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Abstract

Background: In silco Biology is increasingly important and is often based on public
data. While the problem of contamination is well recognised in microbiology labs the
corresponding problem of database corruption has received less attention.

Results: Mapping 50 billion next generation DNA sequences from The Thousand
Genome Project against published genomes reveals many that match one or more
Mycoplasma but are not included in the reference human genome GRCh37.p5. Many
of these are of low quality but NCBI BLAST searches confirm some high quality, high
entropy sequences match Mycoplasma but no human sequences.

Conclusions: It appears at least 7% of 1000G samples are contaminated.
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Background
Mycoplasma are tiny bacteria which readily grow in cell culture media. They have small
genomes. Contamination of molecular biology laboratories by them is widespread [1].
Their small size makes them hard to detect. Depending upon medium, Mycoplasma con-
tamination rates of 1% to 15–35% (or even higher) have been reported [2]. Mycoplasma
contamination can render cell line gene expression measurements unreliable [1]. Many
labs routinely sterilised their equipment to counter it. About 1% of published NCBI’s
Gene Expression Omnibus (GEO) [3] GeneChip data appear to be contaminated [4,5].
Indeed wet lab contamination is so wide spread that Mycoplasma genes have managed to
jump the silicon barrier and get themselves incorporated into international data banks as
Human genes [6].
GEO contains gene expression data, here we start to look for similar contamination in

genome studies. The 1000 Genomes Project [7] is an international collaboration which
has mapped in whole or in part the genomes or more then 2500 individuals and published
studies of SNPs and other human genetic variations. We selected The 1000 Genomes
Project, since it investigates human genetic material, is widely respected, it covers many
sites with diverse data sources and has made available vast quantities of its raw data.

Results and discussion
Bowtie (version 0.12.7) [8] found 4 803 930 DNA measurements in a random sample
which match one or more Mycoplasma genomes (see Figures 1 and 2)a. Almost all these
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Figure 1 Schematic showingmajor data flows in Mycoplasma analysis of The Thousand Genome
Project (top color). A random sample (≈ 8%) of next generation scan are copied across the Internet to the
computer at UCL (black). Bowtie [8] is used to extract individual and paired-end DNA measurements which
match one or more of the thirty published Mycoplasma genomes (Additional file 1: Table S1). Bowtie is used
a second time to exclude DNA measurements which match the reference human genome, leaving 75 879
Mycoplasma DNA measurements from 2055 scans of the 4058 downloaded.

also matched somewhere in the reference human genome, leaving 75 879 which match
Mycoplasma but do not appear to be human. These are non-uniformly clustered in 51.6%
of individual DNA samples.
NextGen scanners are noisy. So, on the assumption that errors are independent, typi-

cally multiple (e.g. 3) scans are run. However non-uniform clusters of errors indicate that
they are not independent and therefore redundant scans may not resolve the problem.
Noise may be part of the reason why Bowtie reports about 30% fail to align to the human
genome. However some of these unmatched DNA measurements may not be simply due

Figure 2 The 1000 Genomes Project uses a variety of next generation DNA sequencingmachines (also
known as scanners). Some use paired-end DNA strands (schematic above). These scans give the DNA base
sequence at both ends (shown as solid black). Only the approximate number of bases between the ends is
known. The scanner does not report the sequence of bases between the ends. With paired-end scanners, the
two ends together are referred to as a single “DNA measurement”. Other scans only contain the sequence of
bases at one end of the DNA strand. In these cases there is also one “DNA measurement” per DNA molecule.
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to noise. These are the ones we investigate to see if they could be due to Mycoplasma
contamination.

Number of mismatches between the 1000 Genomes Project DNA andMycoplasma

Figure 3 shows that although Bowtie finds matches within one or more Mycoplasma
genomes for 75 879 DNA sequences drawn from The 1000 Genomes Project (but does
not match them with the human reference genome) the accuracy of the match varies con-
siderably. Many match a Mycoplasma exactly. These are shown on the left of Figure 3. For
others, Bowtie reports up to 78mismatches. Note the long thin tail to the right in Figure 3.
Figure 3 also breaks these data down into pair end and single DNA strands and Solexa
coding type (normal v. SOLiD colorspace). Colorspace encoding is described on page 12.
Although the colorspace encoding represents a small fraction of the whole data, of the
DNA measurements which match Mycoplasma only and for which Bowtie reports (on
average) three or fewer mismatches, 93% of them are colorspace encoded. Notice how-
ever colorspace sequences tend to be much shorter, see Figure 4. On average, if affected,
colorspace scans contain many more affected DNA measurements than normally coded
Solexa scans. See columns 3–4 of Table 1. Overall ten percent of The 1000 Genomes
Project scans contain sequences which match Mycoplasma well (i.e. on average ≤ 3
mismatches) but do not appear in the reference human genome, last figure in Table 1.

