values at the
end and beginning of inflation and H = ȧ/a is the Hubble
parameter.

Using the definition (15) and the expression Y0 for Y at the
end of inflation, Eq. (19) gives the function Y (N ) in implicit
form,
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Y 1/γ

Y − 1
= e2N/h2

A, A := β

γ

(
β + 1

h

) (
β + h

β + β2h

)1/γ

.

(20)

In the case of the dS solution (11) the scalar field remains
constant (the inflaton sits on the top of the potential), and we
have N = ∞ (eternal inflation). Obviously this configuration
is highly unstable. A small perturbation of the scalar field
starts the slow roll of the inflaton along the slope and a finite
value of N is generated. If this fluctuation is small enough
we can solve approximately Eq. (20) for Y near Y = 1. We
get at leading order,

Y = 1 + A−1e−2N/h2
. (21)

One can easily check that 0 � A−1 � 1 with A−1 → 0
for β → 1 and A−1 → 1 for β → 0. Moreover, in the
range 0 � β � 1, A−1(β, h) is a monotonically decreasing
function of β which depends very weakly on h. It follows
immediately that Eq. (21) is a good approximation for γ

not too close to 0, whenever e−2N/h2 	 1. When γ ≈ 0
the approximation (21) holds irrespectively of the value
of N .

4.1 Perturbations and spectral parameters

One of the most striking predictions of inflation concerns
the spectrum of tensor and scalar perturbations in the early
universe [43–47]. During inflation the horizon shrinks and
the primordial perturbations, which were causally connected
are redshifted to superhorizon scales. Conversely, in the
matter–radiation dominated era the horizon grows, the per-
turbations fall back in the horizon so that they can act as
seeds for structure formation and anisotropy in the uni-
verse. The information as regards these primordial fluc-
tuations is therefore encoded in the anisotropies of the
CMB.

Primordial quantum fluctuations are described in terms of
two-point correlation functions for scalar and tensor modes
in Fourier space and the associated power spectrum. In the
slow-roll approximation, the power spectrum has a power-
law behaviour and is usually characterized by four param-
eters: the amplitudes of scalar perturbations PR , the ratio
r of the amplitudes of tensor and scalar perturbations and
their spectral indices ns and nT . These parameters are func-
tions of the number of e-folds N and can be expressed in
terms of the potential V and the slow-roll parameters (16) as
follows:

P1/2
R (N ) = 4

√
24π

3m3
P

V (φ(N ))3/2

V ′(φ(N ))
, (22a)

r(N ) = −8nT (φ(N )) = 16ε(φ(N )), (22b)

ns(N ) = 1 − 4ε(φ(N )) + 2η(φ(N )), (22c)

where φ(N ) is defined by Eq. (19).
Using Eqs. (15) and (16) we can express the spectral

parameters as a function of Y (N ):

P1/2
R (N ) = 4hλ2

3β
√

γ

[
1 − β2Y (N )

]3/2

1 − Y (N )
Y (N )β

2/2γ , (23a)

r(N ) = 16β2

h2

(
1 − Y (N )

1 − β2Y (N )

)2

, (23b)

ns(N ) = 1 − 6β2

h2

[
1 − Y (N )

1 − β2Y (N )

]2

+ 4

h2

β2 − Y (N )

1 − β2Y (N )
,

(23c)

where Y (N ) is defined, implicitly, by Eq. (20).
For e−2N/h2 	 1 we can use the approximate expansion

for Y given by Eq. (21) and we get, at leading order in the
e−2N/h2

expansion,

P1/2
R (N ) = 4γ A

3β
hλ2e2N/h2

, (24a)

r(N ) =
(

4β

Aγ h

)2

e−4N/h2
, (24b)

ns(N ) = 1 − 4

h2

(
1 + 1 + β2

Aγ
e−2N/h2

)
. (24c)

One important feature of Eqs. (24a), (24b) and ( 24c) is the
exponential dependence on N . This must be compared with
the typical behaviour of the Starobinsky model and more in
general of cosmological attractor models, where one typi-
cally obtains r ∝ 1/N 2 and ns − 1 ∝ −1/N – see e.g. Ref.
[22] and references therein.

