Research Article

On a Nonlinear Wave Equation Associated with Dirichlet Conditions: Solvability and Asymptotic Expansion of Solutions in Many Small Parameters

Le Thi Phuong Ngoc, ${ }^{1}$ Le Khanh Luan, ${ }^{2}$ Tran Minh Thuyet, ${ }^{2}$ and Nguyen Thanh Long ${ }^{3}$
${ }^{1}$ Nhatrang Educational College, 01 Nguyen Chanh Street, Nhatrang City, Vietnam
${ }^{2}$ Department of Mathematics, University of Economics of Ho Chi Minh City, 59C Nguyen Dinh Chieu Street, District 3, Ho Chi Minh City, Vietnam
${ }^{3}$ Department of Mathematics and Computer Science, University of Natural Science, Vietnam National University Ho Chi Minh City, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam

Correspondence should be addressed to Nguyen Thanh Long, longnt2@gmail.com
Received 9 March 2011; Accepted 12 April 2011
Academic Editor: F. Jauberteau
Copyright © 2011 Le Thi Phuong Ngoc et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A Dirichlet problem for a nonlinear wave equation is investigated. Under suitable assumptions, we prove the solvability and the uniqueness of a weak solution of the above problem. On the other hand, a high-order asymptotic expansion of a weak solution in many small parameters is studied. Our approach is based on the Faedo-Galerkin method, the compact imbedding theorems, and the Taylor expansion of a function.

1. Introduction

In this paper, we consider the following Dirichlet problem:

$$
\begin{gather*}
u_{t t}-\frac{\partial}{\partial x}\left(\mu(x, t, u) u_{x}\right)=f\left(x, t, u, u_{x}, u_{t}\right), \quad 0<x<1,0<t<T \tag{1.1}\\
u(0, t)=u(1, t)=0, \tag{1.2}\\
u(x, 0)=\tilde{u}_{0}(x), \quad u_{t}(x, 0)=\tilde{u}_{1}(x), \tag{1.3}
\end{gather*}
$$

where $\tilde{u}_{0}, \tilde{u}_{1}, \mu$, and f are given functions satisfying conditions specified later.

In the special cases, when the function $\mu(x, t, u)$ is independent of $u, \mu(x, t, u) \equiv 1$, or $\mu(x, t, u)=\mu(x, t)$, and the nonlinear term f has the simple forms, the problem (1.1), with various initial-boundary conditions, has been studied by many authors, for example, Ortiz and Dinh [1], Dinh and Long [2, 3], Long and Diem [4], Long et al. [5], Long and Truong [6, 7], Long et al. [8], Ngoc et al. [9], and the references therein.

Ficken and Fleishman [10] and Rabinowitz [11] studied the periodic-Dirichlet problem for hyperbolic equations containing a small parameter ε, in particular, the differential equation

$$
\begin{equation*}
u_{t t}-u_{x x}=2 \alpha u_{t}+\varepsilon f\left(t, x, u, u_{t}, u_{x}\right) \tag{1.4}
\end{equation*}
$$

In [12], Kiguradze has established the existence and uniqueness of a classical solution $u \in C^{2}\left([0, a] \times \mathbb{R}^{n}\right)$ of the periodic-Dirichlet problem for the following nonlinear wave equation:

$$
\begin{equation*}
u_{t t}-u_{x x}=g(t, x, u)+g_{1}(u) u_{t} \tag{1.5}
\end{equation*}
$$

under the assumption that g and g_{1} are continuously differentiable functions (these conditions are sharp and cannot be weakened). Moreover, it is shown that the same results are valid for the equation

$$
\begin{equation*}
u_{t t}-u_{x x}=g(t, x, u)+g_{1}(u) u_{t}+\varepsilon q\left(t, x, u, u_{t}, u_{x}\right) \tag{1.6}
\end{equation*}
$$

with sufficiently small ε and continuously differentiable q.
In [13], a unified approach to the previous cases was presented discussing the existence unique and asymptotic stability of classical solutions for a class of nonlinear continuous dynamical systems.

In [8], Long et al. have studied the linear recursive schemes and asymptotic expansion for the nonlinear wave equation

$$
\begin{equation*}
u_{t t}-u_{x x}=f\left(x, t, u, u_{x}, u_{t}\right)+\varepsilon f_{1}\left(x, t, u, u_{x}, u_{t}\right) \tag{1.7}
\end{equation*}
$$

with the mixed nonhomogeneous conditions

$$
\begin{equation*}
u_{x}(0, t)-h_{0} u(0, t)=g_{0}(t), \quad u(1, t)=g_{1}(t) \tag{1.8}
\end{equation*}
$$

In the case of $g_{0}, g_{1} \in C^{3}\left(\mathbb{R}_{+}\right), f \in C^{N+1}\left([0,1] \times \mathbb{R}_{+} \times \mathbb{R}^{3}\right), f_{1} \in C^{N}\left([0,1] \times \mathbb{R}_{+} \times \mathbb{R}^{3}\right)$, and some other conditions, an asymptotic expansion of the weak solution u_{ε} of order $N+1$ in ε is considered.

This paper consists of four sections. In Section 2, we present some preliminaries. Using the Faedo-Galerkin method and the compact imbedding theorems, in Section 3, we prove the solvability and the uniqueness of a weak solution of the problem (1.1)-(1.3). In Section 4, based on the ideals and the techniques used in the above-mentioned papers, we study a high-order asymptotic expansion of a weak solution for the problem (1.1)-(1.3), where (1.1) has the form of a linear wave equation with nonlinear perturbations containing many
small parameters. In order to avoid making the treatment too complicated without losing of generality, at first, an asymptotic expansion of a weak solution $u=u_{\varepsilon_{1}, \varepsilon_{2}}(x, t)$ of order $N+1$ in two small parameters $\varepsilon_{1}, \varepsilon_{2}$ for the following equation:

$$
\begin{equation*}
u_{t t}-\frac{\partial}{\partial x}\left(\left[\mu_{0}(x, t)+\varepsilon_{1} \mu_{1}(x, t, u)\right] u_{x}\right)=f_{0}(x, t)+\varepsilon_{2} f_{1}\left(x, t, u, u_{x}, u_{t}\right) \tag{1.9}
\end{equation*}
$$

associated with (1.2), (1.3), with $\mu_{0} \in C^{2}\left([0,1] \times \mathbb{R}_{+}\right), \mu_{1} \in C^{N+1}\left([0,1] \times \mathbb{R}_{+} \times \mathbb{R}\right), \mu_{0}(x, t) \geq \mu_{*}>$ $0, \mu_{1}(x, t, z) \geq 0$, for all $(x, t, z) \in[0,1] \times \mathbb{R}_{+} \times \mathbb{R}, f_{0} \in C^{1}\left([0,1] \times \mathbb{R}_{+}\right)$, and $f_{1} \in C^{N}\left([0,1] \times \mathbb{R}_{+} \times\right.$ \mathbb{R}^{3}) is established. Next, we note that the same results are valid for the equation in p small parameters $\varepsilon_{1}, \ldots, \varepsilon_{p}$ as follows

$$
\begin{equation*}
u_{t t}-\frac{\partial}{\partial x}\left[\left(\mu_{0}(x, t)+\sum_{i=1}^{p} \varepsilon_{i} \mu_{i}(x, t, u)\right) u_{x}\right]=f_{0}(x, t)+\sum_{i=1}^{p} \varepsilon_{i} f_{i}\left(x, t, u, u_{x}, u_{t}\right) \tag{1.10}
\end{equation*}
$$

associated with (1.2), (1.3). The result obtained here is a relative generalization of [5-7,14], where asymptotic expansion of a weak solution in two or three small parameters is given.

2. Preliminaries

Put $\Omega=(0,1)$. Let us omit the definitions of usual function spaces that will be used in what follows such as $L^{p}=L^{p}(\Omega), H^{m}=H^{m}(\Omega), H_{0}^{m}=H_{0}^{m}(\Omega)$. The norm in L^{2} is denoted by $\|\cdot\|$. We denote by $\langle\cdot, \cdot\rangle$ the scalar product in L^{2} or a pair of dual products of continuous linear functional with an element of a function space. We denote by $\|\cdot\|_{X}$ the norm of a Banach space X and by X^{\prime} the dual space of X. We denote $L^{p}(0, T ; X), 1 \leq p \leq \infty$, the Banach space of real functions $u:(0, T) \rightarrow X$ measurable, such that $\|u\|_{L^{p}(0, T ; X)}<+\infty$, with

$$
\|u\|_{L^{p}(0, T ; X)}= \begin{cases}\left(\int_{0}^{T}\|u(t)\|_{X}^{p} d t\right)^{1 / p}, & \text { if } 1 \leq p<\infty \tag{2.1}\\ \underset{0<t<T}{\operatorname{ess} \sup }\|u(t)\|_{X}, & \text { if } p=\infty\end{cases}
$$

Let $u(t), u^{\prime}(t)=u_{t}(t)=\dot{u}(t), u^{\prime \prime}(t)=u_{t t}(t)=\ddot{u}(t), u_{x}(t)=\nabla u(t), u_{x x}(t)=\Delta u(t)$ denote $u(x, t), \partial u / \partial t(x, t), \partial^{2} u / \partial t^{2}(x, t), \partial u / \partial x(x, t), \partial^{2} u / \partial x^{2}(x, t)$, respectively. With $f \in C^{k}([0,1] \times$ $\left.\mathbb{R}_{+} \times \mathbb{R}^{3}\right), f=f(x, t, u, v, w)$, we put $D_{1} f=\partial f / \partial x, D_{2} f=\partial f / \partial t, D_{3} f=\partial f / \partial u, D_{4} f=$ $\partial f / \partial v, D_{5} f=\partial f / \partial w$ and $D^{\alpha} f=D_{1}^{\alpha_{1}} D_{2}^{\alpha_{2}} D_{3}^{\alpha_{3}} D_{4}^{\alpha_{4}} D_{5}^{\alpha_{5}} f ; \alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right) \in \mathbb{Z}_{+}^{5},|\alpha|=$ $\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5}=k, D^{(0,0, \ldots, 0)} f=f$.

Similarly, with $\mu \in C^{k}\left([0,1] \times \mathbb{R}_{+} \times \mathbb{R}\right), \mu=\mu(x, t, z)$, we put $D_{1} \mu=\partial \mu / \partial x, D_{2} \mu=$ $\partial \mu / \partial t, D_{3} \mu=\partial \mu / \partial z$ and $D^{\beta} \mu=D_{1}^{\beta_{1}} D_{2}^{\beta_{2}} D_{3}^{\beta_{3}}, \beta=\left(\beta_{1}, \beta_{2}, \beta_{3}\right) \in \mathbb{Z}_{+}^{3},|\beta|=\beta_{1}+\beta_{2}+\beta_{3}=k$.

On H^{1}, we will use the following norms:

$$
\begin{equation*}
\|v\|_{H^{1}}=\left(\|v\|^{2}+\left\|v_{x}\right\|^{2}\right)^{1 / 2} \tag{2.2}
\end{equation*}
$$

Then, we have the following lemma.

Lemma 2.1. The imbedding $H^{1} \hookrightarrow C^{0}(\bar{\Omega})$ is compact and

$$
\begin{equation*}
\|v\|_{C^{0}(\bar{\Omega})} \leq \sqrt{2}\|v\|_{H^{1}} \quad \forall v \in H^{1} \tag{2.3}
\end{equation*}
$$

The proof of Lemma 2.1 is easy, hence we omit the details.
Remark 2.2. On $H_{0}^{1}, v \mapsto\|v\|_{H^{1}}$ and $v \mapsto\left\|v_{x}\right\|$ are two equivalent norms. Furthermore, we have the following inequalities:

$$
\begin{equation*}
\|v\|_{C^{0}(\bar{\Omega})} \leq\left\|v_{x}\right\| \quad \forall v \in H_{0}^{1} . \tag{2.4}
\end{equation*}
$$

Remark 2.3. (i) Let us note more that a unique weak solution u of the problem (1.1)-(1.3) will be obtained in Section 3 (Theorem 3.2) in the following manner.

Find $u \in \widetilde{W}=\left\{u \in L^{\infty}\left(0, T ; H_{0}^{1} \cap H^{2}\right): u^{\prime} \in L^{\infty}\left(0, T ; H_{0}^{1}\right), u^{\prime \prime} \in L^{\infty}\left(0, T ; L^{2}\right)\right\}$ such that u verifies the following variational equation:

$$
\begin{equation*}
\left\langle u^{\prime \prime}(t), w\right\rangle+\left\langle\mu(\cdot, t, u(t)) u_{x}(t), w_{x}\right\rangle=\left\langle f\left(\cdot, t, u(t), u_{x}(t), u^{\prime}(t)\right), w\right\rangle, \quad \forall w \in H_{0}^{1}, \tag{2.5}
\end{equation*}
$$

and the initial conditions

$$
\begin{equation*}
u(0)=\tilde{u}_{0}, \quad u^{\prime}(0)=\tilde{u}_{1} . \tag{2.6}
\end{equation*}
$$

(ii) With the regularity obtained by $u \in \widetilde{W}$, it also follows from Theorem 3.2 that the problem (1.1)-(1.3) has a unique strong solution u that satisfies

$$
\begin{equation*}
u \in C^{0}\left(0, T ; H^{1}\right) \cap C^{1}\left(0, T ; L^{2}\right) \cap L^{\infty}\left(0, T ; H^{2}\right), \quad u_{t} \in L^{\infty}\left(0, T ; H^{1}\right), \quad u_{t t} \in L^{\infty}\left(0, T ; L^{2}\right) \tag{2.7}
\end{equation*}
$$

On the other hand, by $u \in \widetilde{W}$, we can see that $u, u_{x}, u_{t}, u_{x x}, u_{x t}, u_{t t} \in L^{\infty}\left(0, T ; L^{2}\right) \subset$ $L^{2}\left(Q_{T}\right)$.

Also, if $\left(u_{0}, u_{1}\right) \in\left(H_{0}^{1} \cap H^{2}\right) \times H_{0}^{1}$, then the weak solution u of the problem (1.1)-(1.3) belongs to $H^{2}\left(Q_{T}\right)$. So, the solution is almost classical which is rather natural, since the initial data (u_{0}, u_{1}) do not belong necessarily to $C^{2}(\bar{\Omega}) \times C^{1}(\bar{\Omega})$.

3. The Existence and the Uniqueness of a Weak Solution

We make the following assumptions:

$$
\begin{aligned}
& \left(H_{1}\right) \tilde{u}_{0} \in H_{0}^{1} \cap H^{2}, \tilde{u}_{1} \in H_{0}^{1}, \\
& \left(H_{2}\right) \mu \in C^{2}\left([0,1] \times \mathbb{R}_{+} \times \mathbb{R}\right), \mu(x, t, z) \geq \mu_{*}>0 \text {, for all }(x, t, z) \in[0,1] \times \mathbb{R}_{+} \times \mathbb{R}, \\
& \left(H_{3}\right) f \in C^{1}\left(\bar{\Omega} \times \mathbb{R}_{+} \times \mathbb{R}^{3}\right) .
\end{aligned}
$$

With μ and f satisfying the assumptions $\left(H_{2}\right)$ and $\left(H_{3}\right)$, respectively, for each $T^{*}>0$ and $M>0$ are given, we put the following constants:

$$
\begin{align*}
& \tilde{K}_{M}(\mu)=\|\mu\|_{C^{2}\left(\tilde{D}_{M}^{*}\right)^{\prime}} \tag{3.1}\\
& K_{M}(f)=\|f\|_{C^{1}\left(D_{M}^{*}\right)^{\prime}} \tag{3.2}
\end{align*}
$$

where $\widetilde{D}_{M}^{*}=\left\{(x, t, z): 0 \leq x \leq 1,0 \leq t \leq T^{*},|z| \leq M\right\}$ and $D_{M}^{*}=\left\{(x, t, u, v, w) \in \mathbb{R}_{+} \times \mathbb{R}_{+} \times \mathbb{R}^{3}\right.$: $\left.0 \leq x \leq 1,0 \leq t \leq T^{*},|u|,|v|,|w| \leq M\right\}$.

For each $T \in\left(0, T^{*}\right]$ and $M>0$, we get

$$
\begin{align*}
W(M, T)= & \left\{v \in L^{\infty}\left(0, T ; H_{0}^{1} \cap H^{2}\right): v_{t} \in L^{\infty}\left(0, T ; H_{0}^{1}\right), v_{t t} \in L^{2}\left(Q_{T}\right)\right. \tag{3.3}\\
& \text { with } \left.\|v\|_{L^{\infty}\left(0, T ; H_{0}^{1} \cap H^{2}\right)},\left\|v_{t}\right\|_{L^{\infty}\left(0, T ; H_{0}^{1}\right)}\left\|v_{t t}\right\|_{L^{2}\left(Q_{T}\right)} \leq M\right\} \\
W_{1}(M, T)=\{ & \left.v \in W(M, T): v_{t t} \in L^{\infty}\left(0, T ; L^{2}\right)\right\} \tag{3.4}
\end{align*}
$$

where $Q_{T}=\Omega \times(0, T)$.
We choose the first term $u_{0} \equiv \tilde{u}_{0} \in W_{1}(M, T)$. Suppose that

$$
\begin{equation*}
u_{m-1} \in W_{1}(M, T), \quad m \geq 1 \tag{3.5}
\end{equation*}
$$

The problem (1.1)-(1.3) is associated with the following variational problem. Find $u_{m} \in W_{1}(M, T)$ such that

$$
\begin{gather*}
\left\langle u_{m}^{\prime \prime}(t), v\right\rangle+\left\langle\mu_{m}(t) \nabla u_{m}(t), \nabla v\right\rangle=\left\langle F_{m}(t), v\right\rangle, \quad \forall v \in H_{0}^{1} \tag{3.6}\\
u_{m}(0)=\tilde{u}_{0}, \quad u_{m}^{\prime}(0)=\tilde{u}_{1} \tag{3.7}
\end{gather*}
$$

where

$$
\begin{equation*}
\mu_{m}(x, t)=\mu\left(x, t, u_{m-1}(t)\right), \quad F_{m}(x, t)=f\left(x, t, u_{m-1}(x, t), \nabla u_{m-1}(x, t), u_{m-1}^{\prime}(x, t)\right) \tag{3.8}
\end{equation*}
$$

Then, we have the following theorem.
Theorem 3.1. Let $\left(H_{1}\right)-\left(H_{3}\right)$ hold. Then, there exist two constants $M>0, T>0$ and the linear recurrent sequence $\left\{u_{m}\right\} \subset W_{1}(M, T)$ defined by (3.6)-(3.8).

