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1 Introduction and preliminaries
Let E be a real Banach space. Let UE = {x ∈ E : ‖x‖ = } be the unit sphere of E. E is said
to be smooth iff limt→

‖x+ty‖–‖x‖
t exists for each x, y ∈ UE . It is also said to be uniformly

smooth iff the above limit is attained uniformly for x, y ∈ UE . E is said to be strictly convex
iff ‖ x+y

 ‖ <  for all x, y ∈ E with ‖x‖ = ‖y‖ =  and x �= y. It is said to be uniformly convex iff
limn→∞ ‖xn – yn‖ =  for any two sequences {xn} and {yn} in E such that ‖xn‖ = ‖yn‖ = 
and limn→∞ ‖ xn+yn

 ‖ = .
Recall that the normalized duality mapping J from E to E∗ is defined by

Jx =
{
f ∗ ∈ E∗ :

〈
x, f ∗〉 = ‖x‖ = ∥∥f ∗∥∥},

where 〈·, ·〉 denotes the generalized duality pairing. It is well known that if E is uniformly
smooth, then J is uniformly norm-to-norm continuous on each bounded subset of E. It is
also well known that E is (uniformly) smooth if and only if E∗ is (uniformly) convex.
In what follows, we use ⇀ and → to stand for the weak and strong convergence, re-

spectively. Recall that E enjoys the Kadec-Klee property iff for any sequence {xn} ⊂ E, and
x ∈ E with xn ⇀ x, and ‖xn‖ → ‖x‖, then ‖xn – x‖ →  as n → ∞. It is well known that if
E is a uniformly convex Banach space, then E enjoys the Kadec-Klee property.
Let E be a smooth Banach space. Consider the functional defined by

φ(x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖ ∀x, y ∈ E.

Observe that, in a Hilbert spaceH , the equality is reduced to φ(x, y) = ‖x–y‖, x, y ∈H . As
we all know, if C is a nonempty closed convex subset of a Hilbert spaceH and PC :H → C
is the metric projection of H onto C, then PC is nonexpansive. This fact actually charac-
terizes Hilbert spaces and, consequently, it is not available in more general Banach spaces.
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In this connection, Alber [] recently introduced a generalized projection operator �C in
a Banach space E, which is an analogue of the metric projection PC in Hilbert spaces. Re-
call that the generalized projection �C : E → C is a map that assigns to an arbitrary point
x ∈ E the minimum point of the functional φ(x, y), that is, �Cx = x̄, where x̄ is the solution
to the minimization problem φ(x̄,x) =miny∈C φ(y,x). Existence and uniqueness of the op-
erator �C follows from the properties of the functional φ(x, y) and strict monotonicity of
the mapping J . If E is a reflexive, strictly convex and smooth Banach space, then φ(x, y) = 
if and only if x = y; for more details, see [] and the references therein. In Hilbert spaces,
�C = PC . It is obvious from the definition of a function φ that

φ(x, y) = φ(x, z) + φ(z, y) + 〈x – z, Jz – Jy〉, ∀x, y, z ∈ E, (.)

and

(‖x‖ – ‖y‖) ≤ φ(x, y)≤ (‖y‖ + ‖x‖), ∀x, y ∈ E. (.)

Let C be a nonempty subset of E, and let T : C → C be a mapping. In this paper, we
use F(T) to stand for the fixed point set of T . T is said to be closed iff for any sequence
{xn} ⊂ C such that limn→∞ xn = x and limn→∞ Txn = y, then Tx = y. T is said to be
asymptotically regular on C iff for any bounded subset K of C,

lim sup
n→∞

{∥∥Tn+x – Tnx
∥∥ : x ∈ K

}
= .

Recall that a point p in C is said to be an asymptotic fixed point of T iff C contains a
sequence {xn} which converges weakly to p such that limn→∞ ‖xn – Txn‖ = . The set of
asymptotic fixed points of T will be denoted by F̃(T). T is said to be relatively nonexpan-
sive iff

F̃(T) = F(T) �= ∅, φ(p,Tx) ≤ φ(p,x), ∀x ∈ C,∀p ∈ F(T).