It is easy to check that the exponential behaviour of the
spectral parameters (24a), (24b) and (24c) is an universal fea-
ture of hilltop models characterized by a quadratic maximum.
It is a consequence of the local behaviour of the potential near
φ = 0. In fact Eqs. (24a), (24b) and (24c) can also be obtained
by considering a potential V = 2�2/3 + M2

I φ
2/2, with M2

I
given by Eq. (7). This is consistent with the fact that for N/h2

very large, inflation occurs near to the maximum of the poten-
tial, where V can be approximated by the previous form.

Notice that the condition h 
 1 alone does not does
not guarantee the potential to be well approximated by the
parabolic one. Since we need at least h � 10, such limit is
obtained for N 
 60. For instance for h = 10 and N = 60
we have e−2N/h2 ≈ 0.54. It follows that the approximate
expressions (24a), (24b) and (24c) can only be used in a
regime of very large N , for which we do not have a direct
access to observations, and, therefore, in the following we
will be using expressions (23a), (23b) and (23c).
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5 Comparison with observation

In this section we compare the theoretical results of our
model for the spectral parameters PR , r and ns with the most
recent results of observations, in particular the joint analysis
of BICEP2/Keck Array and Planck data [14].

The spectral parameters are functions of the number of the
e-folds N and depend on the three dimensionless parameters
λ, h and β. Because λ enters only in the normalization of the
power spectrum PR , whereas r and ns depend on h and β

only we will use the following strategy: we will first deter-
mine using Eqs. (23b) and (23c) and the experimental results
for r and ns , the allowed range of the parameters h and β

for a given value of e-folds N . We will then use Eqs. (23a)
and the experimental results for PR to determine the corre-
sponding values of the parameter λ. Finally we use Eqs. (7)
and (8) to determine the vacuum energy EV and the inflaton
mass mI .

For r , ns and PR we use the most recent results [14], i.e.
r < 0.05, ns = 0.965 ± 0.006 and P1/2

R ≈ 10−5. Since the
perturbations we are observing today with momentum of the
order of the horizon radius exited the horizon during inflation
at N = [48, 60], we will consider only values of N in this
range.

The calculations have to be performed numerically be-
cause the function Y (N ) appearing in Eqs. (23a), (23b) and
(23c) is not known, but it is defined implicitly by Eqs. (20).

As we said in the previous section, a possible way to
avoid numerical computations is to work in a regime where
e−2N/h2 	 1 and then Eqs. (24a), (24b) and (24c) hold.
But unfortunately, these expressions are valid in the large N
regime, not accessible to observations.

The results of our numerical computations are shown in
the two sets of density plots in Figs. 2 and 3. Once we
have chosen the value of N , the coloured region in such
plots represent the range of values of β and h for which
we have values of r and ns compatible with the experimental
measurements.

Note that the allowed region of parameters (β, h) is quite
independent from N , at least for N in the range [48, 60].

5.1 Spectral parameters

In Fig. 2 we show the numerical results obtained from Eqs.
(23b) and (23c). We plot the tensor/scalar ratio r (left) and
the spectral index ns (right) as functions of β and h for four
selected values of N = 48, 52, 56, 60. The corresponding
values of r and ns are given in terms of the colour scale
shown on the right of every plot.

In general, higher values of ns correspond to higher values
of h. Moreover, when β is not too close to zero ns depends
very weakly on β. For β close to zero h is allowed to vary

from h ∼ 15 up to h ∼ 1000 and farther. As β increases the
allowed range of h shrinks monotonically and is restricted to
[15, 50] for β close to 1.

The tensor/scalar ratio r shows a different pattern. For
β close to zero it depends strongly on h. Whereas for val-
ues of β not too close to zero, it depends weakly on both
parameters β and h. Also in this case we observe the mono-
tonic shrinking of the allowed values of h for growing values
of β.

5.2 Vacuum energy and inflaton mass

In Fig. 3 we show the numerical results obtained from Eqs.
(7) and (8). We plot the vacuum energy EV (left) and the
inflaton mass mI (right) as functions of β and h, again for
N = 48, 52, 56, 60. The corresponding values of EV andmI

are given in terms of the colour scale shown on the right of
every plot.

Because we do not have stringent experimental bounds on
EV and mI , we are interested just in the order of magnitude
of these quantities. We observe that the order of magnitude of
EV depends very weakly on h and N . Also the dependence
on β is quite weak, as long as we take values of β not too
close to 0. Thus, for β not too close to 0, the vacuum energy
remains about 10−4 to 10−5 Planck masses.