Proof. The proof consists of three steps.
Step 1. The Faedo-Galerkin approximation (introduced by Lions [15]).

Consider a special basis $\left\{w_{j}\right\}$ on $H_{0}^{1}: w_{j}(x)=\sqrt{2} \sin (j \pi x), j \in \mathbb{N}$, formed by the eigenfunctions of the Laplacian $-\Delta=-\partial^{2} / \partial x^{2}$. Put

$$
\begin{equation*}
u_{m}^{(k)}(t)=\sum_{j=1}^{k} c_{m j}^{(k)}(t) w_{j} \tag{3.9}
\end{equation*}
$$

where the coefficients $c_{m j}^{(k)}$ satisfy the system of linear differential equations

$$
\begin{gather*}
\left\langle\ddot{u}_{m}^{(k)}(t), w_{j}\right\rangle+\left\langle\mu_{m}(t) \nabla u_{m}^{(k)}(t), \nabla w_{j}\right\rangle=\left\langle F_{m}(t), w_{j}\right\rangle, \quad 1 \leq j \leq k \tag{3.10}\\
u_{m}^{(k)}(0)=\tilde{u}_{0 k}, \quad \dot{u}_{m}^{(k)}(0)=\tilde{u}_{1 k} \tag{3.11}
\end{gather*}
$$

where

$$
\begin{gather*}
\tilde{u}_{0 k}=\sum_{j=1}^{k} \alpha_{j}^{(k)} w_{j} \longrightarrow \tilde{u}_{0} \quad \text { strongly in } H_{0}^{1} \cap H^{2} \\
\tilde{u}_{1 k}=\sum_{j=1}^{k} \beta_{j}^{(k)} w_{j} \longrightarrow \tilde{u}_{1} \quad \text { strongly in } H_{0}^{1} \tag{3.12}
\end{gather*}
$$

Note that by (3.5), it is not difficult to prove that the system (3.10), (3.11) has a unique solution $u_{m}^{(k)}(t)$ on interval [$\left.0, T\right]$, so let us omit the details.

Step 2. A priori estimates. At first, put

$$
\begin{align*}
& s_{m}^{(k)}(t)=p_{m}^{(k)}(t)+q_{m}^{(k)}(t)+\int_{0}^{t}\left\|\ddot{u}_{m}^{(k)}(s)\right\|^{2} d s \\
& p_{m}^{(k)}(t)=\left\|\dot{u}_{m}^{(k)}(t)\right\|^{2}+\left\|\sqrt{\mu_{m}(t)} \nabla u_{m}^{(k)}(t)\right\|^{2} \tag{3.13}\\
& q_{m}^{(k)}(t)=\left\|\nabla \dot{u}_{m}^{(k)}(t)\right\|^{2}+\left\|\sqrt{\mu_{m}(t)} \Delta u_{m}^{(k)}(t)\right\|^{2}
\end{align*}
$$

Then, it follows from (3.9)-(3.11), (3.13) that

$$
\begin{aligned}
s_{m}^{(k)}(t)= & s_{m}^{(k)}(0)+2\left\langle\nabla \mu_{m}(0) \nabla \tilde{u}_{0 k}, \Delta \tilde{u}_{0 k}\right\rangle+2\left\langle F_{m}(0), \Delta \tilde{u}_{0 k}\right\rangle \\
& +\int_{0}^{t} d s \int_{0}^{1} \mu_{m}^{\prime}(x, s)\left(\left|\nabla u_{m}^{(k)}(x, s)\right|^{2}+\left|\Delta u_{m}^{(k)}(x, s)\right|^{2}\right) d x+2 \int_{0}^{t}\left\langle F_{m}(s), \dot{u}_{m}^{(k)}(s)\right\rangle d s \\
& +2 \int_{0}^{t}\left\langle\frac{\partial}{\partial s}\left(\nabla \mu_{m}(s) \nabla u_{m}^{(k)}(s)\right), \Delta u_{m}^{(k)}(s)\right\rangle d s-2\left\langle\nabla \mu_{m}(t) \nabla u_{m}^{(k)}(t), \Delta u_{m}^{(k)}(t)\right\rangle
\end{aligned}
$$

$$
\begin{align*}
& -2\left\langle F_{m}(t), \Delta u_{m}^{(k)}(t)\right\rangle+2 \int_{0}^{t}\left\langle\frac{\partial F_{m}}{\partial t}(s), \Delta u_{m}^{(k)}(s)\right\rangle d s+\int_{0}^{t}\left\|\ddot{u}_{m}^{(k)}(s)\right\|^{2} d s \\
= & q_{m}^{(k)}(0)+2\left\langle\nabla \mu_{m}(0) \nabla \tilde{u}_{0 k}, \Delta \tilde{u}_{0 k}\right\rangle+2\left\langle F_{m}(0), \Delta \tilde{u}_{0 k}\right\rangle+\sum_{j=1}^{7} I_{j} . \tag{3.14}
\end{align*}
$$

Next, we will estimate the terms $I_{j}, j=1,2, \ldots, 7$ on the right-hand side of (3.14) as follows.

First Term I_{1}
We have

$$
\begin{equation*}
\mu_{m}^{\prime}(t)=D_{2} \mu\left(x, t, u_{m-1}(t)\right)+D_{3} \mu\left(x, t, u_{m-1}(t)\right) u_{m-1}^{\prime}(t) \tag{3.15}
\end{equation*}
$$

From (3.1), (3.5), and (3.8), we have

$$
\begin{equation*}
\left|\mu_{m}^{\prime}(x, t)\right| \leq(1+M) \tilde{K}_{M}(\mu) \tag{3.16}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
I_{1}=\int_{0}^{t} d s \int_{0}^{1} \mu_{m}^{\prime}(x, s)\left(\left|\nabla u_{m}^{(k)}(x, s)\right|^{2}+\left|\Delta u_{m}^{(k)}(x, s)\right|^{2}\right) d x \leq \frac{1+M}{\mu_{*}} \tilde{K}_{M}(\mu) \int_{0}^{t} s_{m}^{(k)}(s) d s \tag{3.17}
\end{equation*}
$$

Second Term

By using $\left(\mathrm{H}_{3}\right)$, we obtain from (3.2), (3.5), and (3.13) $)_{2}$ that

$$
\begin{equation*}
I_{2}=2 \int_{0}^{t}\left\langle F_{m}(s), \dot{u}_{m}^{(k)}(s)\right\rangle d s \leq T K_{M}^{2}(f)+\int_{0}^{t} p_{m}^{(k)}(s) d s \tag{3.18}
\end{equation*}
$$

Third Term
The Cauchy-Schwartz inequality yields

$$
\begin{equation*}
\left|I_{3}\right|=2\left|\int_{0}^{t}\left\langle\frac{\partial}{\partial s}\left(\nabla \mu_{m}(s) \nabla u_{m}^{(k)}(s)\right), \Delta u_{m}^{(k)}(s)\right\rangle d s\right| \leq \frac{2}{\sqrt{\mu_{*}}} \int_{0}^{t} r_{m}^{(k)}(s) \sqrt{q_{m}^{(k)}(s)} d s, \tag{3.19}
\end{equation*}
$$

where $r_{m}^{(k)}(s)=\left\|\partial / \partial s\left(\nabla \mu_{m}(s) \nabla u_{m}^{(k)}(s)\right)\right\|$.

We note

$$
\begin{align*}
r_{m}^{(k)}(s) & =\left\|\nabla \mu_{m}(s) \nabla \dot{u}_{m}^{(k)}(s)+\frac{\partial}{\partial s}\left(\nabla \mu_{m}(s)\right) \nabla u_{m}^{(k)}(s)\right\| \\
& \leq\left(\left\|\nabla \mu_{m}(s)\right\|_{C^{0}(\bar{\Omega})}+\frac{1}{\sqrt{\mu_{*}}}\left\|\frac{\partial}{\partial s} \nabla \mu_{m}(s)\right\|\right) \sqrt{s_{m}^{(k)}(s)} . \tag{3.20}
\end{align*}
$$

On the other hand, by $\nabla \mu_{m}(x, s)=D_{1} \mu\left(x, s, u_{m-1}(x, s)\right)+D_{3} \mu\left(x, s, u_{m-1}(x, s)\right)$ $\nabla u_{m-1}(x, s)$, it is implies that

$$
\begin{equation*}
\left\|\nabla \mu_{m}(s)\right\|_{C^{0}(\bar{\Omega})} \leq \widetilde{K}_{M}(\mu)\left(1+\left\|\nabla u_{m-1}(s)\right\|_{C^{0}(\bar{\Omega})}\right) \leq 2(1+M) \tilde{K}_{M}(\mu) . \tag{3.21}
\end{equation*}
$$

Similarly, the following equality

$$
\begin{align*}
\frac{\partial}{\partial s} \nabla \mu_{m}(x, s)= & D_{1} D_{1} \mu\left(x, s, u_{m-1}(x, s)\right)+D_{3} D_{1} \mu\left(x, s, u_{m-1}(x, s)\right) u_{m-1}^{\prime}(x, s) \\
& +\left[D_{1} D_{3} \mu\left(x, s, u_{m-1}(x, s)\right)+D_{3} D_{3} \mu\left(x, s, u_{m-1}(x, s)\right) u_{m-1}^{\prime}(x, s)\right] \nabla u_{m-1}(x, s) \\
& +D_{3} \mu\left(x, s, u_{m-1}(x, s)\right) \nabla u_{m-1}^{\prime}(x, s) \tag{3.22}
\end{align*}
$$

gives

$$
\begin{equation*}
\left\|\frac{\partial}{\partial s} \nabla \mu_{m}(s)\right\| \leq\left(1+3 M+M^{2}\right) \tilde{K}_{M}(\mu) . \tag{3.23}
\end{equation*}
$$

It follows from (3.20)-(3.23) that

$$
\begin{equation*}
r_{m}^{(k)}(s) \leq\left[2(1+M)+\frac{1+3 M+M^{2}}{\sqrt{\mu_{*}}}\right] \widetilde{K}_{M}(\mu) \sqrt{s_{m}^{(k)}(s)} . \tag{3.24}
\end{equation*}
$$

Hence, we obtain from (3.19) and (3.24) that

$$
\begin{equation*}
\left|I_{3}\right| \leq \frac{2}{\sqrt{\mu_{*}}}\left[2(1+M)+\frac{1+3 M+M^{2}}{\sqrt{\mu_{*}}}\right] \tilde{K}_{M}(\mu) \int_{0}^{t} s_{m}^{(k)}(s) d s . \tag{3.25}
\end{equation*}
$$

Fourth Term I_{4}
By the Cauchy-Schwartz inequality, we have

$$
\begin{equation*}
\left|I_{4}\right|=\left|-2\left\langle\nabla \mu_{m}(t) \nabla u_{m}^{(k)}(t), \Delta u_{m}^{(k)}(t)\right\rangle\right| \leq \frac{1}{\beta}\left\|\nabla \mu_{m}(t) \nabla u_{m}^{(k)}(t)\right\|^{2}+\beta\left\|\Delta u_{m}^{(k)}(t)\right\|^{2}, \tag{3.26}
\end{equation*}
$$

for all $\beta>0$. On the other hand

$$
\begin{align*}
\left\|\nabla \mu_{m}(t) \nabla u_{m}^{(k)}(t)\right\| & =\left\|\nabla \mu_{m}(0) \nabla \tilde{u}_{0 k}+\int_{0}^{t} \frac{\partial}{\partial s}\left(\nabla \mu_{m}(s) \nabla u_{m}^{(k)}(s)\right) d s\right\| \tag{3.27}\\
& \leq\left\|\nabla \mu_{m}(0)\right\|_{C^{0}(\bar{\Omega})}\left\|\nabla \tilde{u}_{0 k}\right\|+\int_{0}^{t} r_{m}^{(k)}(s) d s
\end{align*}
$$

Hence, we obtain from (3.26), (3.27) that

$$
\begin{align*}
\left|I_{4}\right| \leq & \frac{\beta}{\mu_{*}} q_{m}^{(k)}(t)+\frac{2}{\beta}\left\|\nabla \mu_{m}(0)\right\|_{C^{0}(\bar{\Omega})}^{2}\left\|\nabla \tilde{u}_{0 k}\right\|^{2} \\
& +\frac{2}{\beta} T\left[2(1+M)+\frac{1+3 M+M^{2}}{\sqrt{\mu_{*}}}\right]^{2} \widetilde{K}_{M}^{2}(\mu) \int_{0}^{t} s_{m}^{(k)}(s) d s \tag{3.28}
\end{align*}
$$

for all $\beta>0$.

Fifth Term I_{5}
By (3.5), (3.8), and (3.13), we obtain

$$
\begin{align*}
\left|I_{5}\right| & =\left|-2\left\langle F_{m}(t), \Delta u_{m}^{(k)}(t)\right\rangle\right| \leq \frac{1}{\beta}\left\|F_{m}(t)\right\|^{2}+\beta\left\|\Delta u_{m}^{(k)}(t)\right\|^{2} \\
& \leq \frac{2}{\beta}\left\|F_{m}(0)\right\|^{2}+\frac{2}{\beta} T \int_{0}^{T}\left\|\frac{\partial F_{m}}{\partial s}(s)\right\|^{2} d s+\frac{\beta}{\mu_{*}} s_{m}^{(k)}(t), \quad \forall \beta>0 \tag{3.29}
\end{align*}
$$

Note that

$$
\begin{equation*}
\frac{\partial F_{m}}{\partial t}(t)=D_{2} f\left[u_{m-1}\right]+D_{3} f\left[u_{m-1}\right] u_{m-1}^{\prime}(t)+D_{4} f\left[u_{m-1}\right] \nabla u_{m-1}^{\prime}(t)+D_{5} f\left[u_{m-1}\right] u_{m-1}^{\prime \prime}(t) \tag{3.30}
\end{equation*}
$$

where we use the notation $D_{i} f\left[u_{m-1}\right]=D_{i} f\left(x, t, u_{m-1}(x, t), \nabla u_{m-1}(x, t), u_{m-1}^{\prime}(x, t)\right), i=$ $2, \ldots, 5$. By (3.2), (3.5), and (3.30), we obtain

$$
\begin{equation*}
\left\|\frac{\partial F_{m}}{\partial t}(t)\right\| \leq K_{M}(f)\left(1+2 M+\left\|u_{m-1}^{\prime \prime}(t)\right\|\right) \tag{3.31}
\end{equation*}
$$

Hence, we deduce from (3.29) and (3.31) that

$$
\begin{equation*}
\left|I_{5}\right| \leq \frac{2}{\beta}\left\|F_{m}(0)\right\|^{2}+\frac{4}{\beta} T K_{M}^{2}(f)\left[(1+2 M)^{2} T+M^{2}\right]+\frac{\beta}{\mu_{*}} s_{m}^{(k)}(t), \quad \forall \beta>0 \tag{3.32}
\end{equation*}
$$

Sixth Term I_{6}

By (3.2), (3.5), (3.13) ${ }_{3}$, and (3.31), we get

$$
\begin{align*}
\left|I_{6}\right|= & 2\left|\int_{0}^{t}\left\langle\frac{\partial F_{m}}{\partial t}(s), \Delta u_{m}^{(k)}(s)\right\rangle d s\right| \leq \int_{0}^{t}\left\|\frac{\partial F_{m}}{\partial t}(s)\right\| d s+\int_{0}^{t}\left\|\frac{\partial F_{m}}{\partial t}(s)\right\|\left\|\Delta u_{m}^{(k)}(s)\right\|^{2} d s \\
\leq & K_{M}(f)\left[(1+2 M) T+\sqrt{T}\left(\int_{0}^{T}\left\|u_{m-1}^{\prime \prime}(s)\right\|^{2} d s\right)^{1 / 2}\right] \\
& +\frac{1}{\mu_{*}} K_{M}(f) \int_{0}^{t}\left(1+2 M+\left\|u_{m-1}^{\prime \prime}(s)\right\|\right) q_{m}^{(k)}(s) d s \\
\leq & K_{M}(f)[(1+2 M) T+\sqrt{T} M]+\frac{1}{\mu_{*}} K_{M}(f) \int_{0}^{t}\left(1+2 M+\left\|u_{m-1}^{\prime \prime}(s)\right\|\right) q_{m}^{(k)}(s) d s . \tag{3.33}
\end{align*}
$$