Quality of The 1000 Genomes Project DNAmeasurements

Solexa data, like that from other nextGen scanners, are inherently noisy. Solexa provides
an estimate of the signal to noise ratio (expressed as log10) per base position in each DNA
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Figure 3 Distribution of mismatches in matches against Mycoplasma genomes for 75 879 DNA
sequences from The 1000 Genomes Project which do not match the reference human genome. Of
these 40 849 are paired end DNA sequences from Illumina or 454 Life Sciences (not colorspace) next
generation scanners, 13 995 are single ended also produced by Illumina or 454 Life Sciences scanners, 17 015
paired end produced by Life Technologies SOLiD colorspace scanners and the remaining 4 030 were also
reported by Life Technologies SOLiD colorspace but are single ended DNA sequences.
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Figure 4 Lengths of DNA sequences for The 1000 Genomes Project.Mostly measurements have two
paired ends. The mode is for each end to have 101 DNA base pairs. Again, as with Figure 3, data are split by
type of sample preparation and sequencing machine.

sequence. (For example, a quality of 0.5 (S/N = 3.16) means the returned base is more
likely than the other 3 combined)b. This can easily mount up to several hundred quality
values. To stably condense these into a manageable statistic, we ignore the worse and
second to worst base in each DNA sequence and use the third worst. For paired end data,
we use worst of the two ends.
If we compare the quality of DNA measurements which match Mycoplasma but which

do not occur in the reference human genome (Figure 5) with those which do match
GRCh37.p5 we see in both cases measurements with a large numbers of mismatches only
occur in low quality data. Figure 6 reports a typical run. Further Figure 5 makes it plain
that most of the DNA measurements which match Mycoplasma but which do not occur
in the reference human genome contain at least three poor quality values. Nonetheless
in our large sample of more than 50 billion DNA measurements drawn randomly from
The 1000 Genomes Project, there are 1944 measurements with a quality above 0.5 (which

Table 1 Approximately 8% of The 1000 Genomes Project was selected at random and
downloaded

Type Mycoplasma Affected Scans Fraction
sequences scans downloaded of scans

Pair Ordinary 797 106 3454 3%

Pair Colorspace 17 015 111 145 77%

Single Ordinary 752 108 384 28%

Single Colorspace 4 020 72 75 96%

Totals 22 584 397 4058 10%

Of the 53 billion DNAmeasurements down loaded, 22 584 (bottom column 3) match Mycoplasma (with on average three or
fewer mismatches) but do not match at all the reference human genome GRCh37.p5. Typically samples infected with
Mycoplasma are immediately destroyed. Column 4 gives the number of scans with at least one affected DNAmeasurement.
The final column gives this as a percentage of scans of the same type.
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Figure 5 Quality of 75 879 sequences from The 1000 Genomes Project which match one or more
Mycoplasma genomes but do not match the reference human genome. Horizontal and vertical noise
added to spread data. Most sequences which fail to match GRCh37.p5 but do match one or more species of
Mycoplasma are of low quality. Nevertheless an important fraction are of high quality and match Msycoplasma
with no or few mismatches. As with Figure 3, data are split in four by type of sample preparation and
sequencing machine.

match one ormoreMycoplasma genomes with≤ 3mismatches). They occur in 269 scans,
this is 7% of our sample, see last number in Table 2.