T is said to be relatively asymptotically nonexpansive iff

F̃(T) = F(T) �= ∅, φ
(
p,Tnx

) ≤ ( +μn)φ(p,x), ∀x ∈ C,∀p ∈ F(T),∀n≥ ,

where {μn} ⊂ [,∞) is a sequence such that μn →  as n→ ∞.

Remark . The class of relatively asymptotically nonexpansive mappings which is an ex-
tension of the class of relatively nonexpansivemappings was first considered in [] and [].

Recall that T is said to be quasi-φ-nonexpansive iff

F(T) �= ∅, φ(p,Tx) ≤ φ(p,x), ∀x ∈ C,∀p ∈ F(T).

Recall that T is said to be asymptotically quasi-φ-nonexpansive iff there exists a se-
quence {μn} ⊂ [,∞) with μn →  as n→ ∞ such that

F(T) �= ∅, φ
(
p,Tnx

) ≤ ( +μn)φ(p,x), ∀x ∈ C,∀p ∈ F(T),∀n≥ .
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Remark . The class of asymptotically quasi-φ-nonexpansive mappings, which is an
extension of the class of quasi-φ-nonexpansive mappings, was considered in [, ]; see
also [].

Remark . The class of quasi-φ-nonexpansive mappings and the class of asymptotically
quasi-φ-nonexpansive mappings are more general than the class of relatively nonexpan-
sive mappings and the class of relatively asymptotically nonexpansive mappings. Quasi-
φ-nonexpansivemappings and asymptotically quasi-φ-nonexpansivemappings do not re-
quire the restriction F(T) = F̃(T).

Remark . The class of quasi-φ-nonexpansive mappings and the class of asymptotically
quasi-φ-nonexpansive mappings are generalizations of the class of quasi-nonexpansive
mappings and the class of asymptotically quasi-nonexpansivemappings in Banach spaces.

Recall that T is said to be generalized asymptotically quasi-φ-nonexpansive iff F(T) �= ∅,
and there exist two nonnegative sequences {μn} ⊂ [,∞) with μn → , and {ξn} ⊂ [,∞)
with ξn →  as n → ∞ such that

φ
(
p,Tnx

) ≤ ( +μn)φ(p,x) + ξn, ∀x ∈ C,∀p ∈ F(T),∀n≥ .

Remark . The class of generalized asymptotically quasi-φ-nonexpansive mappings []
is a generalization of the class of generalized asymptotically quasi-nonexpansivemappings
in the framework of Banach spaces which was introduced by Agarwal et al. [].

Let F be a bifunction from C ×C to R, where R denotes the set of real numbers. Recall
the following equilibrium problem. Find p ∈ C such that F(p, y) ≥ , ∀y ∈ C. We use EP(F)
to denote the solution set of the equilibrium problem. Given a mapping Q : C → E∗, let

F(x, y) = 〈Qx, y – x〉, ∀x, y ∈ C.

Then p ∈ EP(F) if and only if p is a solution of the following variational inequality. Find p
such that

〈Qp, y – p〉 ≥ , ∀y ∈ C.

Numerous problems in physics, optimization and economics reduce to finding a solu-
tion of the equilibrium problem; see [–] and the related references therein. In [],
Kim studied a sequence {xn} which is generated in the following manner:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E, chosen arbitrarily,

C = C,

x = �Cx,

yn = J–(αnJxn + ( – αn)JTnxn),

un ∈ C such that F(un, y) + 
rn 〈y – un, Jun – Jyn〉 ≥ , ∀y ∈ C,

Cn+ = {z ∈ Cn : φ(z,un) ≤ φ(z,xn) + (kn – )Mn},
xn+ = �Cn+x,

http://www.journalofinequalitiesandapplications.com/content/2013/1/425
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where Mn = sup{φ(z,xn) : z ∈ F} for each n ≥ , {αn} is a real sequence in [, ], {rn} is a
real sequence in [a,∞), where a is some positive real number. In a uniformly smooth and
strictly convex Banach space, which also enjoys the Kadec-Klee property, the author ob-
tained a strong convergence theorem; formore details, see [] and the references therein.
In this paper, motivated by the above result, we consider the projection algorithm for

treating solutions of the equilibrium problem and fixed points of generalized asymptoti-
cally quasi-φ-nonexpansive mappings. A strong convergence theorem is established in a
Banach space. The results presented this paper mainly improve the corresponding results
announced in Qin Cho and Kang [] and Kim [].
In order to prove our main results, we need the following lemmas.