Seventh Term I_{7}

Equation (3.10) is rewritten as follows:

$$
\begin{equation*}
\left\langle\ddot{u}_{m}^{(k)}(t), w_{j}\right\rangle-\left\langle\frac{\partial}{\partial x}\left(\mu_{m}(t) \nabla u_{m}^{(k)}(t)\right), w_{j}\right\rangle=\left\langle F_{m}(t), w_{j}\right\rangle, \quad 1 \leq j \leq k . \tag{3.34}
\end{equation*}
$$

Hence, by replacing w_{j} with $\ddot{u}_{m}^{(k)}(t)$ and integrating

$$
\begin{align*}
I_{7} & =\int_{0}^{t}\left\|\ddot{u}_{m}^{(k)}(s)\right\|^{2} d s \leq 2 \int_{0}^{t}\left\|\frac{\partial}{\partial x}\left(\mu_{m}(s) \nabla u_{m}^{(k)}(s)\right)\right\|^{2} d s+2 \int_{0}^{t}\left\|F_{m}(s)\right\|^{2} d s \tag{3.35}\\
& \leq 2 \int_{0}^{t}\left\|\frac{\partial}{\partial x}\left(\mu_{m}(s) \nabla u_{m}^{(k)}(s)\right)\right\|^{2} d s+2 T K_{M}^{2}(f),
\end{align*}
$$

we need, estimate $\left\|\partial / \partial x\left(\mu_{m}(s) \nabla v_{m}^{(k)}(s)\right)\right\|$.
Combining (3.1), (3.5), and (3.13) yields

$$
\begin{align*}
\left\|\frac{\partial}{\partial x}\left(\mu_{m}(s) \nabla u_{m}^{(k)}(s)\right)\right\| & =\left\|\nabla \mu_{m}(s) \nabla u_{m}^{(k)}(s)+\mu_{m}(s) \Delta u_{m}^{(k)}(s)\right\| \\
& \leq\left\|\nabla \mu_{m}(s)\right\|_{C^{0}(\bar{\Omega})}\left\|\nabla u_{m}^{(k)}(s)\right\|+\left\|\mu_{m}(s)\right\|_{C^{0}(\bar{\Omega})}\left\|\Delta u_{m}^{(k)}(s)\right\| \\
& \leq \frac{2}{\sqrt{\mu_{*}}}(1+M) \widetilde{K}_{M}(\mu) \sqrt{p_{m}^{(k)}(s)}+\frac{1}{\sqrt{\mu_{*}}} \tilde{K}_{M}(\mu) \sqrt{q_{m}^{(k)}(s)} \tag{3.36}\\
& \leq \frac{3}{\sqrt{\mu_{*}}}(1+M) \tilde{K}_{M}(\mu) \sqrt{s_{m}^{(k)}(s)} .
\end{align*}
$$

Therefore, from (3.35) and (3.36), we obtain

$$
\begin{equation*}
I_{7} \leq 2 T K_{M}^{2}(f)+\frac{18}{\mu_{*}}(1+M)^{2} \tilde{K}_{M}^{2}(\mu) \int_{0}^{t} s_{m}^{(k)}(s) d s \tag{3.37}
\end{equation*}
$$

Choosing $\beta>0$, with $2 \beta / \mu_{*} \leq 1 / 2$, it follows from (3.13), (3.14), (3.17), (3.18), (3.25), (3.28), (3.32), (3.33), and (3.37) that

$$
\begin{equation*}
s_{m}^{(k)}(t) \leq \tilde{C}_{0 k}+\tilde{C}_{1}(M, T)+\int_{0}^{t}\left(\tilde{C}_{2}(M, T)+\frac{2}{\mu_{*}} K_{M}(f)\left\|u_{m-1}^{\prime \prime}(s)\right\|\right) s_{m}^{(k)}(s) d s \tag{3.38}
\end{equation*}
$$

where

$$
\begin{align*}
\tilde{C}_{0 k}= & \tilde{C}_{0 k}\left(\beta, f, \mu, \tilde{u}_{0}, \tilde{u}_{1}, \tilde{u}_{0 k}, \tilde{u}_{1 k}\right) \\
= & 2 s_{m}^{(k)}(0)+4\left\langle\nabla \mu_{m}(0) \nabla \tilde{u}_{0 k}, \Delta \tilde{u}_{0 k}\right\rangle+4\left\langle F_{m}(0), \Delta \tilde{u}_{0 k}\right\rangle \\
& +\frac{4}{\beta}\left\|\nabla \mu_{m}(0)\right\|_{C^{0}(\bar{\Omega})}^{2}\left\|\nabla \tilde{u}_{0 k}\right\|^{2}+\frac{4}{\beta}\left\|F_{m}(0)\right\|^{2}, \\
\tilde{C}_{1}(M, T)= & \tilde{C}_{1}(\beta, f, M, T) \\
= & 2\left(3+\frac{4}{\beta}\left[(1+2 M)^{2} T+M^{2}\right]\right) T K_{M}^{2}(f) \tag{3.39}\\
& +2[M+(1+2 M) \sqrt{T}] \sqrt{T} K_{M}(f) \\
\tilde{C}_{2}(M, T)= & \tilde{C}_{2}(\beta, f, \mu, M, T) \\
= & 2+\frac{2}{\mu_{0}}(1+2 M) K_{M}(f) \\
& +\frac{2}{\mu_{*}}\left[\left(1+4 \sqrt{\mu_{*}}\right)(1+M)+2\left(1+3 M+M^{2}\right)\right] \tilde{K}_{M}(\mu) \\
& +\frac{4}{\mu_{*}}\left[\frac{1}{\beta} T\left(2(1+M) \sqrt{\mu_{*}}+1+3 M+M\right)^{2}+9(1+M)^{2}\right] \tilde{K}_{M}^{2}(\mu)
\end{align*}
$$

By $\left(H_{1}\right)$, we deduce from (3.12), (3.39) $)_{1}$ that there exists $M>0$ independent of m and k, such that

$$
\begin{equation*}
\tilde{C}_{0 k} \leq \frac{1}{2} M^{2} \tag{3.40}
\end{equation*}
$$

Notice that by $\left(\mathrm{H}_{3}\right)$, we deduce from (3.39 $)_{2,3}$ that

$$
\begin{equation*}
\lim _{T \rightarrow 0_{+}} \tilde{C}_{1}(M, T)=\lim _{T \rightarrow 0_{+}} T \tilde{C}_{2}(M, T)=0 \tag{3.41}
\end{equation*}
$$

So, from (3.39) and (3.41), we can choose $T>0$ such that

$$
\begin{gather*}
\left(\frac{1}{2} M^{2}+\tilde{C}_{1}(M, T)\right) \exp \left(T \tilde{C}_{2}(M, T)+\frac{2}{\mu_{0}} K_{M}(f) \sqrt{T} M\right) \leq M^{2} \tag{3.42}\\
k_{T}=\left(1+\frac{1}{\sqrt{\mu_{*}}}\right) \sqrt{T} \sqrt{4 K_{M}^{2}(f)+(4+M)^{2} M^{2} \widetilde{K}_{M}^{2}(\mu)} e^{T\left[1+\left((1+M) / 2 \mu_{*}\right) \tilde{K}_{M}(\mu)\right]}<1 \tag{3.43}
\end{gather*}
$$

Finally, it follows from (3.38), (3.40), and (3.42) that

$$
\begin{align*}
s_{m}^{(k)}(t) \leq & M^{2} \exp \left(-T \tilde{C}_{2}(M, T)-\frac{2}{\mu_{0}} K_{M}(f) \sqrt{T} M\right) \tag{3.44}\\
& +\int_{0}^{t}\left(\tilde{C}_{2}(M, T)+\frac{2}{\mu_{0}} K_{M}(f)\left\|u_{m-1}^{\prime \prime}(s)\right\|\right) s_{m}^{(k)}(s) d s .
\end{align*}
$$

By using Gronwall's lemma, we deduce from (3.44) that

$$
\begin{align*}
s_{m}^{(k)}(t) \leq & M^{2} \exp \left(-T \tilde{C}_{2}(M, T)-\frac{2}{\mu_{0}} K_{M}(f) \sqrt{T} M\right) \\
& \times \exp \left[\int_{0}^{T}\left(\tilde{C}_{2}(M, T)+\frac{2}{\mu_{0}} K_{M}(f)\left\|u_{m-1}^{\prime \prime}(s)\right\|\right) d s\right] \tag{3.45}\\
\leq & M^{2} \exp \left(-T \tilde{C}_{2}(M, T)-\frac{2}{\mu_{0}} K_{M}(f) \sqrt{T} M\right) \\
& \times \exp \left[T \widetilde{C}_{2}(M, T)+\frac{2}{\mu_{0}} K_{M}(f) \sqrt{T}\left\|u_{m-1}^{\prime \prime}\right\|_{L^{2}\left(Q_{T}\right)}\right] \leq M^{2}
\end{align*}
$$

Therefore, we have

$$
\begin{equation*}
u_{m}^{(k)} \in W(M, T), \quad \forall m, k \in \mathbb{N} \tag{3.46}
\end{equation*}
$$

Step 3. Limiting process.
From (3.46), we can extract from $\left\{u_{m}^{(k)}\right\}$ a subsequence still denoted by $\left\{u_{m}^{(k)}\right\}$ such that

$$
\begin{gather*}
u_{m}^{(k)} \longrightarrow u_{m} \quad \text { in } L^{\infty}\left(0, T ; H_{0}^{1} \cap H^{2}\right) \text { weak } \\
\dot{u}_{m}^{(k)} \longrightarrow u_{m}^{\prime} \quad \text { in } L^{\infty}\left(0, T ; H_{0}^{1}\right) \text { weak }^{*} \tag{3.47}\\
\ddot{u}_{m}^{(k)} \longrightarrow u_{m}^{\prime \prime} \quad \text { in } L^{2}\left(Q_{T}\right) \text { weak, }
\end{gather*}
$$

as $k \rightarrow \infty$, and

$$
\begin{equation*}
u_{m} \in W(M, T) \tag{3.48}
\end{equation*}
$$

Based on (3.47), passing to limit in (3.10), (3.11) as $k \rightarrow \infty$, we have u_{m} satisfying (3.6)-(3.8). On the other hand, it follows from (3.5), (3.6), and (3.47) that

$$
\begin{equation*}
u_{m}^{\prime \prime}=\nabla \mu_{m} \nabla u_{m}+\mu_{m} \Delta u_{m}+f\left(x, t, u_{m-1}, \nabla u_{m-1}, u_{m-1}^{\prime}\right) \in L^{\infty}\left(0, T ; L^{2}\right) \tag{3.49}
\end{equation*}
$$

Hence, $u_{m} \in W_{1}(M, T)$, and the proof of Theorem 3.1 is complete.
Theorem 3.2. Let $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{3}\right)$ hold. Then, there exist $M>0$ and $T>0$ satisfying (3.40), (3.42), and (3.43) such that the problem (1.1)-(1.3) has a unique weak solution $u \in W_{1}(M, T)$.

Furthermore, the linear recurrent sequence $\left\{u_{m}\right\}$ defined by (3.6)-(3.8) converges to the solution u strongly in the space

$$
\begin{equation*}
W_{1}(T)=\left\{w \in L^{\infty}\left(0, T ; H_{0}^{1}\right): w^{\prime} \in L^{\infty}\left(0, T ; L^{2}\right)\right\} \tag{3.50}
\end{equation*}
$$

with the following estimation:

$$
\begin{equation*}
\left\|u_{m}-u\right\|_{L^{\infty}\left(0, T ; H_{0}^{1}\right)}+\left\|u_{m}^{\prime}-u^{\prime}\right\|_{L^{\infty}\left(0, T ; L^{2}\right)} \leq C k_{T}^{m}, \quad \forall m \in \mathbb{N} \tag{3.51}
\end{equation*}
$$

where $k_{T}<1$ as in (3.43) and C is a constant depending only on $T, \tilde{u}_{0}, \tilde{u}_{1}$ and k_{T}.
Proof. (i) The existence. First, we note that $W_{1}(T)$ is a Banach space with respect to the norm (see Lions [15])

$$
\begin{equation*}
\|w\|_{W_{1}(T)}=\|w\|_{L^{\infty}\left(0, T ; H_{0}^{1}\right)}+\left\|w^{\prime}\right\|_{L^{\infty}\left(0, T ; L^{2}\right)} \tag{3.52}
\end{equation*}
$$

Next, we prove that $\left\{u_{m}\right\}$ is a Cauchy sequence in $W_{1}(T)$. Let $v_{m}=u_{m+1}-u_{m}$. Then, v_{m} satisfies the variational problem

$$
\begin{align*}
\left\langle v_{m}^{\prime \prime}(t), w\right\rangle+\left\langle\mu_{m+1}(t) \nabla v_{m}(t), \nabla w\right\rangle= & \left\langle\frac{\partial}{\partial x}\left[\left(\mu_{m+1}(t)-\mu_{m}(t)\right) \nabla u_{m}(t)\right], w\right\rangle \\
& +\left\langle F_{m+1}(t)-F_{m}(t), w\right\rangle, \quad \forall w \in H_{0}^{1} \tag{3.53}\\
v_{m}(0)= & v_{m}^{\prime}(0)=0
\end{align*}
$$

Taking $w=v_{m}^{\prime}$ in (3.53) $)_{1}$, after integrating in t, we get

$$
\begin{align*}
Z_{m}(t)= & \int_{0}^{t} d s \int_{0}^{1} \mu_{m+1}^{\prime}(x, s)\left|\nabla v_{m}(s)\right|^{2} d x+2 \int_{0}^{t}\left\langle F_{m+1}(s)-F_{m}(s), v_{m}^{\prime}(s)\right\rangle d s \\
& +2 \int_{0}^{t}\left\langle\frac{\partial}{\partial x}\left[\left(\mu_{m+1}(s)-\mu_{m}(s)\right) \nabla u_{m}(s)\right], v_{m}^{\prime}(s)\right\rangle d s=\sum_{i=1}^{3} J_{i} \tag{3.54}
\end{align*}
$$

in which

$$
\begin{equation*}
Z_{m}(t)=\left\|v_{m}^{\prime}(t)\right\|^{2}+\left\|\sqrt{\mu_{m+1}(t)} \nabla v_{m}(t)\right\|^{2} \tag{3.55}
\end{equation*}
$$

and all integrals on the right-hand side of (3.54) are estimated as follows.
First Integral
By (3.16), we obtain

$$
\begin{equation*}
\left|J_{1}\right| \leq\left.\left|\int_{0}^{t} d s \int_{0}^{1} \mu_{m+1}^{\prime}(x, s)\right| \nabla v_{m}(s)\right|^{2} d x \left\lvert\, \leq \frac{1+M}{\mu_{*}} \widetilde{K}_{M}(\mu) \int_{0}^{t} Z_{m}(s) d s\right. \tag{3.56}
\end{equation*}
$$

Second Integral

By $\left(H_{3}\right)$,

$$
\begin{equation*}
\left\|F_{m+1}(t)-F_{m}(t)\right\| \leq 2 K_{M}(f)\left[\left\|\nabla v_{m-1}(t)\right\|+\left\|v_{m-1}^{\prime}(t)\right\|\right] \leq 2 K_{M}(f)\left\|v_{m-1}\right\|_{W_{1}(T)} \tag{3.57}
\end{equation*}
$$

so

$$
\begin{align*}
\left|J_{2}\right| & \leq 2\left|\int_{0}^{t}\left\langle F_{m+1}(s)-F_{m}(s), v_{m}^{\prime}(s)\right\rangle d s\right| \leq 4 K_{M}(f)\left\|v_{m-1}\right\|_{W_{1}(T)} \int_{0}^{t}\left\|v_{m}^{\prime}(s)\right\| d s \tag{3.58}\\
& \leq 4 T K_{M}^{2}(f)\left\|v_{m-1}\right\|_{W_{1}(T)}^{2}+\int_{0}^{t} Z_{m}(s) d s
\end{align*}
$$

Third Integral
Using $\left(\mathrm{H}_{2}\right)$ again, we get

$$
\begin{align*}
\left|J_{3}\right| & =2\left|\int_{0}^{t}\left\langle\frac{\partial}{\partial x}\left[\left(\mu_{m+1}(s)-\mu_{m}(s)\right) \nabla u_{m}(s)\right], v_{m}^{\prime}(s)\right\rangle d s\right| \tag{3.59}\\
& \leq \int_{0}^{t}\left\|\frac{\partial}{\partial x}\left[\left(\mu_{m+1}(s)-\mu_{m}(s)\right) \nabla u_{m}(s)\right]\right\|^{2} d s+\int_{0}^{t} Z_{m}(s) d s .
\end{align*}
$$

Note that

$$
\begin{align*}
& \frac{\partial}{\partial x}\left[\left(\mu_{m+1}(s)-\mu_{m}(s)\right) \nabla u_{m}(s)\right] \\
&=\left(\mu_{m+1}(s)-\mu_{m}(s)\right) \Delta u_{m}(s) \tag{3.60}\\
&+\left(D_{1} \mu\left[u_{m}\right]-D_{1} \mu\left[u_{m-1}\right]\right) \nabla u_{m}(s)+\left(D_{3} \mu\left[u_{m}\right]-D_{3} \mu\left[u_{m-1}\right]\right)\left|\nabla u_{m}(s)\right|^{2} \\
&+D_{3} \mu\left[u_{m-1}\right] \nabla v_{m-1}(s) \nabla u_{m}(s) .
\end{align*}
$$