Entropy of The 1000 Genomes Project DNAmatching Mycoplasma

Figure 7 shows that the exactness with which the DNAmeasurementsmatchMycoplasma
and the entropy (incompressibility) of its sequences appears to be unrelated. For the very
much larger volume of sequences which do match the human reference genome, entropy
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Figure 6 Quality v. accuracy of match (horizontal) for 1 762 302 DNA sequence pairs which match the
human reference genome. (From an example 1000 Genomes Project paired-end run). Showing typically
large numbers (> 5) of mismatches are only reported for poor quality data.
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Table 2 In our random download of The 1000 Genomes Project, 1944 high quality DNA
measurements (i.e. nomore than three bases with quality worse than 0.5) match
Mycoplasma (with on average three or fewer mismatches) but do not match at all the
reference human genome (bottom column 3)

Type High quality Affected Scans Fraction
Mycoplasma sequences scans downloaded of scans

Pair Ordinary 542 87 3454 3%

Pair Colorspace 1042 63 145 43%

Single Ordinary 234 78 384 20%

Single Colorspace 126 41 75 55%

Totals 1944 269 4058 7%

As with Table 1, column 4 gives the number of scans with at least one affected DNAmeasurement. The right most column
gives the percentage of affected scans by type.

also plays little role. Instead large numbers of mismatches occur only in low entropy
sequences. (Figure 8 plots data from a typical 1000 Genomes Project run). Although
Bowtie reports a match, in some cases Bowtie must change many (up to 78) individual
DNA bases to get an exact match between the measured DNA sequences and one of the
published Mycoplasma genomes. Low entropy (compressible) DNA sequences are highly
repetitive. Many real genomes have highly repetitive regions. A highly repetitive simple
DNA pattern (even if it exactly matches against a genome) is liable to fall in repetitive
region of a (published) genome, where coverage is liable to be patchy [9]. See also Figure 9,
which concentrates on Mycoplasma only DNA measurements which match Mycoplasma
genomes well.

Confirming Bowtie with NCBI BLAST

Rather than trying to run BLAST [10] on several thousand DNA strings, we used entropy,
a higher quality threshold and exact matching, to choose the best sequences and then ran
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Figure 7 Entropy per DNA base of 75 879 sequences from The 1000 Genomes Project which match
one or more Mycoplasma genomes but do not match the reference human genome. (See also Figure 9.
Horizontal noise added to spread data). As with Figure 3, data are split in four by type of sample preparation
and sequencing machine.
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Figure 8 Entropy v. number of mismatches for 1 762 302 DNA pairs which match the human
reference genome. (From the same example 1000 Genomes Project paired-end run as in Figure 6). Most
DNA measurements which match GRCh37.p5 are not repetitive (i.e. have high entropy). Also low quality (×)
measurements tend to have more mismatches.

BLAST on these. In detail, we used a quality threshold above 1.3, we ignored repetitive
DNA sequences (i.e. average entropy below 1.0) and requiring at least one exact match
against one of our Mycoplasma genomes. This gives seven measurements, none of which
is from a SOLiD colour space scanner. See Table 3. BLAST provides strong evidence that
these DNA measurements are really from one or more Mycoplasma or similar species.
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Figure 9 Entropy per DNA base of 22 584 sequences from The 1000 Genomes Project which match
one or more Mycoplasma genomes with 3 or fewer mismatches but do not match the reference
human genome. (Detail of Figure 7. Horizontal noise added to spread data). As with Figure 3, data are split in
four by type of sample preparation and sequencing machine.
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Table 3 High quality, non-repetitive DNAmeasurements from The 1000 Genomes Project whichmatch one or more publishedMycoplasma genomes but which do
not match the reference human genome