On the other hand, the inflaton mass is more sensitive to β.
Its order of magnitude is between 10−7 and 10−8 Planck
masses but for values of β near to 0 we have smaller values
of mI .

5.3 Other branch of the potential

Until now we have considered the slow-roll regime for branch
I of the potential, i.e. 0 � φ < ∞. Let us briefly consider
branch II, i.e. −∞ < φ � 0. Investigation of this branch is of
particular interest because the most interesting cosmological
solutions one can obtain for the exact solvable model with
h = 1/

√
3 are defined in branch II of the potential [36].

In terms of the parametrization (15), region II corresponds
to 0 < Y � 1. The slow-roll parameters ε and η are still given
by Eq. (16) but now the condition for inflation ε � 1 requires

β − h

β(1 − βh)
� Y � 1,

which can be satisfied only if h < β. It follows that h =
O(1). One can easily see from Eqs. (16) and (23b, 23c) that
these values of h are not only incompatible with the slow-roll
condition |η| 	 1, but are also completely ruled out by the
experimental constraints on ns .

123



Eur. Phys. J. C (2016) 76 :483 Page 7 of 11 483

Fig. 2 Region plots for the
tensor/scalar ratio r (left) and
the spectral index ns (right) as
functions of the parameters β

and h, for selected values of the
number of e-folds N . The values
of r and ns are given in terms of
the scale of colour shown on the
right of every plot
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Fig. 3 Region plots for the
vacuum energy EV (left) and the
mass of the inflaton mI (right),
in Planck units, as functions of
the parameters β and h, for the
selected values of the number of
e-folds N . The values of EV and
mI are given in terms of the
colour scale shown on the right
of every plot
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6 Conclusion

In this paper we have constructed the most general Einstein-
scalar gravity model in which the potential is given by the
sum of two exponentials and inflation is generated by a scalar
field φ rolling off from the de Sitter maximum of the potential
V (φ). These models are the cosmological counterparts of
holographic models used to describe hyperscaling violation
in the ultraviolet [28,29]. We have investigated inflation in
the slow-roll approximation. Our model predicts inflation
at energy scales of four to five orders of magnitude below
the Planck scale, whereas the inflaton mass, at the onset of
inflation, turns out to be seven to eight orders of magnitude
smaller than the Planck mass. We have shown that our model
reproduces correctly, for a wide range of its parameters the
most recent experimental data for the power spectrum of
primordial perturbations.

The proposed inflationary model belongs to the class of
models in which the potential has a dS regime. This class of
models includes the Starobinsky model and, more generally,
the cosmological attractor models. Our model shares with
those several features: (1) the potential is built as a com-
bination of exponentials, it predicts (2) an energy scale of
inflation four order of magnitude below the Planck mass, (3)
a “red” power spectrum and (4) a small tensor/scalar ampli-
tude ratio. On the other hand, our model differs from the
Starobinsky one in a crucial aspect: inflation is not gener-
ated, as in Starobinsky model, by a scalar field rolling off
from an asymptotically constant potential, but rather from a
local maximum of the potential. This property allows us to
interpret the inflaton as a tachyonic excitation of the dS vac-
uum and to introduce a second scale of energy in the theory,
the mass scale mI , which is 7–8 order of magnitude below
the Planck mass. This hierarchy of scales opens the intriguing
possibility that the origin of the inflaton could be explained
by the physics at energy scales 7–8 order of magnitude below
the Planck mass.

Our model belongs to the general class of hilltop models
and shares with the latter the local behaviour near the max-
imum of the potential. However, in our model the potential
that is constructed has the sum of two exponentials, there-
fore the global behaviour of our inflationary model is sensibly
different from usual hilltop models constructed using powers
of the inflaton. In particular, this results in different predic-
tions for the spectral parameters r and ns in the region of the
e-folds N accessible to observations.