Hence,

$$
\begin{align*}
\left\|\frac{\partial}{\partial x}\left[\left(\mu_{m+1}(s)-\mu_{m}(s)\right) \nabla u_{m}(s)\right]\right\| \leq & \left\|\mu_{m+1}(s)-\mu_{m}(s)\right\|_{C^{0}(\bar{\Omega})}\left\|\Delta u_{m}(s)\right\| \\
& +\left\|\left(D_{1} \mu\left[u_{m}\right]-D_{1} \mu\left[u_{m-1}\right]\right)\right\|_{C^{0}(\bar{\Omega})}\left\|\nabla u_{m}(s)\right\| \tag{3.61}\\
& +\left\|\left(D_{1} \mu\left[u_{m}\right]-D_{1} \mu\left[u_{m-1}\right]\right)\right\|_{C^{0}(\bar{\Omega})}\left\|\nabla u_{m}(t)\right\|_{C^{0}(\bar{\Omega})}^{2} \\
& +\left\|D_{3} \mu\left[u_{m-1}\right]\right\|_{C^{0}(\bar{\Omega})}\left\|\nabla u_{m}(s)\right\|_{C^{0}(\bar{\Omega})}\left\|\nabla v_{m-1}(s)\right\| .
\end{align*}
$$

We also note that

$$
\begin{gather*}
\left\|\mu_{m+1}(s)-\mu_{m}(s)\right\|_{C^{0}(\bar{\Omega})} \leq \tilde{K}_{M}(\mu)\left\|w_{m-1}\right\|_{W_{1}(T)} \\
\left\|D_{i} \mu\left[u_{m}\right]-D_{i} \mu\left[u_{m-1}\right]\right\|_{C^{0}(\bar{\Omega})} \leq \widetilde{K}_{M}(\mu)\left\|w_{m-1}\right\|_{W_{1}(T),} \quad i=1,3 \\
\left\|\nabla u_{m}(s)\right\|_{C^{0}(\bar{\Omega})} \leq \sqrt{2}\left\|\nabla u_{m}(s)\right\|_{H^{1}} \leq \sqrt{2} \sqrt{\left\|\nabla u_{m}(s)\right\|^{2}+\left\|\Delta u_{m}(s)\right\|^{2}} \leq 2 M \tag{3.62}\\
\left\|D_{3} \mu\left[u_{m}\right]\right\|_{C^{0}(\bar{\Omega})} \leq \widetilde{K}_{M}(\mu)
\end{gather*}
$$

where we use the notation $D_{i} \mu\left[u_{m-1}\right]=D_{i} \mu\left(x, t, u_{m}(x, t)\right), i=1,2,3$. Therefore, it implies from (3.61) and (3.62) that

$$
\begin{equation*}
\left\|\frac{\partial}{\partial x}\left[\left(\mu_{m+1}(s)-\mu_{m}(s)\right) \nabla u_{m}(s)\right]\right\| \leq(4+M) M \tilde{K}_{M}(\mu)\left\|v_{m-1}\right\|_{W_{1}(T)} \tag{3.63}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\left|J_{3}\right| \leq(4+M)^{2} M^{2} T \tilde{K}_{M}^{2}(\mu)\left\|v_{m-1}\right\|_{W_{1}(T)}^{2}+\int_{0}^{t} Z_{m}(s) d s \tag{3.64}
\end{equation*}
$$

Combining (3.54)-(3.56), (3.58), and (3.64) yields

$$
\begin{equation*}
Z_{m}(t) \leq T\left[4 K_{M}^{2}(f)+(4+M)^{2} M^{2} \tilde{K}_{M}^{2}(\mu)\right]\left\|v_{m-1}\right\|_{W_{1}(T)}^{2}+\left(2+\frac{1+M}{\mu_{*}} \tilde{K}_{M}(\mu)\right) \int_{0}^{t} Z_{m}(s) d s \tag{3.65}
\end{equation*}
$$

Using Gronwall's lemma, (3.65) gives

$$
\begin{equation*}
\left\|v_{m}\right\|_{W_{1}(T)} \leq k_{T}\left\|v_{m-1}\right\|_{W_{1}(T)} \quad \forall m \in \mathbb{N} \tag{3.66}
\end{equation*}
$$

where $k_{T}<1$ as in (3.43).
Hence, we obtain from (3.66) that

$$
\begin{equation*}
\left\|u_{m+p}-u_{m}\right\|_{W_{1}(T)} \leq \frac{k_{T}^{m}}{1-k_{T}}\left\|u_{1}-u_{0}\right\|_{W_{1}(T)} \quad \forall m, p \in \mathbb{N}, \tag{3.67}
\end{equation*}
$$

It follows that $\left\{u_{m}\right\}$ is a Cauchy sequence in $W_{1}(T)$. Then, there exists $u \in W_{1}(T)$ such that

$$
\begin{equation*}
u_{m} \longrightarrow u \quad \text { strongly in } W_{1}(T) \tag{3.68}
\end{equation*}
$$

On the other hand, from (3.48), we deduce the existence of a subsequence $\left\{u_{m_{j}}\right\}$ of $\left\{u_{m}\right\}$ such that

$$
\begin{gather*}
u_{m_{j}} \longrightarrow u \quad \text { in } L^{\infty}\left(0, T ; H_{0}^{1} \cap H^{2}\right) \text { weak }^{*} \\
u_{m_{j}}^{\prime} \longrightarrow u^{\prime} \quad \text { in } L^{\infty}\left(0, T ; H_{0}^{1}\right) \text { weak }^{*} \tag{3.69}\\
u_{m_{j}}^{\prime \prime} \longrightarrow u^{\prime \prime} \quad \text { in } L^{2}\left(Q_{T}\right) \text { weak, } \\
u \in W(M, T) \tag{3.70}
\end{gather*}
$$

Note that

$$
\begin{gather*}
\left|\mu_{m}(x, t)-\mu(x, t, u(x, t))\right| \leq \widetilde{K}_{M}(\mu)\left\|u_{m-1}-u\right\|_{W_{1}(T)} \tag{3.71}\\
\left\|F_{m}(t)-f\left(\cdot, t, u(t), u_{x}(t), u^{\prime}(t)\right)\right\| \leq 2 K_{M}(f)\left\|u_{m-1}-u\right\|_{W_{1}(T)}
\end{gather*}
$$

Hence, from (3.68) and (3.71), we obtain

$$
\begin{gather*}
\mu_{m} \longrightarrow \mu(\cdot, \cdot, u) \quad \text { strongly in } L^{\infty}\left(Q_{T}\right) \\
F_{m} \longrightarrow f\left(\cdot, t, u(t), u_{x}(t), u^{\prime}(t)\right) \quad \text { strongly in } L^{\infty}\left(0, T ; L^{2}\right) \tag{3.72}
\end{gather*}
$$

Finally, passing to limit in (3.6)-(3.8) as $m=m_{j} \rightarrow \infty$, it implies from (3.68), (3.69), and (3.72) that there exists $u \in W(M, T)$ satisfying the equation

$$
\begin{gather*}
\left\langle u^{\prime \prime}(t), w\right\rangle+\left\langle\mu(\cdot, t, u(t)) u_{x}(t), \nabla w\right\rangle=\left\langle f\left(\cdot, t, u(t), u_{x}(t), u^{\prime}(t)\right), w\right\rangle, \quad \forall w \in H_{0}^{1} \tag{3.73}\\
u(0)=\tilde{u}_{0}, \quad u^{\prime}(0)=\tilde{u}_{1}
\end{gather*}
$$

On the other hand, by $\left(H_{2}\right)$, we obtain from $(3.70),(3.72)_{2}$, and $(3.73)_{1}$ that

$$
\begin{equation*}
u^{\prime \prime}=D_{1} \mu[u] u_{x}+D_{3} \mu[u] u_{x}^{2}+\mu[u] u_{x x}+f\left(x, t, u, u_{x}, u^{\prime}\right) \in L^{\infty}\left(0, T ; L^{2}\right) \tag{3.74}
\end{equation*}
$$

thus $u \in W_{1}(M, T)$, and Step 1 follows.
(ii) The uniqueness of the solution.

Let $u_{1}, u_{2} \in W_{1}(M, T)$ be two weak solutions of the problem (1.1)-(1.3). Then, $u=$ $u_{1}-u_{2}$ satisfies the variational problem

$$
\begin{align*}
\left\langle u^{\prime \prime}(t), w\right\rangle+\left\langle\mu_{1}(t) u_{x}(t), w_{x}\right\rangle= & \left\langle\frac{\partial}{\partial x}\left(\left[\mu_{1}(t)-\mu_{2}(t)\right] u_{2 x}(t)\right), w\right\rangle \\
& +\left\langle F_{2}(t)-F_{1}(t), w\right\rangle, \quad \forall w \in H_{0}^{1} \\
u(0)= & u^{\prime}(0)=0 \tag{3.75}\\
\mu_{i}(t)= & \mu\left(x, t, u_{i}(t)\right) \equiv \mu\left[u_{i}\right], F_{i}(t) \\
= & f\left(x, t, u_{i}(t), u_{i x}(t), u_{i}^{\prime}(t)\right), \quad i=1,2
\end{align*}
$$

We take $w=u^{\prime}$ in $(3.75)_{1}$ and integrate in t to get

$$
\begin{align*}
\rho(t)= & \int_{0}^{t} d s \int_{0}^{1} \mu_{1}^{\prime}(x, s) u_{x}^{2}(x, s) d x+2 \int_{0}^{t}\left\langle F_{1}(s)-F_{2}(s), u^{\prime}(s)\right\rangle d s \\
& +2 \int_{0}^{t}\left\langle\frac{\partial}{\partial x}\left(\left[\mu_{1}(s)-\mu_{2}(s)\right] u_{2 x}(s)\right), u^{\prime}\right\rangle d s \equiv \sum_{i=1}^{3} \rho_{i}(t) \tag{3.76}
\end{align*}
$$

where

$$
\begin{equation*}
\rho(t)=\left\|u^{\prime}(t)\right\|^{2}+\left\|\sqrt{\mu_{1}(t)} u_{x}(t)\right\|^{2} \tag{3.77}
\end{equation*}
$$

We now estimate the terms on the right-hand side of (3.76) as follows:

$$
\begin{align*}
\rho_{1}(t) & =\int_{0}^{t} d s \int_{0}^{1} \mu_{1}^{\prime}(x, s) u_{x}^{2}(x, s) d x \leq \frac{1}{\mu_{*}}(1+M) \tilde{K}_{M}(\mu) \int_{0}^{t} \rho(s) d s \equiv \rho_{M}^{(1)} \int_{0}^{t} \rho(s) d s, \tag{3.78}\\
\rho_{2}(t) & =2 \int_{0}^{t}\left\langle F_{1}(s)-F_{2}(s), u^{\prime}(s)\right\rangle d s \leq 4 K_{M}(f) \int_{0}^{t}\left(\left\|u_{x}(s)\right\|+\left\|u^{\prime}(s)\right\|\right)\left\|u^{\prime}(s)\right\| d s \\
& \leq 4\left(1+\frac{1}{\sqrt{\mu_{*}}}\right) K_{M}(f) \int_{0}^{t} \rho(s) d s \equiv \rho_{M}^{(2)} \int_{0}^{t} \rho(s) d s \tag{3.79}\\
\rho_{3}(t)= & 2 \int_{0}^{t}\left\langle\frac{\partial}{\partial x}\left(\left[\mu_{1}(s)-\mu_{2}(s)\right] u_{2 x}(s)\right), u^{\prime}\right\rangle d s \leq 2 \int_{0}^{t}\left\|\frac{\partial}{\partial x}\left(\left[\mu_{1}(s)-\mu_{2}(s)\right] u_{2 x}(s)\right)\right\|\left\|u^{\prime}(s)\right\| d s . \tag{3.80}
\end{align*}
$$

On the other hand

$$
\begin{align*}
\frac{\partial}{\partial x}\left(\left[\mu_{1}(s)-\mu_{2}(s)\right] u_{2 x}(s)\right)= & {\left[\mu_{1}(s)-\mu_{2}(s)\right] u_{2 x x}(s)+\left(D_{1} \mu\left[u_{1}\right]-D_{1} \mu\left[u_{2}\right]\right) u_{2 x}(s) } \tag{3.81}\\
& +\left(D_{3} \mu\left[u_{1}\right]-D_{3} \mu\left[u_{2}\right]\right) u_{1 x} u_{2 x}+D_{3} \mu\left[u_{2}\right] u_{x} u_{2 x} .
\end{align*}
$$

Hence,

$$
\begin{align*}
\left\|\frac{\partial}{\partial x}\left(\left[\mu_{1}(s)-\mu_{2}(s)\right] u_{2 x}(s)\right)\right\| \leq & \left\|\mu_{1}(s)-\mu_{2}(s)\right\|_{C^{0}(\bar{\Omega})}\left\|u_{2 x x}(s)\right\| \\
& +\left\|D_{1} \mu\left[u_{1}\right]-D_{1} \mu\left[u_{2}\right]\right\|_{C^{0}(\bar{\Omega})}\left\|u_{2 x}(s)\right\| \\
& +\left\|D_{3} \mu\left[u_{1}\right]-D_{3} \mu\left[u_{2}\right]\right\|_{C^{0}(\bar{\Omega})}\left\|u_{1 x}(s)\right\|_{C^{0}(\bar{\Omega})}\left\|u_{2 x}(s)\right\|_{C^{0}(\bar{\Omega})} \\
& +\left\|D_{3} \mu\left[u_{2}\right]\right\|_{C^{0}(\bar{\Omega})}\left\|u_{x}(s)\right\|\left\|u_{2 x}(s)\right\|_{C^{0}(\bar{\Omega})} \\
\leq & (3+M) M \tilde{K}_{M}(\mu)\left\|u_{x}(s)\right\| . \tag{3.82}
\end{align*}
$$

It follows from (3.80), (3.82) that

$$
\begin{equation*}
\rho_{3}(t) \leq \frac{1}{\sqrt{\mu_{*}}}(3+M) M \tilde{K}_{M}(\mu) \int_{0}^{t} \rho(s) d s \equiv \rho_{M}^{(3)} \int_{0}^{t} \rho(s) d s \tag{3.83}
\end{equation*}
$$

Combining (3.76)-(3.79) and (3.83) yields

$$
\begin{equation*}
\rho(t) \leq\left(\rho_{M}^{(1)}+\rho_{M}^{(2)}+\rho_{M}^{(3)}\right) \int_{0}^{t} \rho(s) d s \tag{3.84}
\end{equation*}
$$

Using Gronwall's lemma, it follows from (3.84) that $\rho \equiv 0$ that is, $u_{1} \equiv u_{2}$.
Theorem 3.2 is proved completely.
Remark 3.3. (i) In the case of $\mu \equiv 1, f \in C^{1}\left(\bar{\Omega} \times \mathbb{R}_{+} \times \mathbb{R}^{3}\right)$ and the boundary condition in [4] standing for (1.2), we obtained some similar results in [4].
(ii) In the case of $\mu \equiv 1, f \in C^{1}\left(\bar{\Omega} \times \mathbb{R}_{+} \times \mathbb{R}^{3}\right), f(1, t, u, v, w)=0$, for allt \geq 0 , for $\operatorname{all}(u, v, w) \in \mathbb{R}^{3}$, and the boundary condition in [8] standing for (1.2), some results as above were given in [8].

Remark 3.4. By Galerkin method, as in Remark 2.3, the local existence of a strong solution $u \in H^{2}\left(Q_{T}\right)$ of the problem (1.1)-(1.3) is proved.

In the case of $\mu=\mu(x, t)$ and $f=f(x, t)$, obviously, the problem (1.1)-(1.3) is linear. Then, by the same method and applying Banach's theorem [16, Chapter 5, Theorem 17.1], it is not difficult to prove that the problem (1.1)-(1.3) is global solvability. To strengthen some hypotheses, it is possible to prove existence of a classical solution $u \in C^{2}\left(Q_{T}\right) \cap C^{1}\left(\bar{Q}_{T}\right)$.

4. Asymptotic Expansion of a Weak Solution in Many Small Parameters

In this section, we will study a high-order asymptotic expansion of a weak solution for the problem (1.1)-(1.3), in which (1.1) has the form of a linear wave equation with nonlinear perturbations containing many small parameters.

The Problem with Two Small Parameters

At first, we consider the case of the nonlinear perturbations containing two small parameters.
Let $\left(H_{1}\right)$ hold. We make the following assumptions:
$\left(H_{4}\right) \mu_{0} \in C^{2}\left([0,1] \times \mathbb{R}_{+}\right), \mu_{1} \in C^{N+1}\left([0,1] \times \mathbb{R}_{+} \times \mathbb{R}\right), \mu_{0} \geq \mu_{*}>0, \mu_{1} \geq 0$,
$\left(H_{5}\right) f_{0} \in C^{1}\left([0,1] \times \mathbb{R}_{+}\right), f_{1} \in C^{N}\left([0,1] \times \mathbb{R}_{+} \times \mathbb{R}^{3}\right)$.