Lemma . [] Let E be a smooth and uniformly convex Banach space, and let r > .
Then there exists a strictly increasing, continuous and convex function g : [, r]→ R such
that g() =  and

∥∥tx + ( – t)y
∥∥ ≤ t‖x‖ + ( – t)‖y‖ – t( – t)g

(‖x – y‖)
for all x, y ∈ Br = {x ∈ E : ‖x‖ ≤ r} and t ∈ [, ].

Lemma . [] Let C be a nonempty closed convex subset of a smooth Banach space E and
x ∈ E. Then x = �Cx if and only if

〈x – y, Jx – Jx〉 ≥  ∀y ∈ C.

Lemma . [] Let E be a reflexive, strictly convex and smooth Banach space, let C be a
nonempty closed convex subset of E and x ∈ E. Then

φ(y,�Cx) + φ(�Cx,x)≤ φ(y,x) ∀y ∈ C.

Lemma . [, ] Let C be a closed convex subset of a smooth, strictly convex and reflexive
Banach space E. Let F be a bifunction from C ×C to R satisfying (A)-(A). Let r >  and
x ∈ E. Then there exists z ∈ C such that F(z, y) + 

r 〈y – z, Jz – Jx〉 ≥ , ∀y ∈ C. Define a
mapping Tr : E → C by

Srx =
{
z ∈ C : f (z, y) +


r
〈y – z, Jz – Jx〉,∀y ∈ C

}
.

Then the following conclusions hold:
() Sr is a single-valued firmly nonexpansive-type mapping, i.e., for all x, y ∈ E,

〈Srx – Sry, JSrx – JSry〉 ≤ 〈Srx – Sry, Jx – Jy〉;

() F(Sr) = EP(F) is closed and convex;
() Sr is quasi-φ-nonexpansive;
() φ(q,Srx) + φ(Srx,x)≤ φ(q,x), ∀q ∈ F(Sr).

http://www.journalofinequalitiesandapplications.com/content/2013/1/425
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Lemma . [] Let E be a uniformly smooth and strictly convex Banach space which also
enjoys the Kadec-Klee property, and let C be a nonempty closed and convex subset of E. Let
T : C → C be a generalized asymptotically quasi-φ-nonexpansive mapping. Then F(T) is
closed and convex.

2 Main results
Theorem . Let E be a uniformly smooth and strictly convex Banach space which also
enjoys the Kadec-Klee property, and let C be a nonempty closed and convex subset of E. Let
� be an index set. Let Fi be a bifunction fromC×C toR satisfying (A)-(A) for every i ∈ �.
Let T : C → C be a generalized asymptotically quasi-φ-nonexpansive mapping. Assume
that T is closed asymptotically regular on C and � := F(T)∩⋂

i∈� EF(Fi) is nonempty and
bounded. Let {xn} be a sequence generated in the following manner:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E, chosen arbitrarily,

C,i = C,

C =
⋂

i∈� C,i,

x = �Cx,

yn = J–(αnJxn + ( – αn)JTnxn),

un,i ∈ C such that Fi(un,i, y) + 
rn,i

〈y – un,i, Jun,i – Jyn〉 ≥ , ∀y ∈ C,

Cn+,i = {z ∈ Cn : φ(z,un,i) ≤ φ(z,xn) +μnMn + ξn},
Cn+ =

⋂
i∈� Cn+,i,

xn+ = �Cn+x,

where Mn = sup{φ(z,xn) : z ∈ �}, {αn} is a real number sequence in (, ) such that
lim infn→∞ αn( –αn) > , {rn,i} is a real number sequence in [ai,∞),where {ai} is a positive
real number sequence. Then the sequence {xn} converges strongly to ��x, where �� is the
generalized projection from E onto �.