2.0 2.9 ERR009050.2605525 GCCGTAACTATAACGGTCCTAAGGTAGCGAAATTCCTTGTC E=7 10−13 S16 23S ribosomal RNA

2.0 2.3 ERR002459.4464466 ACGGTTTTCAAGACCGTTCCCTTCAGCCAGACTTGG E=5 10−10 Transfer RNA-Ser

CCTGACGGTTTTCAAGACCGTTCCCTTCAGCCAGAC E=5 10−10

1.8 2.1 ERR013159.14600701 CGCTTTCATTGTTCCGCCAGTAGCTAAAACATCATCAATAATTGCTACTTTTTGGCCTTTTTTCAACATATTAGTTT

GGATTTCTAGAGTTGATTTACCATATTCTAA E=3 10−52

TTTTTGGCCTTTTTTCAACATATTAGTTTGGATTTCTAGAGTTGATTTACCATATTCTAAATCATACTCAAAACTAAT

AACGTCTCCTGGTAATTTTTTAGGTTTTCT E=3 10−52

1.8 2.0 ERR013159.12593030 GAGCTTGTTTTTCGTATTTTTCAATTTCTATTTCGTCATTGATTTGTCAATTTGGTAAATTTGTGTTTTCGCTATCAGG

TTTGGTTAGTTTAAAATAACCATCAAAAG E=2 10−10

AGGTTTGGTTAGTTTAAAATAACCATCAAAAGTAATTATTGAACCAGAAAGATAAAATTTGTGTTCTTGATTTAAA

AATTCATAACGTGTAATTTGTCTTTCAGGAAC E=3 10−52

1.7 2.2 ERR013159.18901091 GGTCAAGTTTACAACAAAATGTTTGCACTTCAAAAAGAACTAGAAGAACTAGAAGAAAATAAAGAAGAAAATA

CTTTAATCAAAGAAGTAGTGAACCAAGAAGATATT E=3 10−6

AAAAGAACTAGAAGAACTAGAAGAAAATAAAGAAGAAAATACTTTAATCAAAGAAGTAGTGAACCAAGAAGA

TATTGCAAATATTGTTTCTAAATGAACAAAAATTCC E=3 10−9

2.0 1.9 ERR013159.7037432 TCTAGAGATACTGCCTGGGTAACCAGGAGGAAGGTGGGGACGACGTCAAATCATCATGCCTCTTACGAGTGGG

GCAACACACGTGCTACAATGGTCGGTACAAAGAGA E=3 10−52 16S ribosomal RNA

AGTGGGGCAACACACGTGCTACAATGGTCGGTACAAAGAGAAGCAATATGGTGACATGGAGCAAATCTCAAA

AAACCGATCTCAGTTCGGATTGAAGTCTGCAACTCG E=3 10−52

1.9 1.9 ERR022473.14544768 TGCTTTTTTACCTCATGGAGTAAGTGGTGCTTTACGTCCAATTGGTTGTTTACCTTCACCACCACCATGTGGGTGA

TCATTTGGGTTCATTACAGAACCTCTAACTGT E=3 10−52 Ribosomal protein cluster

GGTGATCATTTGGGTTCATTACAGAACCTCTAACTGTTGGACGAATACCTAAATGACGATTACGTCCTGCTTTTCC

AATGTTAACTAGGTTATGTTCTTCATTTCCTA E=3 10−52

Entropy per bit (column 1), 3rd worst quality (column 2), file and sequence id (column 3) of Solexa DNA strands (column 4). E = chance of randommatch [10]. Column 5 gives an example gene (see discussion on page 12).
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Conclusions
Here we have analysed DNA sequences directly, rather than gene expression. While the
techniques are totally different, there is still considerable scope for sample contamination
and sequence comparison, Table 2, suggests at least 7% of public data provided by The
1000 Genomes Project may have someMycoplasma contamination. However the fraction
may be higher due to: overlap in DNA sequence space between Human and Mycoplasma
genomes and due to excluding low quality data.
Whilst the problem of contamination of nextGen sequences has been considered

before, previous studies, e.g. Jun et al. [11] and Cibulskis et al. [12], have looked at
contamination by other members of the same species. Indeed there have been several
reports of unexpected personal, i.e. human, DNA in The 1000 Genomes Project public
data but no reports of non-human contamination. However we downloaded and scanned
a random sample of more than 50 billion DNA measurements from their FTP site and
found tens of thousands which may have come from Mycoplasma contamination. Since
some DNA sequences have been conserved by evolution, it is possible the contamination
is from similar species.

Implications and ork

Once Mycoplasma is suspected, it may be that individual scans can be clean up relatively
easily as cross-species contamination is said to be easily detected ([12], page 2601).
Indeed a number of commercial Mycoplasma detection tools are based on looking for
Mycoplasma genes [2]. However both current microbiology laboratory [2] and Bioin-
formatics [1] typically take the robust approach of removing (deleting) all potentially
infected materials. Indeed when The 1000 Genomes Project withdraws nextGen data,
it withdraws complete scans. That is, it simply discards information on about a billion
DNA bases each time a scan is withdrawn.
Raw data from The 1000 Genomes Project are publicly available and are being