We consider the following perturbed problem, where $\varepsilon_{1}, \varepsilon_{2}$ are two small parameters such that $0 \leq \varepsilon_{i} \leq \varepsilon_{i *}<1, i=1,2$:

$$
\begin{gather*}
u_{t t}-\frac{\partial}{\partial x}\left(\mu_{\varepsilon_{1}}(x, t, u) u_{x}\right)=F_{\varepsilon_{2}}\left(x, t, u, u_{x}, u_{t}\right), \quad 0<x<1,0<t<T \\
u(0, t)=u(1, t)=0 \\
u(x, 0)=\tilde{u}_{0}(x), \quad u_{t}(x, 0)=\tilde{u}_{1}(x) \\
\mu_{\varepsilon_{1}}(x, t, u)=\mu_{0}(x, t)+\varepsilon_{1} \mu_{1}(x, t, u) \\
F_{\varepsilon_{2}}\left(x, t, u, u_{x}, u_{t}\right)=f_{0}(x, t)+\varepsilon_{2} f_{1}\left(x, t, u, u_{x}, u_{t}\right)
\end{gather*}
$$

By Theorem 3.2, the problem $\left(P_{\vec{\varepsilon}}\right)$ has a unique weak solution u depending on $\vec{\varepsilon}=$ $\left(\varepsilon_{1}, \varepsilon_{2}\right): u_{\vec{\varepsilon}}=u\left(\varepsilon_{1}, \varepsilon_{2}\right)$. When $\vec{\varepsilon}=(0,0),\left(P_{\vec{\varepsilon}}\right)$ is denoted by $\left(P_{0}\right)$. We will study the asymptotic expansion of $u_{\vec{\varepsilon}}$ with respect to $\varepsilon_{1}, \varepsilon_{2}$.

We use the following notations. For a multi-index $\alpha=\left(\alpha_{1}, \alpha_{2}\right) \in \mathbb{Z}_{+}^{2}$, and $\vec{\varepsilon}=\left(\varepsilon_{1}, \varepsilon_{2}\right) \in$ \mathbb{R}^{2}, we put

$$
\begin{gather*}
|\alpha|=\alpha_{1}+\alpha_{2}, \quad \alpha!=\alpha_{1}!\alpha_{2}! \\
\|\vec{\varepsilon}\|=\sqrt{\varepsilon_{1}^{2}+\varepsilon_{2}^{2}}, \quad \vec{\varepsilon}^{\alpha}=\varepsilon_{1}^{\alpha_{1}} \varepsilon_{2}^{\alpha_{2}} \tag{4.1}\\
\alpha, \beta \in \mathbb{Z}_{+}^{2}, \quad \alpha \leq \beta \Longleftrightarrow \alpha_{i} \leq \beta_{i} \quad \forall i=1,2 .
\end{gather*}
$$

We first note the following lemma.
Lemma 4.1. Let $m, N \in \mathbb{N}$ and $u_{\alpha} \in \mathbb{R}, \alpha \in \mathbb{Z}_{+}^{2}, 1 \leq|\alpha| \leq N$. Then,

$$
\begin{equation*}
\left(\sum_{1 \leq|\alpha| \leq N} u_{\alpha} \vec{\varepsilon}^{\alpha}\right)^{m}=\sum_{m \leq|\alpha| \leq m N} T_{\alpha}^{(m)}[u] \vec{\varepsilon}^{\alpha} \tag{4.2}
\end{equation*}
$$

where the coefficients $T_{\alpha}^{(m)}[u], m \leq|\alpha| \leq m N$ depending on $u=\left(u_{\alpha}\right), \alpha \in \mathbb{Z}_{+}^{2}, 1 \leq|\alpha| \leq$ Nare defined by the recurrent formulas

$$
\begin{gather*}
T_{\alpha}^{(1)}[u]=u_{\alpha}, \quad 1 \leq|\alpha| \leq N, \\
T_{\alpha}^{(m)}[u]=\sum_{\beta \in A_{\alpha}^{(m)}} u_{\alpha-\beta} T_{\beta}^{(m-1)}[u], \quad m \leq|\alpha| \leq m N, m \geq 2, \tag{4.3}\\
A_{\alpha}^{(m)}=\left\{\beta \in \mathbb{Z}_{+}^{2}: \beta \leq \alpha, 1 \leq|\alpha-\beta| \leq N, m-1 \leq|\beta| \leq(m-1) N\right\} .
\end{gather*}
$$

The proof of Lemma 4.1 can be found in [6].
We also use the notations $f_{1}[u]=f_{1}\left(x, t, u, u_{x}, u_{t}\right), \mu_{1}[u]=\mu_{1}(x, t, u)$.
Let u_{0} be a unique weak solution of the problem $\left(P_{0}\right)$ corresponding to $\vec{\varepsilon}=(0,0)$ that is,

$$
\begin{gather*}
u_{0}^{\prime \prime}-\frac{\partial}{\partial x}\left(\mu_{0}(x, t) u_{0 x}\right)=f_{0}(x, t), \quad 0<x<1,0<t<T \\
u_{0}(0, t)=u_{0}(1, t)=0 \tag{0}\\
u_{0}(x, 0)=\tilde{u}_{0}(x), \quad u_{0}^{\prime}(x, 0)=\tilde{u}_{1}(x) \\
u_{0} \in W_{1}(M, T)
\end{gather*}
$$

Let us consider the sequence of weak solutions $u_{\gamma}, \gamma \in \mathbb{Z}_{+}^{2}, 1 \leq|\gamma| \leq N$, defined by the following problems:

$$
\begin{align*}
u_{\gamma}^{\prime \prime}-\frac{\partial}{\partial x}\left(\mu_{0}(x, t) u_{r x}\right) & =F_{\gamma}, \quad 0<x<1,0<t<T \\
u_{\gamma}(0, t) & =u_{r}(1, t)=0 \tag{P}\\
u_{\gamma}(x, 0) & =u_{r}^{\prime}(x, 0)=0 \\
u_{r} & \in W_{1}(M, T)
\end{align*}
$$

where $F_{\gamma}, \gamma \in \mathbb{Z}_{+}^{2}, 1 \leq|\gamma| \leq N$ are defined by the recurrent formulas as follows:

$$
\begin{equation*}
F_{\gamma}=\pi_{\gamma}^{(2)}\left[f_{1}\right]+\sum_{2 \leq|v| \leq|\gamma|, v \leq \gamma} \frac{\partial}{\partial x}\left(\rho_{v}^{(1)}\left[\mu_{1}\right] \nabla u_{\gamma-v}\right), \quad 1 \leq|\gamma| \leq N \tag{4.4}
\end{equation*}
$$

with $\rho_{\delta}\left[\mu_{1}\right]=\rho_{\delta}\left[\mu_{1} ;\left\{u_{\gamma}\right\}_{\gamma \leq \delta}\right], \rho_{\delta}^{(1)}\left[\mu_{1}\right]=\rho_{\delta}^{(1)}\left[\mu_{1} ;\left\{u_{\gamma}\right\}_{\gamma \leq \delta}\right], \pi_{\delta}\left[f_{1}\right]=\pi_{\delta}\left[f_{1} ;\left\{u_{\gamma}\right\}_{\gamma \leq \delta}\right], \pi_{\delta}^{(2)}\left[f_{1}\right]=$ $\pi_{\delta}^{(2)}\left[f_{1} ;\left\{u_{\gamma}\right\}_{r \leq \delta}\right],|\delta| \leq N-1$ defined by

$$
\begin{align*}
& \rho_{\delta}\left[\mu_{1}\right]= \begin{cases}\mu_{1}\left[u_{0}\right], & |\delta|=0, \\
\sum_{m=1}^{|\delta|} \frac{1}{m!} D_{3}^{m} \mu_{1}\left[u_{0}\right] T_{\delta}^{(m)}[u], & 1 \leq|\delta| \leq N-1,\end{cases} \tag{4.5}\\
& \rho_{\delta}^{(1)}\left[\mu_{1}\right]=\rho_{\delta_{1}-1, \delta_{2}}\left[\mu_{1}\right], \quad \delta=\left(\delta_{1}, \delta_{2}\right) \in \mathbb{Z}_{+}^{2}, \\
& \rho_{\delta}^{(1)}\left[\mu_{1}\right]=\rho_{0, \delta_{2}}^{(1)}\left[\mu_{1}\right]=\rho_{-1, \delta_{2}}\left[\mu_{1}\right]=0, \quad \text { if } \delta_{1}=0, \tag{4.6}
\end{align*}
$$

where $m=\left(m_{1}, m_{2}, m_{3}\right) \in \mathbb{Z}_{+}^{3},|m|=m_{1}+m_{2}+m_{3}, m!=m_{1}!m_{2}!m_{3}!, D^{m} f_{j}=D_{3}^{m_{1}} D_{4}^{m_{2}} D_{5}^{m_{3}} f_{j}$, $A(m, N)=\left\{(\alpha, \beta, \gamma) \in\left(\mathbb{Z}_{+}^{2}\right)^{3}: m_{1} \leq|\alpha| \leq m_{1} N, m_{2} \leq|\beta| \leq m_{2} N, m_{3} \leq|\gamma| \leq m_{3} N\right\}$,

$$
\begin{gather*}
\pi_{\delta}^{(2)}\left[f_{1}\right]=\pi_{\delta_{1}, \delta_{2}-1}\left[f_{1}\right], \quad \delta=\left(\delta_{1}, \delta_{2}\right) \in \mathbb{Z}_{+}^{2}, \\
\pi_{\delta}^{(2)}\left[f_{1}\right]=\pi_{\delta_{1}, 0}^{(2)}\left[f_{1}\right]=\pi_{\delta_{1},-1}\left[f_{1}\right]=0, \quad \text { if } \delta_{2}=0 . \tag{4.8}
\end{gather*}
$$

Then, we have the following lemma.
Lemma 4.2. Let $\rho_{v}\left[\mu_{1}\right], \pi_{v}\left[f_{1}\right],|v| \leq N-1$ be the functions defined by (4.5) and (4.7). Put $h=$ $\sum_{|r| \leq N} u_{\gamma} \vec{\varepsilon}^{\gamma}$, then one has

$$
\begin{align*}
& \mu_{1}[h]=\sum_{|\nu| \leq N-1} \rho_{v}\left[\mu_{1}\right] \vec{\varepsilon}^{v}+\|\vec{\varepsilon}\|^{N} \widetilde{R}_{N-1}^{(1)}\left[\mu_{1}, \vec{\varepsilon}\right], \tag{4.9}\\
& f_{1}[h]=\sum_{|\nu| \leq N-1} \pi_{v}\left[f_{1}\right] \vec{\varepsilon}^{v}+\|\vec{\varepsilon}\|^{N} R_{N-1}^{(1)}\left[f_{1}, \vec{\varepsilon}\right] \tag{4.10}
\end{align*}
$$

where $\left\|\tilde{R}_{N-1}^{(1)}\left[\mu_{1}, \vec{\varepsilon}\right]\right\|_{L^{\infty}\left(0, T ; L^{2}\right)}+\left\|R_{N-1}^{(1)}\left[f_{1}, \vec{\varepsilon}\right]\right\|_{L^{\infty}\left(0, T ; L^{2}\right)} \leq C$, with C is a constant depending only on $N, T, f_{1}, \mu_{1}, u_{\gamma},|\gamma| \leq N$.

Proof. (i) In the case of $N=1$, the proof of (4.9) is easy, hence we omit the details. We only prove with $N \geq 2$. We write $h=u_{0}+\sum_{1 \leq|\gamma| \leq N} u_{\gamma} \vec{\varepsilon}^{\gamma} \equiv u_{0}+h_{1}$.

Using Taylor's expansion of the function $\mu_{1}[h]=\mu_{1}\left[u_{0}+h_{1}\right]$ around the point u_{0} up to order N, we obtain from (4.2) that

$$
\begin{align*}
\mu_{1}\left[u_{0}+h_{1}\right]= & \mu_{1}\left[u_{0}\right]+\sum_{m=1}^{N-1} \frac{1}{m!} D_{3}^{m} \mu_{1}\left[u_{0}\right] h_{1}^{m}+\frac{1}{(N-1)!} \int_{0}^{1}(1-\theta)^{N-1} D_{3}^{N} \mu_{1}\left[u_{0}+\theta h_{1}\right] h_{1}^{N} d \theta \\
= & \mu_{1}\left[u_{0}\right]+\sum_{m=1}^{N-1} \frac{1}{m!} D_{3}^{m} \mu_{1}\left[u_{0}\right] \sum_{m \leq|v| \leq m N} T_{v}^{(m)}[u] \vec{\varepsilon}^{v}+\widetilde{R}_{N-1}^{(1)}\left[\mu_{1}, h_{1}\right] \\
= & \mu_{1}\left[u_{0}\right]+\sum_{m=1}^{N-1} \frac{1}{m!} D_{3}^{m} \mu_{1}\left[u_{0}\right] \sum_{m \leq|v| \leq N-1} T_{v}^{(m)}[u] \vec{\varepsilon}^{v} \\
& +\sum_{m=1}^{N-1} \frac{1}{m!} D_{3}^{m} \mu_{1}\left[u_{0}\right] \sum_{N \leq|v| \leq m N} T_{v}^{(m)}[u] \vec{\varepsilon}^{v}+\widetilde{R}_{N-1}^{(1)}\left[\mu_{1}, h_{1}\right] \tag{4.11}
\end{align*}
$$

where

$$
\begin{equation*}
\widetilde{R}_{N-1}^{(1)}\left[\mu_{1}, h_{1}\right]=\frac{1}{(N-1)!} \int_{0}^{1}(1-\theta)^{N-1} D_{3}^{N} \mu_{1}\left[u_{0}+\theta h_{1}\right] h_{1}^{N} d \theta \tag{4.12}
\end{equation*}
$$

We note that

$$
\begin{equation*}
\sum_{m=1}^{N-1} \frac{1}{m!} D_{3}^{m} \mu_{1}\left[u_{0}\right] \sum_{m \leq|v| \leq N-1} T_{v}^{(m)}[u] \vec{\varepsilon}^{v}=\sum_{1 \leq|v| \leq N-1}\left(\sum_{m=1}^{|v|} \frac{1}{m!} D_{3}^{m} \mu_{1}\left[u_{0}\right] T_{v}^{(m)}[u]\right) \vec{\varepsilon}^{v} \tag{4.13}
\end{equation*}
$$

On the other hand, if we put

$$
\begin{equation*}
\tilde{R}_{N-1}^{(1)}\left[\mu_{1}, \vec{\varepsilon}\right]=\|\vec{\varepsilon}\|^{-N}\left(\sum_{m=1}^{N-1} \frac{1}{m!} D_{3}^{m} \mu_{1}\left[u_{0}\right] \sum_{N \leq|v| \leq m N} T_{v}^{(m)}[u] \vec{\varepsilon}^{v}+\widetilde{R}_{N-1}^{(1)}\left[\mu_{1}, h_{1}\right]\right) \tag{4.14}
\end{equation*}
$$

then by the boundedness of the functions $u_{\gamma}, \nabla u_{\gamma}, u_{\gamma}^{\prime},|\gamma| \leq N$ in the function space $L^{\infty}\left(0, T ; H^{1}\right)$, we obtain from (4.3), (4.12), and (4.14) that $\left\|\widetilde{R}_{N-1}^{(1)}\left[\mu_{1}, \vec{\varepsilon}\right]\right\|_{L^{\infty}\left(0, T ; L^{2}\right)} \leq C$, with and C is a constant depending only on $N, T, \mu_{1}, u_{\gamma},|\gamma| \leq N$. Therefore, we obtain from (4.5), (4.11), (4.13), and (4.14) that

$$
\begin{align*}
\mu_{1}\left[u_{0}+h_{1}\right] & =\mu_{1}\left[u_{0}\right]+\sum_{1 \leq|v| \leq N-1}\left(\sum_{m=1}^{|v|} \frac{1}{m!} D_{3}^{m} \mu_{1}\left[u_{0}\right] T_{v}^{(m)}[u]\right) \vec{\varepsilon}^{v}+\|\vec{\varepsilon}\|^{N} \tilde{R}_{N-1}^{(1)}\left[\mu_{1}, \vec{\varepsilon}\right] \tag{4.15}\\
& =\sum_{|v| \leq N-1} \rho_{v}\left[\mu_{1}\right] \vec{\varepsilon}^{v}+\|\vec{\varepsilon}\|^{N} \widetilde{R}_{N-1}^{(1)}\left[\mu_{1}, \vec{\varepsilon}\right] .
\end{align*}
$$