Proof In view of Lemmas . and ., we find that the common solution set � is closed
and convex. Next, we show that Cn is closed and convex. It suffices to show, for any fixed
but arbitrary i ∈ �, that Cn,i is closed and convex. This can be proved by induction on n.
It is obvious that C,i = C is closed and convex. Assume that Cj,i is closed and convex for
some j ≥ . We next prove that Cj+,i is closed and convex for the same j. This completes
the proof that Cn is closed and convex. It is clear that Cj+,i is closed. We only prove the
convexity. Indeed, ∀a,b ∈ Cj+,i, we see that a,b ∈ Cj,i, and

φ(a,uj,i) ≤ φ(a,xj) +μjMj + ξj,

and

φ(b,uj,i) ≤ φ(b,xj) +μjMj + ξj.

Notice that the two inequalities above are equivalent to the following inequalities, respec-
tively:

〈a, Jxj – Juj,i〉 ≤ ‖xj‖ – ‖uj,i‖ +μjMj + ξj,

http://www.journalofinequalitiesandapplications.com/content/2013/1/425
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and

〈b, Jxj – Juj,i〉 ≤ ‖xj‖ – ‖uj,i‖ +μjMj + ξj.

These imply that


〈
ta + ( – t)b, Jxj – Juj,i

〉 ≤ ‖xj‖ – ‖uj,i‖ +μjMj + ξj, ∀t ∈ (, ).

Since Cj,i is convex, we see that ta + ( – t)b ∈ Cj,i. Notice that the above inequality is
equivalent to

φ
(
ta + ( – t)b,uj,i

) ≤ φ
(
ta + ( – t)b,xj

)
+μjMj + ξj.

This proves that Cj+,i is convex. This completes that Cn is closed and convex.
Next, we prove that � ⊂ Cn. It suffices to claim that � ⊂ Cn,i for every i ∈ �. Note that

� ⊂ C,i = C. Suppose that� ⊂ Cj,i for some j and for every i ∈ �. Then, for ∀w ∈ � ⊂ Cj,i,
we have

φ(w,uj,i)

= φ(w,Srj,i yj)

= φ
(
w, J–

(
αjJxj + ( – αj)JTjxj

))
= ‖w‖ – 

〈
w,αjJxj + ( – αj)JTjxj

〉
+

∥∥αjJxj + ( – αj)JTjxj
∥∥

≤ ‖w‖ – αj〈w, Jxj〉 – ( – αj)
〈
w, JTjxj

〉
+ αj‖xj‖

+ ( – αj)
∥∥Tjxj

∥∥

= αjφ(w,xj) + ( – αj)φ
(
w,Tjxj

)
≤ αjφ(w,xj) + ( – αj)( +μj)φ(w,xj) + ξj( – αj)

≤ φ(w,xj) +μjφ(w,xj) + ξj

≤ φ(w,xj) +μjMj + ξj.

This shows that w ∈ Cj+,i. This implies that � ⊂ Cn for every n≥ .
On the other hand, it follows from Lemma . that

φ(xn,x) = φ(�Cnx,x) ≤ φ(w,x) – φ(w,xn) ≤ φ(w,x), ∀w ∈ � ⊂ Cn.

This shows that the sequence φ(xn,x) is bounded. In view of (.), we see that the se-
quence {xn} is also bounded. Since the space is reflexive, wemay, without loss of generality,
assume that xn ⇀ p ∈ Cn. Note that φ(xn,x) ≤ φ(p,x). It follows that

φ(p,x) ≤ lim inf
n→∞ φ(xn,x) ≤ lim sup

n→∞
φ(xn,x) ≤ φ(p,x).

http://www.journalofinequalitiesandapplications.com/content/2013/1/425
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This implies that

lim
n→∞φ(xn,x) = φ(p,x).