increasingly widely and diversely used. Whilst noisy data may be acceptable for use
by their original owners, who are aware of their limitations, there is an increas-
ing risk of contaminated data being (ab)-used outside the laboratories which initial
created them. Indeed with staff-turnover there may be risks associated with using
what becomes historical data where their provenance becomes more cloudy. Inde-
pendent numerical studies could be done. The size of our sample suggests (at least
for historical data drawn from the same period) they should yield the same results.
However, whilst we have established a lower bound for contamination, future studies
should be able to calculate it more precisely. For example, by considering redun-
dant scans and clusters it should be possible to isolate the source and perhaps also
provide numerical techniques to mitigate the data [12]. Other studies might also
look for other effects and thus extract more scientific knowledge from this valuable
resource.
SinceMycoplasma are rampant inmodernmicrobiology laboratories [2] it is no surprise

to find some in parts of data from The 1000 Genomes Project. We have identified some
samples which have a higher than average chance of being contaminated by Mycoplasma.
In silico studies should be reinforced by checking the source of the data. We urge each
member of The 1000 Genomes Project Consortium (as some are apparently doing [12]),
particularly those using single ended colorspace scanners (cf. Table 1) to re-check their



Langdon BioDataMining 2014, 7:3 Page 10 of 13
http://www.biodatamining.org/content/7/1/3

procedures. Drexler and Uphoff [2] suggest using at least two detection techniques when
checking samples for Mycoplasma.

Methods
Themaster index file, sequence.index, which describes all the current 1000 Genomes
Project data was down loaded [13]. As of 8 February 2013 there were 47,315 scans avail-
able (a further 208 had been withdrawn). They comprised: 39 736 paired-end and 4822
single ended DNA sequence scans plus a further 1611 (paired end) and 938 (single ended)
scans which used ABI_SOLID colorspace encoding. 4058 were randomly chosen and
down loaded. All the DNA measurements are in fastq format, so they include a quality
score per DNA base pair. Each scan contains DNA sequences of the same length. Figure 4
shows the distribution of DNA sequence lengths. Almost all colorspace sequences con-
tain 25, 35 or 50 base pairs, whereas lengths 68, 76, 100 and 101 dominate non-colorspace
sequences.
On average: each scan contained 13 million DNA sequences (or pairs of sequences).

Even compressed, each file is approximately a gigabyte. (Compression reduces down-
load size by a factor of about 3.1) Paired end scans need two such files. The down
load speed was variable, typically between 2.5 106 and 36 106 bytes/second, with a
mean of 11 million bytes per second. In total 7547 files were down loaded (6.0 ter-
abytes) containing 51 494 393 834 DNA measurements totalling about 7.5 1012 base
pairs.
We then used Bowtie [8] to find those DNA measurements (i.e. DNA sequences or

pairs of DNA sequences) which matched one or more of the published Mycoplasma
genomes but do not match the reference human genome GRCh37.p5. See Figure 10.
We used all of the Mycoplasma genomes available from NCBI (30 in total. See
Additional file 1: Table S1). Apart from using multiple threads -p8, Bowtie’s defaults
were used through out. The Bowtie EBWT databases for the normal and colorspace
Mycoplasma genomes are both 36 MBytes. Despite including 30 species, due to
the small size of Mycoplasma genomes, they are both considerably smaller than
that for the two for the human reference genome, which are 2.9 GB for both nor-
mal and colorspace. The Bowtie EBWT databases and colorspace databases for the
human reference genome GRCh37.p5 include all sequences. I.e., as well as chromo-
somal DNA, they both include human mitochondrial, “unlocalized” and “unplaced”
sequences.
Notice (Figure 10) Bowtie is usually faster on single ended rather than paired double

ended DNA sequences (mean 28 v. 18 million sequences per hour per CPU). Although
downloading and decompressing the files took 37% of the elapsed time, despite using all
8 CPU cores, almost all the remaining 63% of time was used by Bowtie.

Estimating entropy

In statistical mechanics, entropy is the degree of disorder in a system [14]. In information
theory this translates to the degree or randomness or incompressibility of data, particu-
larly in transmission of messages [15]. entropy = − ∑

p log p, where p is the probability of
a sequence of symbols and we sum over all possible symbols. For replicability, the remain-
der of this section details how we approximate entropy using actual DNA base counts in
finite sequences.
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In order to have entropy expressed in bits we use log2.
A reasonable estimate of the compressibility of variable length DNA sequences can

be made by considering all loss-less coding schemes of up to four bases. The most effi-
cient coding scheme gives the most compressible output. For example, a long sequence
of adenine (AAAAAAAAAAAAAAAAAAAA...) can be recoded as a shorter sequence of
00000..., where 0 is one of the new 256 codes needed to represent AAAA–TTTT. Since
the coding is loss-less, the encoded sequence contains the same information and so it has
the same entropy.
We approximate probability p by the actual ratio of each symbol to the num-

ber of symbols in the string, p = i/l, so entropy = − ∑
all symbols(i/l) log2(i/l).