We close with a brief comment about the reheating phase
and the transition from inflation to the radiation–matter dom-
inated era. During reheating the energy is transferred from
the inflaton to matter fields. This means that there must exist
a region in which the kinetic energy of the inflaton dominates
over its potential energy, e.g. a local minimum of the poten-
tial. It is evident from Fig. 1 that the potential (5) does not

have such a region and hence it cannot be used to describe
reheating. Thus, in order to describe reheating our poten-
tial must be matched with continuity at the end of inflation
with some other branch of a potential exhibiting a local mini-
mum. This can be done very easily. In the Y -parametrization
the point Y0 given by Eq. (17), at which the universe exits
inflation, is always on the left of the point Y∗ = 1 at which
V cuts the horizontal axis, i.e. we have V (Y0) > V (Y∗) = 0
and Y0 < Y∗. Since the slow-roll approximation is badly
broken at V = 0, the matching with the branch of the poten-
tial with the local minimum must be performed at a point
Y0 < Y < Y∗.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

Appendix A: Cosh φ model

The model (5) is the most general form of the potential one
can obtain imposing conditions (2) and assuming that V is
built as a combination of two exponentials without an additive
constant term. When such a constant term (which we call c)
is present, only the first equation in (4) has to be modified
and becomes c + a1 + a2 > 0, whereas the second and
third equations remain unchanged. A general solution of the
ensuing system is given by a1 = −a2(b2/b1), a1, a2 < 0,
b1 > 0, b2 < 0 and c > −a1 − a2.

A simple example of this class of potentials is given by

V (φ) = �2 (2 − cosh μφ) . (A.1)

This potential gives a further example of inflation generated
by an unstable de Sitter vacuum.3

The potential (A.1) has a maximum at φ = 0, correspond-
ing to an unstable de Sitter solution with V (0) = �2, and a
corresponding tachyonic excitation. For μφ 
 1, the poten-
tial behaves as a pure exponential. The vacuum energy and
inflaton mass, expressed in terms of h and λ, defined as in
Eqs. (7) and (8), are

M2
I = −16π

3

λ4

h2 m
2
P , EV = λmP . (A.2)

3 Notice that a similar potential has been investigated in the context
of constant-roll inflation, which reduces to slow-roll inflation when the
rate of roll is small – see Ref. [48] and references therein.
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Fig. 4 Region plots for a the tensor/scalar ratio r , b the spectral index
ns , c the vacuum energy EV and d the mass of the inflaton mI as func-
tions of the scale parameter h and the number of e-folds N . EV and mI

are in Planck masses. The values of r , ns , EV and mI are given in terms
of the colour scale shown below every plot

Introducing the variable Y = eμφ , the slow-roll parame-
ters ε and η take the form

ε = 1

3h2

(
Y 2 − 1

Y 2 − 4Y + 1

)2

, η = 2

3h2

Y 2 + 1

Y 2 − 4Y + 1
− ε.

(A.3)

The slow-roll parameter ε is zero on the maximum of the
potential (Y = 1). Moreover, we have 0 � ε � 1 for 1 �
Y � Y0, where

Y0 = 2
√

3h + √
1 + 9h2

√
3h + 1

. (A.4)

For Y < Y0 we have inflation, whereas for Y � Y0 we have
ε � 1 and the universe exits inflation. One can easily check
that during inflation we always have 1 � Y < 2 + √

3.
Conversely, the parameter η, which gives a measure of the
curvature of the potential, is not small in general, but it is of
order h−2.

Also for these models the simplest way to satisfy the usual
slow-roll conditions for inflation, ε, |η| 	 1, is to choose
h � 10, so that η ≈ 10−2 as well as ε ≈ 10−2.

The number of e-folds N is given by

(1 + Y )

(Y (Y − 1))1/3 = A e2N/9h2
, A := 1 + Y0

(Y0(Y0 − 1))1/3 .

(A.5)

In the slow-roll approximation the spectral parameters
P1/2
R , r and ns expressed in terms of N are

P1/2
R (N ) = 2hλ2

(
4Y − Y 2 − 1

)3/2

(Y 2 − 1)Y 1/2 (A.6a)

r(N ) = 16ε(N ) = 16

3h2

(
Y 2 − 1

4Y − Y 2 − 1

)2

, (A.6b)

ns(N ) = 1 − 4ε(N ) + 2η(N )

= 1 − 3

8
r(N ) + 4

3h2

Y 2 + 1

Y 2 − 4Y + 1
, (A.6c)

where Y = Y (N ) is defined implicitly as a function of N by
Eq. (A.5).

Figure 4 shows that there exist values of h for which the
model correctly reproduces the results of observation [14]
with N = [48, 60]. Moreover, it predicts the vacuum energy
to be four orders of magnitude below the Planck scale and
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the mass of the inflaton seven orders of magnitude smaller
than the Planck mass.
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