Hence, we have ‖xn‖ → ‖p‖ as n→ ∞. In view of the Kadec-Klee property of E, we obtain
that xn → p as n→ ∞.
Next, we show that p ∈ F(T). By the construction of Cn, we have that Cn+ ⊂ Cn and

xn+ = �Cn+x ∈ Cn. It follows that

φ(xn+,xn) = φ(xn+,�Cnx)

≤ φ(xn+,x) – φ(�Cnx,x)

= φ(xn+,x) – φ(xn,x).

Letting n → ∞, we obtain that φ(xn+,xn)→ . In view of xn+ ∈ Cn+, we see that

φ(xn+,un,i) ≤ φ(xn+,xn) +μnMn + ξn.

It follows that

lim
n→∞φ(xn+,un,i) = .

From (.), we see that limn→∞ ‖un,i‖ = ‖p‖. It follows that limn→∞ ‖Jun,i‖ = ‖Jp‖. This
implies that {Jun,i} is bounded. Note that E is reflexive and E∗ is also reflexive. We may
assume that Jun,i ⇀ x∗,i ∈ E∗. In view of the reflexivity of E, we see that J(E) = E∗. This
shows that there exists an xi ∈ E such that Jxi = x∗,i. It follows that

φ(xn+,un,i) = ‖xn+‖ – 〈xn+, Jun〉 + ‖un‖

= ‖xn+‖ – 〈xn+, Jun〉 + ‖Jun‖.

Taking lim infn→∞ on the both sides of the equality above yields that

 ≥ ‖p‖ – 
〈
p,x∗,i〉 + ∥∥x∗,i∥∥

= ‖p‖ – 
〈
p, Jxi

〉
+

∥∥Jxi∥∥

= ‖p‖ – 
〈
p, Jxi

〉
+

∥∥xi∥∥

= φ
(
p,xi

)
.

That is, p = xi, which in turn implies that x∗,i = Jp. It follows that Jun,i ⇀ Jp ∈ E∗. Since
E∗ enjoys the Kadec-Klee property, we obtain that Jun,i – Jp →  as n → ∞. Note that
J– : E∗ → E is demi-continuous. It follows that un,i ⇀ p. Since E enjoys the Kadec-Klee
property, we obtain that un,i → p as n→ ∞. Note that

‖xn – un,i‖ ≤ ‖xn – p‖ + ‖p – un,i‖.

http://www.journalofinequalitiesandapplications.com/content/2013/1/425
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It follows that

lim
n→∞‖xn – un,i‖ = . (.)

Since J is uniformly norm-to-norm continuous on any bounded sets, we have

lim
n→∞‖Jxn – Jun,i‖ = . (.)

Let r = supn≥{‖xn‖,‖Tnxn‖}. Since E is uniformly smooth, we know that E∗ is uniformly
convex. In view of Lemma ., we see that

φ(w,un,i)

= φ(w,Srn,i yn)

= φ
(
w, J–

(
αnJxn + ( – αj)JTnxn

))
= ‖w‖ – 

〈
w,αnJxn + ( – αn)JTnxn

〉
+

∥∥αnJxn + ( – αn)JTnxn
∥∥

≤ ‖w‖ – αn〈w, Jxn〉 – ( – αn)
〈
w, JTnxn

〉
+ αn‖xn‖

+ ( – αn)
∥∥Tnxn

∥∥ – αn( – αn)g
(∥∥Jxn – JTnxn

∥∥)
= αnφ(w,xn) + ( – αn)φ

(
w,Tnxn

)
– αn( – αn)g

(∥∥Jxn – JTnxn
∥∥)

≤ αnφ(w,xn) + ( – αn)( +μn)φ(w,xn) + ξn( – αn)

– αn( – αn)g
(∥∥Jxn – JTnxn

∥∥)
≤ φ(w,xn) +μnφ(w,xn) + ξn – αn( – αn)g

(∥∥Jxn – JTnxn
∥∥)

≤ φ(w,xn) +μnMn + ξn – αn( – αn)g
(∥∥Jxn – JTnxn

∥∥)
.