Where l is the length of the encoded string and i is the number of each
symbol in it. To get the best estimate, we would have to consider all cod-
ings. By using the minimum of all 10 possible codings of length up to four
DNA bases, we get a reasonable estimate that can deal exactly with not only
runs of single bases up to runs of four repeated bases, but gives reason-
able estimates with larger repeating sequences. DNA bases which are unknown
(i.e. coded as N) are ignored. We use entropy = minall codings

(− ∑
(i/l) log2(i/l)

)
.

Thus the sequence ACGTACGTACGTACGTACGT, which is highly compressible,
has an entropy of −(5/5) log2(5/5) = 0. Whereas a simple count of number of bases
would show A C G and T each occur 5 times (are present in equal numbers) and so
incorrectly would say the string has maximal entropy− ∑

i=A,C,G,T(5/20) log2(5/20) = 2.
More sophisticated calculations might consider longer potential coding sequences but
then the coding tables would be much larger and eventually their information content
could no longer be ignored.
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Two base colorspace encoding

Some next generation DNA scanners use a technology which instead of reading DNA
sequences one base at a time they use multiple fluorescent dyes to read adjacent (over-
lapping) pairs of bases. Reduced noise is claimed, since as the pairs overlap, each base is
read twice. Data are presented as the initial base followed by transitions from one base
type to the next in the sequence (hence needing 4 colours). A potential downside is if an
error does occur, the rest of the sequence will be nonsense. Whereas in direct encoding
only the erroneous base is effected. It is possible to convert between the two encodings.
However because of the different noise characteristics it is usually recommended, as we
did, to use tools like Bowtie which can deal with colorspace encoded data directly.

Selecting a high quality sample to confirm with NCBI BLAST

We used NCBI’s Blast [10] program to confirm our Bowtie results. (We used the default
parameters provided by the EBI web interface except we request the first 1000 matches,
rather than the first 50 matches). Using BLAST on each of the sequences in Table 3 shows
each of the seven high quality DNAmeasurements (see page 6) do, as expected, match one
or more species of Mycoplasma and none matches the reference human genome. In a few
cases the second pair matches “Homo sapiens clones”, rather than the human reference
sequence. Often these are draft sequences and only in one case (ERR013159.14600701) do
both ends of DNA pair match the clone. The final column of Table 3 reports an example
of one of the Mycoplasma genes which BLAST finds which match the DNA sequence.
In the case of paired end DNA measurements, BLAST has been run separately on both
end. The reported gene is matched by both ends. (In three cases an example gene has not
been chosen because BLAST matches the whole of, a number of, Mycoplasma genomes).
Noting the example gene’s similarity, it is tempting to ascribe some biological meaning to
the gene, however BLAST effectively searches all the published DNA sequences and so
the similarity may well simply reflect a bias in the published sequences. Ribosomal DNA
is highly conserved and has been heavily studied as a tree of life phylogenetic marker of
evolutionary inheritance, which makes it one of the more frequent genes in today’s DNA
sequence databanks.
We take BLAST’s matches and the lack of BLAST matches against the official human

reference genome as confirming our Bowtie results. That is, Table 3 suggests samples
ERR009050, ERR002459, ERR013159 and ERR022473 appear to have been contaminated
with Mycoplasma. However, of these four, only in one (ERR009050) are there more than
a few score DNA measurements which Bowtie matches against Mycoplasma.

Endnotes
aSome scanners report DNA sequences for both ends of a fragment of DNA.

Nonetheless the pair of sequences is considered one “DNA measurement”. See also
Figure 2.

bWhilst details depend on the individual manufacturer, essentially each base is
allocated a different colour. The brightest colour indicates the base and the quality is
estimated from how strong it is compared to the other three colours.

Additional file

Additional file 1: Mycoplasma Genomes Used.

http://www.biomedcentral.com/content/supplementary/1756-0381-7-3-S1.pdf
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