Hence, (4.9) in Lemma 4.2 is proved.
(ii) We also only prove (4.10) with $N \geq 2$. Using Taylor's expansion of the function $f_{1}\left[u_{0}+h_{1}\right]$ around the point u_{0} up to order $N+1$, we obtain from (4.2) that

$$
\begin{align*}
& f_{1}\left[u_{0}+h_{1}\right]=f_{1}\left[u_{0}\right]+D_{3} f_{1}\left[u_{0}\right] h_{1}+D_{4} f_{1}\left[u_{0}\right] \nabla h_{1}+D_{5} f_{1}\left[u_{0}\right] h_{1}^{\prime} \\
& +\sum_{\substack{2 \leq|m| \leq N-1 \\
m=\left(m_{1}, m_{2}, m_{3}\right) \in \mathbb{Z}_{+}^{3}}} \frac{1}{m!} D^{m} f_{1}\left[u_{0}\right] h_{1}^{m_{1}}\left(\nabla h_{1}\right)^{m_{2}}\left(h_{1}^{\prime}\right)^{m_{3}}+R_{N-1}^{(1)}\left[f_{1}, h_{1}\right] \\
& =f_{1}\left[u_{0}\right]+D_{3} f_{1}\left[u_{0}\right] h_{1}+D_{4} f_{1}\left[u_{0}\right] \nabla h_{1}+D_{5} f_{1}\left[u_{0}\right] h_{1}^{\prime} \\
& +\sum_{\substack{2 \leq|m| \leq N-1 \\
m=\left(m_{1}, m_{2}, m_{3}\right) \in \mathbb{Z}_{+}^{3}}} \sum_{\substack{|m| \leq|v| \leq|m| N}} \sum_{\substack{(\alpha, \beta, \gamma) \in A(m, N) \\
\alpha+\beta+\gamma=v}} \frac{1}{m!} D^{m} f_{1}\left[u_{0}\right] T_{\alpha}^{\left(m_{1}\right)}[u] T_{\beta}^{\left(m_{2}\right)}[\nabla u] T_{\gamma}^{\left(m_{3}\right)}\left[u^{\prime}\right] \vec{\varepsilon}^{v} \\
& +R_{N-1}^{(1)}\left[f_{1}, h_{1}\right] \\
& =f_{1}\left[u_{0}\right]+D_{3} f_{1}\left[u_{0}\right] h_{1}+D_{4} f_{1}\left[u_{0}\right] \nabla h_{1}+D_{5} f_{1}\left[u_{0}\right] h_{1}^{\prime} \\
& +\sum_{\substack{2 \leq|m| \leq N-1 \\
m=\left(m_{1}, m_{2}, m_{3}\right) \in \mathbb{Z}_{+}^{3}}} \sum_{\substack{|m| \leq|v| \leq N-1}} \sum_{\substack{(\alpha, \beta, \gamma) \in A(m, N) \\
\alpha+\beta+\gamma=\nu}} \frac{1}{m!} D^{m} f_{1}\left[u_{0}\right] T_{\alpha}^{\left(m_{1}\right)}[u] T_{\beta}^{\left(m_{2}\right)}[\nabla u] T_{\gamma}^{\left(m_{3}\right)}\left[u^{\prime}\right] \vec{\varepsilon}^{v} \\
& +\sum_{\substack{2 \leq|m| \leq N-1 \\
m=\left(m_{1}, m_{2}, m_{3}\right) \in \mathbb{Z}_{+}^{3}}} \sum_{\substack{N \leq|v| \leq|m| N}} \sum_{\substack{(\alpha, \beta, \gamma) \in A(m, N) \\
\alpha+\beta+\gamma=\nu}} \frac{1}{m!} D^{m} f_{1}\left[u_{0}\right] T_{\alpha}^{\left(m_{1}\right)}[u] T_{\beta}^{\left(m_{2}\right)}[\nabla u] T_{\gamma}^{\left(m_{3}\right)}\left[u^{\prime}\right] \vec{\varepsilon}^{v} \\
& +R_{N-1}^{(1)}\left[f_{1}, h_{1}\right], \tag{4.16}
\end{align*}
$$

where

$$
\begin{equation*}
R_{N-1}^{(1)}\left[f_{1}, h_{1}\right]=\sum_{\substack{|m|=N \\ m=\left(m_{1}, m_{2}, m_{3}\right) \in \mathbb{Z}_{+}^{3}}} \frac{N}{m!} \int_{0}^{1}(1-\theta)^{N-1} D^{m} f_{1}\left[u_{0}+\theta h_{1}\right] h_{1}^{m_{1}}\left(\nabla h_{1}\right)^{m_{2}}\left(h_{1}^{\prime}\right)^{m_{3}} d \theta \tag{4.17}
\end{equation*}
$$

We also note that

$$
\begin{aligned}
f_{1}\left[u_{0}\right] & +D_{3} f_{1}\left[u_{0}\right] h_{1}+D_{4} f_{1}\left[u_{0}\right] \nabla h_{1}+D_{5} f_{1}\left[u_{0}\right] h_{1}^{\prime} \\
& +\sum_{\substack{2 \leq|m| \leq N-1 \\
m=\left(m_{1}, m_{2}, m_{3}\right) \in \mathbb{Z}_{+}^{3}}} \sum_{|m| \leq|v| \leq N-1(\alpha, \beta, \gamma) \in A(m, N)} \sum_{\substack{\alpha+\beta+\gamma=\nu}} \frac{1}{m!} D^{m} f_{1}\left[u_{0}\right] T_{\alpha}^{\left(m_{1}\right)}[u] T_{\beta}^{\left(m_{2}\right)}[\nabla u] T_{\gamma}^{\left(m_{3}\right)}\left[u^{\prime}\right] \vec{\varepsilon}^{v} \\
& =f_{1}\left[u_{0}\right]+\sum_{\substack{1 \leq|m| \leq N-1 \\
m=\left(m_{1}, m_{2}, m_{3}\right) \in \mathbb{Z}_{+}^{3}}} \sum_{\substack{|m| \leq|v| \leq N-1(\alpha, \beta, \gamma) \in A(m, N) \\
\alpha+\beta+\gamma=\nu}} \frac{1}{m!} D^{m} f_{1}\left[u_{0}\right] T_{\alpha}^{\left(m_{1}\right)}[u] T_{\beta}^{\left(m_{2}\right)}[\nabla u] T_{\gamma}^{\left(m_{3}\right)}\left[u^{\prime}\right] \vec{\varepsilon}^{v}
\end{aligned}
$$

$$
\begin{align*}
& =f_{1}\left[u_{0}\right]+\sum_{1 \leq|v| \leq N-1} \sum_{\substack{1 \leq|m| \leq|v| \\
m=\left(m_{1}, m_{2}, m_{3}\right) \in \mathbb{Z}_{+}^{3}}} \sum_{\substack{(\alpha, \beta, \gamma) \in A(m, N) \\
\alpha+\beta+\gamma=v}} \frac{1}{m!} D^{m} f_{1}\left[u_{0}\right] T_{\alpha}^{\left(m_{1}\right)}[u] T_{\beta}^{\left(m_{2}\right)}[\nabla u] T_{\gamma}^{\left(m_{3}\right)}\left[u^{\prime}\right] \vec{\varepsilon}^{v} \\
& =\sum_{|\nu| \leq N-1} \pi_{v}\left[f_{1}\right] \vec{\varepsilon}^{v} . \tag{4.18}
\end{align*}
$$

Similarly,

$$
\begin{align*}
& \sum_{\substack{2 \leq|m| \leq N-1 \\
m=\left(m_{1}, m_{2}, m_{3}\right) \in \mathbb{Z}_{+}^{3}}} \sum_{N \leq|v| \leq|m| N(\alpha, \beta, \gamma, \gamma) \in A(m, N)}^{\alpha+\beta+\gamma=\nu} \mid \tag{4.19}\\
& \quad \frac{1}{m!} D^{m} f_{1}\left[u_{0}\right] T_{\alpha}^{\left(m_{1}\right)}[u] T_{\beta}^{\left(m_{2}\right)}[\nabla u] T_{\gamma}^{\left(m_{3}\right)}\left[u^{\prime}\right] \vec{\varepsilon}^{v} \\
& +R_{N-1}^{(1)}\left[f_{1}, h_{1}\right]=\|\vec{\varepsilon}\|^{N} R_{N-1}^{(1)}\left[f_{1}, \vec{\varepsilon}\right]
\end{align*}
$$

where $\left\|R_{N-1}^{(1)}\left[f_{1}, \vec{\varepsilon}\right]\right\|_{L^{\infty}\left(0, T ; L^{2}\right)} \leq C$, with C is a constant depending only on $N, T, f_{1}, u_{\gamma},|\gamma| \leq$ N.

Then, (4.10) holds. Lemma 4.2 is proved.
Remark 4.3. Lemma 4.2 is a generalization of the formula given in [17, page 262, formula (4.38)], and it is useful to obtain Lemma 4.4 below. These lemmas are the key to the asymptotic expansion of a weak solution $u=u\left(\varepsilon_{1}, \varepsilon_{2}\right)$ of order $N+1$ in two small parameters $\varepsilon_{1}, \varepsilon_{2}$.

By $u_{\vec{\varepsilon}}=u\left(\varepsilon_{1}, \varepsilon_{2}\right) \in W_{1}(M, T)$ as a unique weak solution of $\left(P_{\vec{\varepsilon}}\right), v=u_{\vec{\varepsilon}}-\sum_{|\gamma| \leq N} u_{\gamma} \vec{\varepsilon}^{\gamma} \equiv$ $u_{\vec{\varepsilon}}-h$ satisfies the problem

$$
\begin{align*}
v^{\prime \prime}-\frac{\partial}{\partial x}\left(\mu_{\varepsilon_{1}}[v+h] v_{x}\right)= & \varepsilon_{2}\left(f_{1}[v+h]-f_{1}[h]\right)+\varepsilon_{1} \frac{\partial}{\partial x}\left[\left(\mu_{1}[v+h]-\mu_{1}[h]\right) h_{x}\right] \\
& +E_{\vec{\varepsilon}}(x, t), \quad 0<x<1,0<t<T, \\
v(0, t)= & v(1, t)=0, \tag{4.20}\\
v(x, 0)= & v^{\prime}(x, 0)=0, \\
\mu_{\varepsilon_{1}}[v]= & \mu_{0}+\varepsilon_{1} \mu_{1}[v]=\mu_{0}(x, t)+\varepsilon_{1} \mu_{1}(x, t, v), \\
f_{1}[v]= & f_{1}\left(x, t, v, v_{x}, v^{\prime}\right), \quad \mu_{1}[v]=\mu_{1}(x, t, v),
\end{align*}
$$

where

$$
\begin{equation*}
E_{\vec{\varepsilon}}(x, t)=\varepsilon_{2} f_{1}[h]+\varepsilon_{1} \frac{\partial}{\partial x}\left[\left(\mu_{1}[h]-\mu_{1}\left[u_{0}\right]\right) h_{x}\right]-\sum_{1 \leq|\gamma| \leq N} F_{\gamma} \vec{\varepsilon}^{\gamma} \tag{4.21}
\end{equation*}
$$

Lemma 4.4. Let $\left(H_{1}\right),\left(H_{4}\right)$ and $\left(H_{5}\right)$ hold. Then

$$
\begin{equation*}
\left\|E_{\vec{\varepsilon}}\right\|_{L^{\infty}\left(0, T ; L^{2}\right)} \leq E_{*}\|\vec{\varepsilon}\|^{N+1} \tag{4.22}
\end{equation*}
$$

where E_{*} is a constant depending only on $N, T, f_{0}, f_{1}, \mu_{0}, \mu_{1}, u_{\gamma},|\gamma| \leq N$.

Proof. We only need prove with $N \geq 2$.
Using (4.9) for the function $\mu_{1}[h]$, we obtain

$$
\begin{equation*}
\mu_{1}[h]=\mu_{1}\left[u_{0}\right]+\sum_{1 \leq|v| \leq N-1} \rho_{v}\left[\mu_{1}\right] \vec{\varepsilon}^{v}+\|\vec{\varepsilon}\|^{N} \widetilde{R}_{N-1}^{(1)}\left[\mu_{1}, \vec{\varepsilon}\right] . \tag{4.23}
\end{equation*}
$$

By (4.6), (4.8), we write

$$
\begin{align*}
\varepsilon_{1}\left(\mu_{1}[h]-\mu_{1}\left[u_{0}\right]\right) & =\sum_{1 \leq|v| \leq N-1} \rho_{v}\left[\mu_{1}\right] \varepsilon_{1} \vec{\varepsilon}^{v}+\varepsilon_{1}\|\vec{\varepsilon}\|^{N} \tilde{R}_{N-1}^{(1)}\left[\mu_{1}, \vec{\varepsilon}\right] \\
& =\sum_{2 \leq|v| \leq N, v_{1} \geq 1} \rho_{v_{1}-1, v_{2}}\left[\mu_{1}\right] \vec{\varepsilon}^{v}+\varepsilon_{1}\|\vec{\varepsilon}\|^{N} \widetilde{R}_{N-1}^{(1)}\left[\mu_{1}, \vec{\varepsilon}\right] \tag{4.24}\\
& =\sum_{2 \leq|v| \leq N} \rho_{v}^{(1)}\left[\mu_{1}\right] \vec{\varepsilon}^{v}+\varepsilon_{1}\|\vec{\varepsilon}\|^{N} \tilde{R}_{N-1}^{(1)}\left[\mu_{1}, \vec{\varepsilon}\right]
\end{align*}
$$

On the other hand, from (4.24), we compute

$$
\begin{align*}
& \varepsilon_{1}\left(\mu_{1}[h]-\mu_{1}\left[u_{0}\right]\right) h_{x}=\left(\sum_{2 \leq|v| \leq N} \rho_{v}^{(1)}\left[\mu_{1}\right] \vec{\varepsilon}^{v}+\varepsilon_{1}\|\vec{\varepsilon}\|^{N} \widetilde{R}_{N-1}^{(1)}\left[\mu_{1}, \vec{\varepsilon}\right]\right) h_{x} \\
& =\left(\sum_{2 \leq|v| \leq N} \rho_{v}^{(1)}\left[\mu_{1}\right] \vec{\varepsilon}^{v}\right) \sum_{|\alpha| \leq N} \nabla u_{\alpha} \vec{\varepsilon}^{\alpha}+\varepsilon_{1}\|\vec{\varepsilon}\|^{N} \widetilde{R}_{N-1}^{(1)}\left[\mu_{1}, \vec{\varepsilon}\right] h_{x} \\
& =\sum_{2 \leq|\nu| \leq N,|\alpha| \leq N} \rho_{\nu}^{(1)}\left[\mu_{1}\right] \nabla u_{\alpha} \vec{\varepsilon}^{\nu+\alpha}+\|\vec{\varepsilon}\|^{N+1} \tilde{R}_{N}^{(1)}\left[\mu_{1}, \vec{\varepsilon}\right] \\
& =\sum_{2 \leq|v| \leq N,|\alpha| \leq N} \rho_{\nu}^{(1)}\left[\mu_{1}\right] \nabla u_{\alpha} \vec{\varepsilon}^{v+\alpha}+\|\vec{\varepsilon}\|^{N+1} \widetilde{R}_{N}^{(1)}\left[\mu_{1}, \vec{\varepsilon}\right] \\
& =\sum_{2 \leq|\gamma| \leq 2 N} \sum_{2 \leq|\nu| \leq N,|\gamma-\nu| \leq N} \rho_{v}^{(1)}\left[\mu_{1}\right] \nabla u_{\gamma-\nu} \vec{\varepsilon}^{\gamma}+\|\vec{\varepsilon}\|^{N+1} \tilde{R}_{N}^{(1)}\left[\mu_{1}, \vec{\varepsilon}\right] \\
& =\sum_{2 \leq|\gamma| \leq N} \sum_{2 \leq|\nu| \leq N,|\gamma-v| \leq N} \rho_{v}^{(1)}\left[\mu_{1}\right] \nabla u_{\gamma-v} \vec{\varepsilon}^{r} \\
& +\sum_{N+1 \leq|\gamma| \leq 2 N} \sum_{2 \leq|\nu| \leq N,|\gamma-v| \leq N} \rho_{v}^{(1)}\left[\mu_{1}\right] \nabla u_{\gamma-\nu} \vec{\varepsilon}^{\gamma}+\|\vec{\varepsilon}\|^{N+1} \tilde{R}_{N}^{(1)}\left[\mu_{1}, \vec{\varepsilon}\right] \\
& =\sum_{2 \leq|\gamma| \leq N} \sum_{2 \leq|v| \leq N,|\gamma-\nu| \leq N} \rho_{v}^{(1)}\left[\mu_{1}\right] \nabla u_{\gamma-v} \vec{\varepsilon}^{\gamma}+\|\vec{\varepsilon}\|^{N+1} \widetilde{R}_{N}^{(2)}\left[\mu_{1}, \vec{\varepsilon}\right] \\
& =\sum_{2 \leq|\gamma| \leq N} \sum_{2 \leq|v| \leq N, v \leq \gamma} \rho_{v}^{(1)}\left[\mu_{1}\right] \nabla u_{\gamma-v} \vec{\varepsilon}^{\gamma}+\|\vec{\varepsilon}\|^{N+1} \widetilde{R}_{N}^{(2)}\left[\mu_{1}, \vec{\varepsilon}\right], \tag{4.25}
\end{align*}
$$

where

$$
\begin{gather*}
\tilde{R}_{N}^{(1)}\left[\mu_{1}, \vec{\varepsilon}\right]=\frac{\varepsilon_{1}}{\|\vec{\varepsilon}\|} \tilde{R}_{N-1}^{(1)}\left[\mu_{1}, \vec{\varepsilon}\right] h_{x}, \\
\|\vec{\varepsilon}\|^{N+1} \widetilde{R}_{N}^{(2)}\left[\mu_{1}, \vec{\varepsilon}\right]=\sum_{N+1 \leq|\gamma| \leq 2 N} \sum_{2 \leq|\nu| \leq N,|r v| \leq N} \rho_{v}^{(1)}\left[\mu_{1}\right] \nabla u_{\gamma-\nu} \vec{\varepsilon}^{\gamma}+\|\vec{\varepsilon}\|^{N+1} \widetilde{R}_{N}^{(1)}\left[\mu_{1}, \vec{\varepsilon}\right] . \tag{4.2.2}
\end{gather*}
$$

Hence,

$$
\begin{align*}
\varepsilon_{1} \frac{\partial}{\partial x}\left[\left(\mu_{1}[h]-\mu_{1}\left[u_{0}\right]\right) h_{x}\right] & =\frac{\partial}{\partial x}\left[\sum_{2 \leq|r| \leq N} \sum_{2 \leq \mid \nu \leq N, v \leq r} \rho_{\nu}^{(1)}\left[\mu_{1}\right] \nabla u_{r-\nu} \vec{\varepsilon}^{\gamma}+\|\vec{\varepsilon}\|^{N+1} \tilde{R}_{N}^{(2)}\left[\mu_{1}, \vec{\varepsilon}\right]\right] \\
& =\sum_{2 \leq|r| \leq N} \sum_{2 \leq \nu \mid \leq N, v \leq r} \frac{\partial}{\partial x}\left[\rho_{\nu}^{(1)}\left[\mu_{1}\right] \nabla u_{\gamma-\nu}\right] \vec{\varepsilon}^{r}+\|\vec{\varepsilon}\|^{N+1} \frac{\partial}{\partial x} \widetilde{R}_{N}^{(2)}\left[\mu_{1}, \vec{\varepsilon}\right] . \tag{4.27}
\end{align*}
$$

Similarly, we write

$$
\begin{align*}
\varepsilon_{2} f_{1}[h] & =\varepsilon_{2}\left(\sum_{|\nu| \leq N-1} \pi_{v}\left[f_{1}\right] \vec{\varepsilon}^{v}+\|\vec{\varepsilon}\|^{N} R_{N-1}^{(1)}\left[f_{1}, \vec{\varepsilon}\right]\right) \tag{4.28}\\
& =\sum_{1 \leq|v| \leq N} \pi_{v}^{(2)}\left[f_{1}\right] \vec{\varepsilon}^{v}+\|\vec{\varepsilon}\|^{N+1} \bar{R}_{N}^{(1)}\left[f_{1}, \vec{\varepsilon}\right]
\end{align*}
$$

where $\bar{R}_{N}^{(1)}\left[f_{1}, \vec{\varepsilon}\right]=\varepsilon_{2} /\|\vec{\varepsilon}\| R_{N-1}^{(1)}\left[f_{1}, \vec{\varepsilon}\right]$ is bounded in the function space $L^{\infty}\left(0, T ; L^{2}\right)$ by a constant depending only on $N, T, f_{1}, u_{\gamma},|\gamma| \leq N$.