It follows that

αn( – αn)g
(∥∥Jxn – JTnxn

∥∥) ≤ φ(w,xn) – φ(w,un,i) +μnMn + ξn.

Notice that

φ(w,xn) – φ(w,un,i) = ‖xn‖ – ‖un,i‖ – 〈w, Jxn – Jun,i〉
≤ ‖xn – un,i‖

(‖xn‖ + ‖un,i‖
)
+ ‖w‖‖Jxn – Jun,i‖.

It follows from (.) and (.) that φ(w,xn) – φ(w,un,i) →  as n → ∞. In view of
lim infn→∞ αn( – αn) > , we see that limn→∞ g(‖Jxn – JTnxn‖) = . It follows from the
property of g that

lim
n→∞

∥∥Jxn – JTnxn
∥∥ = . (.)

Since xn → p as n→ ∞ and J : E → E∗ is demi-continuous, we obtain that Jxn ⇀ Jp ∈ E∗.
Note that

∣∣‖Jxn‖ – ‖Jp‖∣∣ = ∣∣‖xn‖ – ‖p‖∣∣ ≤ ‖xn – p‖.

http://www.journalofinequalitiesandapplications.com/content/2013/1/425


Zhang Journal of Inequalities and Applications 2013, 2013:425 Page 9 of 14
http://www.journalofinequalitiesandapplications.com/content/2013/1/425

This implies that ‖Jxn‖ → ‖Jp‖ as n → ∞. Since E∗ enjoys the Kadec-Klee property, we
see that

lim
n→∞‖Jxn – Jp‖ = . (.)

Notice that

∥∥JTnxn – Jp
∥∥ ≤ ∥∥JTnxn – Jxn

∥∥ + ‖Jxn – Jp‖.

It follows from (.) and (.) that

lim
n→∞

∥∥JTnxn – Jp
∥∥ = . (.)

Note that J– : E∗ → E is demi-continuous. It follows that Tnxn ⇀ p. On the other hand,
we have

∣∣∥∥Tnxn
∥∥ – ‖p‖∣∣ = ∣∣∥∥JTnxn

∥∥ – ‖Jp‖∣∣ ≤ ∥∥JTnxn – Jp
∥∥.

In view of (.), we obtain that ‖Tnxn‖ → ‖p‖ as n → ∞. Since E enjoys the Kadec-Klee
property, we obtain that

lim
n→∞

∥∥Tnxn – p
∥∥ = . (.)

Note that

∥∥Tn+xn – p
∥∥ ≤ ∥∥Tn+xn – Tnxn

∥∥ +
∥∥Tnxn – p

∥∥.
It follows from the asymptotic regularity of T and (.) that

lim
n→∞

∥∥Tn+xn – p
∥∥ = .

That is, TTnxn – p →  as n → ∞. It follows from the closedness of T that Tp = p.
Next, we show that p ∈ ⋂

i∈� EF(Fi). Notice that φ(w, yn) ≤ φ(w,xn) +μnMn + ξn. In view
of un,i = Srn,i yn, we find from Lemma . that

φ(un,i, yn) = φ(Srn,i yn, yn)

≤ φ(w, yn) – φ(w,Srn,i yn)

≤ φ(w,xn) – φ(w,Srn,i yn) +μnMn + ξn

= φ(w,xn) – φ(w,un,i) +μnMn + ξn.

This in turn implies that

lim
n→∞φ(un,i, yn) = .

It follows from (.) that ‖un,i‖ – ‖yn‖ →  as n → ∞. In view of un,i → p as n → ∞, we
arrive at limn→∞ ‖yn‖ = ‖p‖. It follows that limn→∞ ‖Jyn‖ = ‖Jp‖. Since E∗ is reflexive, we
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may assume that Jyn ⇀ f ∗ ∈ E∗. In view of J(E) = E∗, we see that there exists f ∈ E such
that Jf = f ∗. It follows that

φ(un,i, yn) = ‖un,i‖ – 〈un,i, Jyn〉 + ‖Jyn‖.

