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To the memory of Max Planck (1858 -1947) 

We owe respect to the living; to the dead we owe only truth. 
(Prangoise Marie Arouet de Voltaire) 
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Preface 

Electromagnetic theory has been based on Maxwell's equations for about 
a century. There is no need to elaborate the successes but from 1986 on we find 
publications claiming that Maxwell's equations generally do not have solutions 
that satisfy the causality law. Two scientists working independently and using 
different approaches arrived at the same result, which gives it great credibility. 
The mathematical investigations that uncovered the lack of causal solutions are 
necessarily complicated, otherwise it would not have taken a century to find 
this shortcoming of Maxwell's equations. 

The problem could be corrected by the modification of Maxwell's equations 
with an added magnetic current density term. Initially this caused concern 
since magnetic charges or charge carriers have not been observed reliably even 
though there are good theoretical arguments for their existence, e.g., the quan
tization of the electric charge. However, it was soon realized that there was no 
need for magnetic monopole currents but that magnetic dipole currents were 
sufficient. The existence of magnetic dipoles is not disputed and their rotation 
can cause magnetic dipole currents just as the rotation of electric dipoles in a 
material like Barium-Titanate can cause electric dipole currents. 

Electric dipole currents were always an important part of Maxwell's equa
tions but they were called polarization currents and this choice of words ob
scured the unequal treatment of electric and magnetic dipoles. Electric dipole 
currents are needed to explain how an electric current can flow through the 
dielectric of a capacitor, which is an insulator for electric monopole currents. 

The causality law is of no significance for the transmission of power and 
energy, or generally for steady state solutions of Maxwell's equations. But it 
is a must for the transmission of electromagnetic signals. Signal transmission 
without causality is a contradiction in terms. 

We define a classical electromagnetic signal as a propagating wave that 
is zero before a certain time and has finite energy. All produced or observed 
propagating electromagnetic waves are of this type even though we often ap
proximate them for mathematical convenience by infinitely extended sinusoidal 
waves. Signals are represented mathematically by functions or signal solutions 
that are zero before a certain time and are quadratically integrable. Such sig
nal solutions satisfy the causality law and the conservation law of energy while 
infinitely extended periodic sinusoidal solutions satisfy neither. 

The modified Maxwell equations have been applied in four books and 
numerous papers to problems ranging from the propagation of electromagnetic 
signals in seawater to their interstellar propagation over distances of billions of 
light years. The time has come to advance from classical physics to quantum 
physics. 

It is one of the most basic principles of quantum mechanics that an obser
vation interferes with what is being observed. In other words, a signal received 
during an observation changes what created the signal. Quantum electrody
namics should thus be a good field of application for an electromagnetic theory 
that permits signal solutions. 

VII 
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VIII PREFACE 

This expectation turned out to be fully justified. The first success of the 
use of the modified Maxwell equations was the elimination of the infinite zero-
point energy that has been a problem for 70 years; the conventional theory 
can correct it only by renormalization, a process that is generally considered 
unsatisfactory. The infinite zero-point energy is shown to be reduced to a finite 
energy for both the pure radiation field and the Klein-Gordon equation. 

The Hamilton function of a charged particle in an electromagnetic field 
derived with the modified Maxwell equations contains many more terms than 
the conventional Hamilton function. This provides the basis for new results, a 
fact of interest to those who look for topics for PhD theses. 

The authors want to thank Humboldt University in Berlin for providing 
the computer power required for a number of complicated plots. 
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Z = fie 
Zee 

As/m 
-
As/m 
Vs/m 
Vs/m 
-
Vs/m 2 

-
m/s 
As /m 2 

-
V /m 
V / m 
V/m 
VAs 
As 
A/m 2 
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299 792458; velocity of light 
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4[(2™)2+/>2],Eq.(4.1-73) 
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momentum 
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magnetic conductivity 
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Eq.(4.1-38) 
376.730314; wave impedance of empty space 
1.8095136 x 10~8 
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XII FREQUENTLY USED SYMBOLS 

a - Ze2/2h « 7.297535 x 10"3, Eq.(3.3-49) 
ae - ZecAe/m0c

2; Eq.(3.3-49) 
70 - Eq.(5.2-27) 
7i,72 - Eqs.(4.1-73), (6.1-24) 
e = 1/Zc As/Vm l//xc2; permittivity 
C - normalized distance, Eq.(1.3-7) 
T} = 2KK - Eq.(6.1-40) 
0 - normalized time, Eqs.(1.3-7)-(1.3-10) 
emp, 8'mp - Eq.(6.10-51) 
0P, 0'p - Eq.(6.10-51) 
1 - Eq.(6.4-12) 
to - Eq. (5.2-26) 
K - normalized wave number; Eqs.(4.1-68),(6.1-18) 
K0...K4 - Eqs.(6.11-42), (6.11-47), (6.11-48), (6.11-52), (6.11-53) 
Ax, A2, A3 - Eq.(5.2-8) 
p = Z/c Vs/Am 47T x 10 - 7; permeability 
p2 - as/c2(ap + se)2, Eq.(1.3-12) 
Pi - c2T(ap + se), Eq.(4.1-41) 
p\ - c2T2as, Eq.(4.1-41) 
pe As/m3 electric charge density 
Pm Vs/m3 hypothetical magnetic charge density 
Pern, Pep - Eq.(6.10-67) 
Ppm, Pmm " Eq.(6.10-67) 
Pmp, PP - Eq.(6.10-67) 
PPP - Eq. (6.10-67) 
p s - Z/scT, Eq.(4.1-47) 
pa - ZTca, Eq.(4.1-49) 
a A/Vm electric conductivity 
0e V electric scalar potential 
4>m A magnetic scalar potential 
w2 - se/ap, Eq.(1.3-ll) 
wi - [(l-cj2)2-V

2}^,Eq.(6.7-2) 
w2 - [V

2-(l-u;2)2}V2,Eq.(Q.7-2). 
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