Combining (4.4), (4.21), (4.27), and (4.28) yields

$$
\begin{align*}
E_{\vec{\varepsilon}}(x, t)= & \varepsilon_{2} f_{1}[h]+\varepsilon_{1} \frac{\partial}{\partial x}\left[\left(\mu_{1}[h]-\mu_{1}\left[u_{0}\right]\right) h_{x}\right]-\sum_{1 \leq|r| \leq N} F_{r} \vec{\varepsilon}^{r} \\
= & \sum_{1 \leq|r| \leq N}\left\{\left[\pi_{v}^{(2)}\left[f_{1}\right]+\sum_{2 \leq \mid v \leq N, v \leq r} \frac{\partial}{\partial x}\left[\rho_{v}^{(1)}\left[\mu_{1}\right] \nabla u_{\gamma-v}\right]\right]-F_{\gamma}\right\} \vec{\varepsilon}^{r} \tag{4.29}\\
& +\|\vec{\varepsilon}\|^{N+1}\left(\bar{R}_{N}^{(1)}\left[f_{1}, \vec{\varepsilon}\right]+\frac{\partial}{\partial x} \widetilde{R}_{N}^{(2)}\left[\mu_{1}, \vec{\varepsilon}\right]\right) \\
= & \|\vec{\varepsilon}\|^{N+1}\left(\bar{R}_{N}^{(1)}\left[f_{1}, \vec{\varepsilon}\right]+\frac{\partial}{\partial x} \widetilde{R}_{N}^{(2)}\left[\mu_{1}, \vec{\varepsilon}\right]\right) .
\end{align*}
$$

By the boundedness of the functions $u_{r}, \nabla u_{r}, u_{\gamma}^{\prime},|\gamma| \leq N$ in the function space $L^{\infty}\left(0, T ; H^{1}\right)$, we obtain from (4.26) and (4.29) that

$$
\begin{equation*}
\left\|E_{\vec{\varepsilon}}\right\|_{L^{\infty}\left(0, T ; L^{2}\right)} \leq E_{*}\|\vec{\varepsilon}\|^{N+1}, \tag{4.30}
\end{equation*}
$$

where E_{*} is a constant depending only on $N, T, f_{0}, f_{1}, \mu_{0}, \mu_{1}, u_{\gamma},|\gamma| \leq N$.

The proof of Lemma 4.4 is complete.
Now, we consider the sequence of functions $\left\{v_{m}\right\}$ defined by

$$
\begin{gather*}
v_{0} \equiv 0 \\
v_{m-1}^{\prime \prime}-\frac{\partial}{\partial x}\left(\mu_{\varepsilon_{1}}\left[v_{m-1}+h\right] v_{m x}\right)=\varepsilon_{2}\left(f_{1}\left[v_{m-1}+h\right]-f_{i}[h]\right) \\
+\varepsilon_{1} \frac{\partial}{\partial x}\left[\left(\mu_{1}\left[v_{m-1}+h\right]-\mu_{1}[h]\right) h_{x}\right]+E_{\vec{\varepsilon}}(x, t), \quad 0<x<1,0<t<T \\
v_{m}(0, t)=v_{m}(1, t)=0 \\
v_{m}(x, 0)=v_{m}^{\prime}(x, 0)=0, \quad m \geq 1 \tag{4.31}
\end{gather*}
$$

With $m=1$, we have the problem

$$
\begin{gather*}
v_{1}^{\prime \prime}-\frac{\partial}{\partial x}\left(\mu_{\varepsilon_{1}}[h] v_{1 x}\right)=E_{\vec{\varepsilon}}(x, t), \quad 0<x<1,0<t<T \\
v_{1}(0, t)=v_{1}(1, t)=0 \tag{4.32}\\
v_{1}(x, 0)=v_{1}^{\prime}(x, 0)=0 .
\end{gather*}
$$

Multiplying two sides of $(4.32)_{1}$ by v_{1}^{\prime}, we compute without difficulty from (4.22) that

$$
\begin{align*}
\left\|v_{1}^{\prime}(t)\right\|^{2}+\left\|\sqrt{\mu_{1, \varepsilon_{1}}(t)} v_{1 x}(t)\right\|^{2} & =2 \int_{0}^{t}\left\langle E_{\vec{\varepsilon}}(s), v_{1}^{\prime}(s)\right\rangle d s+\int_{0}^{t} d s \int_{0}^{1} \mu_{1, \varepsilon_{1}}^{\prime}(x, s) v_{1 x}^{2}(x, s) d x \\
& \leq T E_{*}^{2}\|\vec{\varepsilon}\|^{2 N+2}+\int_{0}^{t}\left\|v_{1}^{\prime}(s)\right\|^{2} d s+\int_{0}^{t} d s \int_{0}^{1}\left|\mu_{1, \varepsilon_{1}}^{\prime}(x, s)\right| v_{1 x}^{2}(x, s) d x \tag{4.33}
\end{align*}
$$

where $\mu_{1, \varepsilon_{1}}(x, t)=\mu_{\varepsilon_{1}}[h(x, t)]=\mu_{0}(x, t)+\varepsilon_{1} \mu_{1}(x, t, h(x, t))$. By

$$
\begin{equation*}
\mu_{1, \varepsilon_{1}}^{\prime}(x, t)=\mu_{0}^{\prime}(x, t)+\varepsilon_{1}\left[D_{2} \mu_{1}(x, t, h(x, t))+D_{3} \mu_{1}(x, t, h(x, t)) h^{\prime}(x, t)\right] \tag{4.34}
\end{equation*}
$$

we get

$$
\begin{equation*}
\left|\mu_{1, \varepsilon_{1}}^{\prime}(x, t)\right| \leq \tilde{K}\left(\mu_{0}\right)+\left(1+M_{*}\right) \tilde{K}_{M_{*}}\left(\mu_{1}\right) \equiv \zeta_{0} \tag{4.35}
\end{equation*}
$$

with $M_{*}=(N+1) M, \tilde{K}\left(\mu_{0}\right)=\left\|\mu_{0}\right\|_{C^{1}\left(\bar{Q}_{T^{*}}\right)}$.
It follows from (4.33), (4.35) that

$$
\begin{equation*}
\left\|v_{1}^{\prime}(t)\right\|^{2}+\mu_{*}\left\|v_{1 x}(t)\right\|^{2} \leq T E_{*}^{2}\|\vec{\varepsilon}\|^{2 N+2}+\int_{0}^{t}\left\|v_{1}^{\prime}(s)\right\|^{2} d s+\zeta_{0} \int_{0}^{t}\left\|v_{1 x}(s)\right\|^{2} d s \tag{4.36}
\end{equation*}
$$

Using Gronwall's lemma, (4.36) gives

$$
\begin{equation*}
\left\|v_{1}^{\prime}\right\|_{L^{\infty}\left(0, T ; L^{2}\right)}+\left\|v_{1 x}\right\|_{L^{\infty}\left(0, T ; L^{2}\right)} \leq\left(1+\frac{1}{\sqrt{\mu_{*}}}\right) \sqrt{T} E_{*}\|\vec{\varepsilon}\|^{N+1} \exp \left[\frac{\left(\mu_{*}+\zeta_{0}\right) T}{2 \mu_{*}}\right] . \tag{4.37}
\end{equation*}
$$

We will prove that there exists a constant C_{T}, independent of m and $\vec{\varepsilon}$, such that

$$
\begin{equation*}
\left\|v_{m}^{\prime}\right\|_{L^{\infty}\left(0, T ; L^{2}\right)}+\left\|v_{m x}\right\|_{L^{\infty}\left(0, T ; L^{2}\right)} \leq C_{T}\|\vec{\varepsilon}\|^{N+1}, \quad \text { with }\|\vec{\varepsilon}\| \leq \varepsilon^{*}<1, \forall m \text {. } \tag{4.38}
\end{equation*}
$$

Multiplying two sides of $(4.31)_{1}$ with v_{m}^{\prime} and after integrating in t, we obtain without difficulty from (4.22) that

$$
\begin{align*}
\left\|v_{m}^{\prime}(t)\right\|^{2}+\mu_{*}\left\|v_{m x}(t)\right\|^{2} \leq & T E_{*}^{2}\|\vec{\varepsilon}\|^{2 N+2}+\int_{0}^{t}\left\|v_{m}^{\prime}(s)\right\|^{2} d s+\int_{0}^{t} d s \int_{0}^{1}\left|\mu_{m, \varepsilon_{1}}^{\prime}(x, s)\right| v_{m x}^{2}(x, s) d x \\
& +2 \varepsilon_{2} \int_{0}^{t}\left\|f_{1}\left[v_{m-1}+h\right]-f_{1}[h]\right\|\left\|v_{m}^{\prime}(s)\right\| d s \\
& +2 \varepsilon_{1} \int_{0}^{t}\left\|\frac{\partial}{\partial x}\left[\left(\mu_{1}\left[v_{m-1}+h\right]-\mu_{1}[h]\right) h_{x}\right]\right\|\left\|v_{m}^{\prime}(s)\right\| d s \\
= & T E_{*}^{2}\|\vec{\varepsilon}\|^{2 N+2}+\int_{0}^{t}\left\|v_{m}^{\prime}(s)\right\|^{2} d s+\widehat{J}_{1}(t)+\widehat{J}_{2}(t)+\widehat{J}_{3}(t) \tag{4.39}
\end{align*}
$$

where $\mu_{m, \varepsilon_{1}}(x, t)=\mu_{\varepsilon_{1}}\left[v_{m-1}+h\right]=\mu_{0}(x, t)+\varepsilon_{1} \mu_{1}\left(x, t, v_{m-1}(x, t)+h(x, t)\right)$. We will estimate the integrals on the right-hand side of (4.39) as follows.

First Integral $\widehat{J}_{1}(t)$
We have

$$
\begin{equation*}
\mu_{m, \varepsilon_{1}}^{\prime}(x, t)=\mu_{0}^{\prime}(x, t)+\varepsilon_{1}\left[D_{2} \mu_{1}\left(x, t, v_{m-1}+h\right)+D_{3} \mu_{1}\left(x, t, v_{m-1}+h\right)\left(v_{m-1}^{\prime}+h^{\prime}\right)\right] \tag{4.40}
\end{equation*}
$$

hence

$$
\begin{equation*}
\left|\mu_{m, \varepsilon_{1}}^{\prime}(x, t)\right| \leq \widetilde{K}\left(\mu_{0}\right)+\left(1+M_{1 *}\right) \widetilde{K}_{M_{1 *}}\left(\mu_{1}\right) \equiv x_{1}, \quad \text { with } M_{1_{*}}=(N+2) M . \tag{4.41}
\end{equation*}
$$

It follows from (4.41) that

$$
\begin{equation*}
\widehat{J}_{1}(t)=\int_{0}^{t} d s \int_{0}^{1}\left|\mu_{m, \varepsilon_{1}}^{\prime}(x, s)\right| v_{m x}^{2}(x, s) d x \leq x_{1} \int_{0}^{t}\left\|v_{m x}(s)\right\|^{2} d s \tag{4.42}
\end{equation*}
$$

Second Integral $\widehat{J}_{2}(t)$
We note that

$$
\begin{equation*}
\left\|f_{1}\left[v_{m-1}+h\right]-f_{1}[h]\right\| \leq 2 K_{M_{1 *}}\left(f_{1}\right)\left\|v_{m-1}\right\|_{W_{1}(T)} \tag{4.43}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\widehat{J}_{2}(t)=2 \varepsilon_{2} \int_{0}^{t}\left\|f_{1}\left[v_{m-1}+h\right]-f_{1}[h]\right\|\left\|v_{m}^{\prime}(s)\right\| d s \leq T X_{2}^{2}\|\vec{\varepsilon}\|^{2}\left\|v_{m-1}\right\|_{W_{1}(T)}^{2}+\int_{0}^{t}\left\|v_{m}^{\prime}(s)\right\|^{2} d s \tag{4.44}
\end{equation*}
$$

where $X_{2}=X_{2}\left(M_{1 *}, f_{1}\right)=2 K_{M_{1 *}}\left(f_{1}\right)$.
Third Integral $\widehat{J}_{3}(t)$
First, we need to estimate $\left\|\partial / \partial x\left[\left(\mu_{1}\left[v_{m-1}+h\right]-\mu_{1}[h]\right) h_{x}\right]\right\|$.
From the equation

$$
\begin{align*}
\frac{\partial}{\partial x} & {\left[\left(\mu_{1}\left[v_{m-1}+h\right]-\mu_{1}[h]\right) h_{x}\right] } \\
= & \left(\mu_{1}\left[v_{m-1}+h\right]-\mu_{1}[h]\right) h_{x x}+\frac{\partial}{\partial x}\left(\mu_{1}\left[v_{m-1}+h\right]-\mu_{1}[h]\right) h_{x} \tag{4.45}\\
= & \left(\mu_{1}\left[v_{m-1}+h\right]-\mu_{1}[h]\right) h_{x x}+\left(D_{1} \mu_{1}\left[v_{m-1}+h\right]-D_{1} \mu_{1}[h]\right) h_{x} \\
& +\left(D_{3} \mu_{1}\left[v_{m-1}+h\right]-D_{3} \mu_{1}[h]\right)\left(\nabla v_{m-1}+\nabla h\right) h_{x}+D_{3} \mu_{1}[h] \nabla v_{m-1} h_{x}
\end{align*}
$$

it implies that

$$
\begin{align*}
\| \frac{\partial}{\partial x} & {\left[\left(\mu_{1}\left[v_{m-1}+h\right]-\mu_{1}[h]\right) h_{x}\right] \| } \\
\leq & \left\|\mu_{1}\left[v_{m-1}+h\right]-\mu_{1}[h]\right\|_{C^{0}(\bar{\Omega})}\left\|h_{x x}\right\| \\
& +\left\|D_{1} \mu_{1}\left[v_{m-1}+h\right]-D_{1} \mu_{1}[h]\right\|_{C^{0}(\bar{\Omega})}\left\|h_{x}\right\| \tag{4.46}\\
& +\left\|D_{3} \mu_{1}\left[v_{m-1}+h\right]-D_{3} \mu_{1}[h]\right\|_{C^{0}(\bar{\Omega})}\left\|\nabla v_{m-1}+\nabla h\right\|_{C^{0}(\bar{\Omega})}\left\|h_{x}\right\| \\
& +\left\|D_{3} \mu_{1}[h]\right\|_{C^{0}(\bar{\Omega})}\left\|v_{m-1}\right\|_{W_{1}(T)}\left\|h_{x}\right\|_{C^{0}(\bar{\Omega})}
\end{align*}
$$