Taking lim infn→∞ on the both sides of the equality above yields that

 ≥ ‖p‖ – 
〈
p, f ∗〉 + ∥∥f ∗∥∥

= ‖p‖ – 〈p, Jf 〉 + ‖Jf ‖

= ‖p‖ – 〈p, Jf 〉 + ‖f ‖

= φ(p, f ).

That is, p = f , which in turn implies that f ∗ = Jp. It follows that Jyn ⇀ Jp ∈ E∗. Since E∗ en-
joys theKadec-Klee property, we obtain that Jyn– Jp →  as n→ ∞. Note that J– : E∗ → E
is demi-continuous. It follows that yn ⇀ p. Since E enjoys the Kadec-Klee property, we ob-
tain that yn → p as n → ∞. Notice that ‖un,i – yn‖ ≤ ‖un,i – p‖ + ‖p – yn‖. It follows that

lim
n→∞‖un,i – yn‖ = .

Since J is uniformly norm-to-norm continuous on any bounded sets, we have

lim
n→∞‖Jun,i – Jyn‖ = .

From the assumption rn,i ≥ ai, we see that

lim
n→∞

‖Jun,i – Jyn‖
rn,i

= .

Notice that

Fi(un,i, y) +

rn,i

〈y – un,i, Jun,i – Jyn〉 ≥ , ∀y ∈ C.

It follows from condition (A) that

‖y – un,i‖‖Jun,i – Jyn‖
rn,i

≥ 
rn,i

〈y – un,i, Jun,i – Jyn〉 ≥ Fi(y,un,i), ∀y ∈ C.

By taking the limit as n→ ∞ in the above inequality, from condition (A) we obtain that

Fi(y,p) ≤ , ∀y ∈ C.

For  < ti <  and y ∈ C, define yti = tiy + ( – ti)p. It follows that yt,i ∈ C, which yields that
Fi(yt,i,p) ≤ . It follows from conditions (A) and (A) that

 = Fi(yt,i, yt,i) ≤ tiFi(yt,i, y) + ( – ti)Fi(yt,i,p) ≤ tiFi(yt,i, y).
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That is,

Fi(yt,i, y) ≥ .

Letting ti ↓ , we find from condition (A) that Fi(p, y) ≥ , ∀y ∈ C. This implies that
p ∈ EP(Fi). This completes the proof that p ∈ �.
Finally, we prove that p = ��x. From xn = �Cnx, we see that

〈xn – z, Jx – Jxn〉 ≥ , ∀z ∈ Cn.

In view of � ⊂ Cn, we find that

〈xn –w, Jx – Jxn〉 ≥ , ∀w ∈ �.

Letting n → ∞ in the above inequality, we see that

〈p –w, Jx – Jp〉 ≥ , ∀w ∈ �.

In view of Lemma ., we can obtain that p = ��x. This completes the proof. �

If T is asymptotically quasi-φ-nonexpansive, then we find fromTheorem . the follow-
ing result.

Corollary . Let E be a uniformly smooth and strictly convex Banach space which also
enjoys the Kadec-Klee property, and let C be a nonempty closed and convex subset of E. Let
� be an index set. Let Fi be a bifunction from C × C to R satisfying (A)-(A) for every
i ∈ �. Let T : C → C be an asymptotically quasi-φ-nonexpansive mapping. Assume that
T is closed asymptotically regular on C and � := F(T) ∩ ⋂

i∈� EF(Fi) is nonempty and
bounded. Let {xn} be a sequence generated in the following manner:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E, chosen arbitrarily,

C,i = C,

C =
⋂

i∈� C,i,

x = �Cx,

yn = J–(αnJxn + ( – αn)JTnxn),

un,i ∈ C such that Fi(un,i, y) + 
rn,i

〈y – un,i, Jun,i – Jyn〉 ≥ , ∀y ∈ C,

Cn+,i = {z ∈ Cn : φ(z,un,i) ≤ φ(z,xn) +μnMn},
Cn+ =

⋂
i∈� Cn+,i,

xn+ = �Cn+x,

where Mn = sup{φ(z,xn) : z ∈ �}, {αn} is a real number sequence in (, ) such that
lim infn→∞ αn( –αn) > , {rn,i} is a real number sequence in [ai,∞),where {ai} is a positive
real number sequence. Then the sequence {xn} converges strongly to ��x, where �� is the
generalized projection from E onto �.
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Remark . Since the index set � is arbitrary, Corollary . is an improvement of the
corresponding results in Kim [].

Remark . Corollary . also improves the corresponding results in Qin et al. [] in the
following aspects:
(a) from a uniformly smooth and uniformly convex space to a uniformly smooth and

strictly convex Banach space which also enjoys the Kadec-Klee property;
(b) from a single bifunction to a family of bifunctions;
(c) from a quasi-φ-nonexpansive mapping to an asymptotically quasi-φ-nonexpansive

mapping.

In the framework of Hilbert spaces, the theorem is reduced to the following.

Corollary . Let E be a Hilbert space, and let C be a nonempty closed and convex subset
of E. Let � be an index set. Let Fi be a bifunction from C × C to R satisfying (A)-(A)
for every i ∈ �. Let T : C → C be a generalized asymptotically quasi-nonexpansive map-
ping. Assume that T is closed asymptotically regular on C and � := F(T)∩ ⋂

i∈� EF(Fi) is
nonempty and bounded. Let {xn} be a sequence generated in the following manner:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E, chosen arbitrarily,

C,i = C,

C =
⋂

i∈� C,i,

x = �Cx,

yn = αnxn + ( – αn)Tnxn,

un,i ∈ C such that Fi(un,i, y) + 
rn,i

〈y – un,i,un,i – yn〉 ≥ , ∀y ∈ C,

Cn+,i = {z ∈ Cn : ‖z – un,i‖ ≤ ‖z – xn‖ +μnMn + ξn},
Cn+ =

⋂
i∈� Cn+,i,

xn+ = ProjCn+ x,

where Mn = sup{‖z – xn‖ : z ∈ �}, {αn} is a real number sequence in (, ) such that
lim infn→∞ αn( –αn) > , {rn,i} is a real number sequence in [ai,∞),where {ai} is a positive
real number sequence. Then the sequence {xn} converges strongly to Proj� x, where Proj�
is the metric projection from E onto �.

Proof In the framework of Hilbert spaces, we find that φ(x, y) = ‖x–y‖, J is reduced to the
identity mapping and the generalized projection �C is reduced to the metric projection
ProjC . This completes the proof. �

For a single bifunction, we also have the following.

Corollary . Let E be a Hilbert space, and let C be a nonempty closed and convex subset
of E. Let F be a bifunction fromC×C toR satisfying (A)-(A). Let T : C → C be a general-
ized asymptotically quasi-nonexpansive mapping. Assume that T is closed asymptotically
regular on C and � := F(T) ∩ EF(F) is nonempty and bounded. Let {xn} be a sequence
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generated in the following manner:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E, chosen arbitrarily,

C = C,

x = �Cx,

yn = αnxn + ( – αn)Tnxn,

un ∈ C such that F(un, y) + 
rn 〈y – un,un – yn〉 ≥ , ∀y ∈ C,

Cn+ = {z ∈ Cn : ‖z – un‖ ≤ ‖z – xn‖ +μnMn + ξn},
xn+ = ProjCn+ x,

where Mn = sup{‖z – xn‖ : z ∈ �}, {αn} is a real number sequence in (, ) such that
lim infn→∞ αn( – αn) > , {rn,i} is a real number sequence in [a,∞), where a is a posi-
tive real number. Then the sequence {xn} converges strongly to Proj� x, where Proj� is the
metric projection from E onto �.

Proof In the framework of Hilbert spaces, we find that φ(x, y) = ‖x–y‖, J is reduced to the
identity mapping, and the generalized projection �C is reduced to the metric projection
ProjC . In view of Corollary ., we may immediately conclude the desired results. �
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