On the other hand, we have

$$
\begin{align*}
& \left\|\mu_{1}\left[v_{m-1}+h\right]-\mu_{1}[h]\right\|_{C^{0}(\bar{\Omega})} \leq \tilde{K}_{M_{1 *}}\left(\mu_{1}\right)\left\|v_{m-1}\right\|_{W_{1}(T)} \\
& \left\|D_{j} \mu_{1}\left[v_{m-1}+h\right]-D_{j} \mu_{1}[h]\right\|_{C^{0}(\bar{\Omega})} \leq \widetilde{K}_{M_{1 *}}\left(\mu_{1}\right)\left\|v_{m-1}\right\|_{W_{1}(T)}, \quad j=1,3 \tag{4.47}\\
& \left\|D_{3} \mu_{1}[h]\right\|_{C^{0}(\bar{\Omega})} \leq \widetilde{K}_{M_{1 *}}\left(\mu_{1}\right)
\end{align*}
$$

We deduce from (4.46) and (4.47) that

$$
\begin{equation*}
\left\|\frac{\partial}{\partial x}\left[\left(\mu_{1}\left[v_{m-1}+h\right]-\mu_{1}[h]\right) h_{x}\right]\right\| \leq\left(3+2 M_{1 *}\right) M_{1 *} \widetilde{K}_{M_{1 *}}\left(\mu_{1}\right)\left\|v_{m-1}\right\|_{W_{1}(T)} \tag{4.48}
\end{equation*}
$$

Next, by (4.48), it follows that

$$
\begin{align*}
\widehat{J}_{3}(t) & =2 \varepsilon_{1} \int_{0}^{t}\left\|\frac{\partial}{\partial x}\left[\left(\mu_{1}\left[v_{m-1}+h\right]-\mu_{1}[h]\right) h_{x}\right]\right\|\left\|v_{m}^{\prime}(s)\right\| d s \\
& \leq T X_{3}^{2}\|\vec{\varepsilon}\|^{2}\left\|v_{m-1}\right\|_{W_{1}(T)}^{2}+\int_{0}^{t}\left\|v_{m}^{\prime}(s)\right\|^{2} d s \tag{4.49}
\end{align*}
$$

where $X_{3}=X_{3}\left(M_{1 *}, \mu_{1}\right)=\left(3+2 M_{1 *}\right) M_{1 *} \tilde{K}_{M_{1 *}}\left(\mu_{1}\right)$.
Combining (4.39), (4.42), (4.44), and (4.49) gives

$$
\begin{align*}
\left\|v_{m}^{\prime}(t)\right\|^{2}+\mu_{*}\left\|v_{m x}(t)\right\|^{2} \leq & T E_{*}^{2}\|\vec{\varepsilon}\|^{2 N+2}+T\left(x_{2}^{2}+x_{3}^{2}\right)\|\vec{\varepsilon}\|^{2}\left\|v_{m-1}\right\|_{W_{1}(T)}^{2} \\
& +3 \int_{0}^{t}\left\|v_{m}^{\prime}(s)\right\|^{2} d s+x_{1} \int_{0}^{t}\left\|v_{m x}(s)\right\|^{2} d s \\
\leq & T E_{*}^{2}\|\vec{\varepsilon}\|^{2 N+2}+T\left(x_{2}^{2}+x_{3}^{2}\right)\|\vec{\varepsilon}\|^{2}\left\|v_{m-1}\right\|_{W_{1}(T)}^{2} \tag{4.50}\\
& +\left(3+\frac{x_{1}}{\mu_{*}}\right) \int_{0}^{t}\left(\left\|v_{m}^{\prime}(s)\right\|^{2}+\mu_{*}\left\|v_{m x}(s)\right\|^{2}\right) d s
\end{align*}
$$

Using Gronwall's lemma, we deduce from (4.50) that

$$
\begin{equation*}
\left\|v_{m}\right\|_{W_{1}(T)} \leq \sigma_{T}\left\|v_{m-1}\right\|_{W_{1}(T)}+\delta, \quad \forall m \geq 1, \tag{4.51}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma_{T}=\sqrt{x_{2}^{2}+x_{3}^{2}} \eta_{T}, \quad \delta=\eta_{T} E_{*}\|\vec{\varepsilon}\|^{N+1}, \quad \eta_{T}=\left(1+\frac{1}{\sqrt{\mu_{*}}}\right) \sqrt{T} \exp \left[\frac{T}{2}\left(3+\frac{x_{1}}{\mu_{*}}\right)\right] \tag{4.52}
\end{equation*}
$$

We can assume that

$$
\begin{equation*}
\sigma_{T}<1, \tag{4.53}
\end{equation*}
$$

with sufficiently small $T>0$.
Lemma 4.5. Let the sequence $\left\{\zeta_{m}\right\}$ satisfy

$$
\begin{equation*}
\zeta_{m} \leq \sigma \zeta_{m-1}+\delta \quad \forall m \geq 1, \quad \zeta_{0}=0 \tag{4.54}
\end{equation*}
$$

where $0 \leq \sigma<1, \delta \geq 0$ are the given constants. Then,

$$
\begin{equation*}
\zeta_{m} \leq \frac{\delta}{(1-\sigma)} \quad \forall m \geq 1 . \tag{4.55}
\end{equation*}
$$

This lemma is useful, as it will be said below, and it is easy to prove.
Applying Lemma 4.5 with $\zeta_{m}=\left\|v_{m}\right\|_{W_{1}(T)}, \sigma=\sigma_{T}=\sqrt{x_{2}^{2}+x_{3}^{2}} \eta_{T}<1, \delta=\eta_{T} E_{*}\|\vec{\varepsilon}\|^{N+1}$, it follows from (4.55) that

$$
\begin{equation*}
\left\|v_{m}^{\prime}\right\|_{L^{\infty}\left(0, T ; L^{2}\right)}+\left\|v_{m x}\right\|_{L^{\infty}\left(0, T ; L^{2}\right)}=\left\|v_{m}\right\|_{W_{1}(T)} \leq \frac{\delta}{\left(1-\sigma_{T}\right)} \equiv C_{T}\|\vec{\varepsilon}\|^{N+1} . \tag{4.56}
\end{equation*}
$$

On the other hand, the linear recurrent sequence $\left\{v_{m}\right\}$ defined by (4.31) converges strongly in the space $W_{1}(T)$ to the solution v of the problem (4.20). Hence, letting $m \rightarrow+\infty$ in (4.56) yields

$$
\begin{equation*}
\left\|v^{\prime}\right\|_{L^{\infty}\left(0, T ; L^{2}\right)}+\left\|v_{x}\right\|_{L^{\infty}\left(0, T ; L^{2}\right)} \leq C_{T}\|\vec{\varepsilon}\|^{N+1}, \tag{4.57}
\end{equation*}
$$

it means that

$$
\begin{equation*}
\left\|u^{\prime}-\sum_{|r| \leq N} u_{\gamma}^{\prime} \vec{\varepsilon}^{r}\right\|_{L^{\infty}\left(0, T ; L^{2}\right)}+\left\|u_{x}-\sum_{|r| \leq N} u_{r x} \vec{\varepsilon}^{r}\right\|_{L^{\infty}\left(0, T ; L^{2}\right)} \leq C_{T}\|\vec{\varepsilon}\|^{N+1} . \tag{4.58}
\end{equation*}
$$

Consequently, we obtain the following theorem.
Theorem 4.6. Let $\left(H_{1}\right),\left(H_{4}\right)$ and $\left(H_{5}\right)$ hold. Then there exist constants $M>0$ and $T>0$ such that, for every $\vec{\varepsilon}$, with $\|\vec{\varepsilon}\| \leq \varepsilon_{*}<1$, the problem ($P_{\vec{\varepsilon}}$) has a unique weak solution $u=u_{\vec{\varepsilon}} \in W_{1}(M, T)$ satisfying an asymptotic expansion up to order $N+1$ as in (4.58), where the functions $u_{r},|\gamma| \leq N$ are the weak solutions of the problems $\left(P_{0}\right),\left(\widetilde{P}_{\gamma}\right), 1 \leq|\gamma| \leq N$, respectively.

The Problem with Many Small Parameters
Next, we note that the results as above still hold for the problem in p small parameters $\varepsilon_{1}, \ldots, \varepsilon_{p}$ as follows:

$$
\begin{gather*}
u_{\text {tt }}-\frac{\partial}{\partial x}\left[\left(\mu_{0}(x, t)+\sum_{i=1}^{p} \varepsilon_{i} \mu_{i}(x, t, u)\right) u_{x}\right] \\
=f_{0}(x, t)+\sum_{i=1}^{p} \varepsilon_{i} f_{i}\left(x, t, u, u_{x}, u_{t}\right), \quad 0<x<1,0<t<T, \tag{P}\\
u(0, t)=u(1, t)=0, \\
u(x, 0)=\widetilde{u}_{0}(x), \quad u_{t}(x, 0)=\tilde{u}_{1}(x) .
\end{gather*}
$$

For more detail, we also make the following assumptions:

$$
\begin{aligned}
& \left(\widehat{H}_{4}\right) \mu \in C^{2}\left([0,1] \times \mathbb{R}_{+}\right), \mu_{i} \in C^{N+1}\left([0,1] \times \mathbb{R}_{+} \times \mathbb{R}\right), \mu_{0} \geq \mu_{*}>0, \mu_{i} \geq 0, i=1,2, \ldots, p, \\
& \left(\widehat{H}_{5}\right) f_{0} \in C^{1}\left([0,1] \times \mathbb{R}_{+}\right), f_{i} \in C^{N}\left([0,1] \times \mathbb{R}_{+} \times \mathbb{R}^{3}\right), i=1,2, \ldots, p .
\end{aligned}
$$

For a multi-index $\alpha=\left(\alpha_{1}, \ldots, \alpha_{p}\right) \in \mathbb{Z}_{+}^{p}$, and $\vec{\varepsilon}=\left(\varepsilon_{1}, \ldots, \varepsilon_{p}\right) \in \mathbb{R}^{p}$, we also put

$$
\begin{gather*}
|\alpha|=\alpha_{1}+\cdots+\alpha_{p}, \quad \alpha!=\alpha_{1}!\cdots \alpha_{p}!, \\
\|\vec{\varepsilon}\|=\sqrt{\varepsilon_{1}^{2}+\cdots+\varepsilon_{p}^{2}}, \quad \vec{\varepsilon}^{\alpha}=\varepsilon_{1}^{\alpha_{1}} \cdots \varepsilon_{p}^{\alpha_{p}}, \tag{4.59}\\
\alpha, \beta \in \mathbb{Z}_{+}^{p}, \quad \alpha \leq \beta \Longleftrightarrow \alpha_{i} \leq \beta_{i} \quad \forall i=1, \ldots, p .
\end{gather*}
$$

Let u_{0} be a unique weak solution of the problem $\left(P_{0}\right)$, which is $\left(\widehat{P}_{\varepsilon}\right)$ corresponding to $\vec{\varepsilon}=(0, \ldots, 0)$. Let the sequence of weak solutions $u_{\gamma}, \gamma \in \mathbb{Z}_{+}^{p}, 1 \leq|\gamma| \leq N$ be defined by the problems (\tilde{P}_{γ}), in which $F_{\gamma}, \gamma \in \mathbb{Z}_{+}^{p}, 1 \leq|\gamma| \leq N$, are defined by suitable recurrent formulas. Then, the following similar theorem holds.

Theorem 4.7. Let $\left(H_{1}\right),\left(\widehat{H}_{4}\right)$ and $\left(\widehat{H}_{5}\right)$ hold. Then there exist constants $M>0$ and $T>0$ such that, for every $\vec{\varepsilon}$, with $\|\vec{\varepsilon}\| \leq \varepsilon_{*}<1$, the problem ($\widehat{P}_{\vec{\varepsilon}}$) has a unique weak solution $u=u_{\vec{\varepsilon}} \in W_{1}(M, T)$ satisfying an asymptotic estimation up to order $N+1$ as follows:

$$
\begin{equation*}
\left\|u^{\prime}-\sum_{|r| \leq N} u_{r}^{\prime} \vec{\varepsilon}^{r}\right\|_{L^{\infty}\left(0, T ; L^{2}\right)}+\left\|u_{x}-\sum_{|r| \leq N} u_{r x} \vec{\varepsilon}^{r}\right\|_{L^{\infty}\left(0, T ; L^{2}\right)} \leq C_{T}\|\vec{\varepsilon}\|^{N+1} . \tag{4.60}
\end{equation*}
$$

The proof of Theorem 4.7 is similar the one as above let us omit it.
Remark 4.8. Typical examples about asymptotic expansion of solutions in a small parameter can be found in the research of many authors such as $[1,3,4,8,9,17-19]$. However, to our knowledge, in the case of asymptotic expansion in many small parameters, there is only partial results, for example, [5-7,14], concerning asymptotic expansion of solutions in two or three small parameters.

Acknowledgments

The authors wish to express their sincere thanks to the referees for the suggestions and valuable comments. The authors are also extremely grateful for the support given by Vietnam's National Foundation for Science and Technology Development (NAFOSTED) under Project no. 101.01-2010.15.

References

[1] E. L. Ortiz and A. P. N. Dinh, "Linear recursive schemes associated with some nonlinear partial differential equations in one dimension and the tau method," SIAM Journal on Mathematical Analysis, vol. 18, no. 2, pp. 452-464, 1987.
[2] A. P. N. Dinh, "Sur un problème hyperbolique faiblement non-linéaire à une dimension," Demonstratio Mathematica, vol. 16, no. 2, pp. 269-289, 1983.
[3] A. P. N. Dinh and N. T. Long, "Linear approximation and asymptotic expansion associated to the nonlinear wave equation in one dimension," Demonstratio Mathematica, vol. 19, no. 1, pp. 45-63, 1986.
[4] N. T. Long and T. N. Diem, "On the nonlinear wave equation $u_{t t}-u_{x x}=f\left(x, t, u, u_{x}, u_{t}\right)$ associated with the mixed homogeneous conditions," Nonlinear Analysis, vol. 29, no. 11, pp. 1217-1230, 1997.
[5] N. T. Long, A. P. N. Dinh, and T. N. Diem, "On a shock problem involving a nonlinear viscoelastic bar," Boundary Value Problems, no. 3, pp. 337-358, 2005.
[6] N. T. Long and L. X. Truong, "Existence and asymptotic expansion for a viscoelastic problem with a mixed nonhomogeneous condition," Nonlinear Analysis, Theory, Methods \& Applications. Series A: Theory and Methods, vol. 67, no. 3, pp. 842-864, 2007.
[7] N. T. Long and L. X. Truong, "Existence and asymptotic expansion of solutions to a nonlinear wave equation with a memory condition at the boundary," Electronic Journal of Differential Equations, vol. 2007, no. 48, pp. 1-19, 2007.
[8] N. T. Long, N. C. Tam, and N. T. T. Truc, "On the nonlinear wave equation with the mixed nonhomogeneous conditions: linear approximation and asymptotic expansion of solutions," Demonstratio Mathematica, vol. 38, no. 2, pp. 365-386, 2005.
[9] L. T. P. Ngoc, L. N. K. Hang, and N. T. Long, "On a nonlinear wave equation associated with the boundary conditions involving convolution," Nonlinear Analysis, Theory, Methods \& Applications. Series A: Theory and Methods, vol. 70, no. 11, pp. 3943-3965, 2009.
[10] F. A. Ficken and B. A. Fleishman, "Initial value problems and time-periodic solutions for a nonlinear wave equation," Communications on Pure and Applied Mathematics, vol. 10, pp. 331-356, 1957.
[11] P. H. Rabinowitz, "Periodic solutions of nonlinear hyperbolic partial differential equations," Communications on Pure and Applied Mathematics, vol. 20, pp. 145-205, 1967.
[12] T. Kiguradze, "On bounded and time-periodic solutions of nonlinear wave equations," Journal of Mathematical Analysis and Applications, vol. 259, no. 1, pp. 253-276, 2001.
[13] T. Caughey and J. Ellison, "Existence, uniqueness and stability of solutions of a class of nonlinear partial differential equations," Journal of Mathematical Analysis and Applications, vol. 51, pp. 1-32, 1975.
[14] L. T. P. Ngoc, L. K. Luan, T. M. Thuyet, and N. T. Long, "On the nonlinear wave equation with the mixed nonhomogeneous conditions: linear approximation and asymptotic expansion of solutions," Nonlinear Analysis, Theory, Methods \& Applications. Series A: Theory and Methods, vol. 71, no. 11, pp. 5799-5819, 2009.
[15] J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non-Linéaires, Dunod-Gauthier Villars, Paris, France, 1969.
[16] K. Deimling, Nonlinear Functional Analysis, Springer, New York, NY, USA, 1985.
[17] N. T. Long, "On the nonlinear wave equation $u_{t t}-B\left(t,\|u\|^{2},\left\|u_{x}\right\|^{2}\right) u_{x x}=f\left(x, t, u, u_{x}, u_{t},\|u\|^{2},\left\|u_{x}\right\|^{2}\right)$ associated with the mixed homogeneous conditions," Journal of Mathematical Analysis and Applications, vol. 306, no. 1, pp. 243-268, 2005.
[18] J. Boujot, A. P. N. Dinh, and J. P. Veyrier, "Oscillateurs harmoniques faiblement perturbés: L'algorithme numérique des "par de géants"," RAIRO Analyse Numérique, vol. 14, no. 1, pp. 3-23, 1980.
[19] N. T. Long, A. P. N. Dinh, and T. N. Diem, "Linear recursive schemes and asymptotic expansion associated with the Kirchoff-Carrier operator," Journal of Mathematical Analysis and Applications, vol. 267, no. 1, pp. 116-134, 2002.

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

