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A Dirichlet problem for a nonlinear wave equation is investigated. Under suitable assumptions,
we prove the solvability and the uniqueness of a weak solution of the above problem. On the other
hand, a high-order asymptotic expansion of a weak solution in many small parameters is studied.
Our approach is based on the Faedo-Galerkin method, the compact imbedding theorems, and the
Taylor expansion of a function.

1. Introduction

In this paper, we consider the following Dirichlet problem:

utt − ∂

∂x

(
μ(x, t, u)ux

)
= f(x, t, u, ux, ut), 0 < x < 1, 0 < t < T, (1.1)

u(0, t) = u(1, t) = 0, (1.2)

u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x), (1.3)

where ũ0, ũ1, μ, and f are given functions satisfying conditions specified later.
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In the special cases, when the function μ(x, t, u) is independent of u, μ(x, t, u) ≡ 1, or
μ(x, t, u) = μ(x, t), and the nonlinear term f has the simple forms, the problem (1.1), with
various initial-boundary conditions, has been studied by many authors, for example, Ortiz
and Dinh [1], Dinh and Long [2, 3], Long and Diem [4], Long et al. [5], Long and Truong
[6, 7], Long et al. [8], Ngoc et al. [9], and the references therein.

Ficken and Fleishman [10] and Rabinowitz [11] studied the periodic-Dirichlet problem
for hyperbolic equations containing a small parameter ε, in particular, the differential
equation

utt − uxx = 2αut + εf(t, x, u, ut, ux). (1.4)

In [12], Kiguradze has established the existence and uniqueness of a classical solution
u ∈ C2([0, a] × R

n) of the periodic-Dirichlet problem for the following nonlinear wave
equation:

utt − uxx = g(t, x, u) + g1(u)ut, (1.5)

under the assumption that g and g1 are continuously differentiable functions (these
conditions are sharp and cannot be weakened). Moreover, it is shown that the same results
are valid for the equation

utt − uxx = g(t, x, u) + g1(u)ut + εq(t, x, u, ut, ux), (1.6)

with sufficiently small ε and continuously differentiable q.
In [13], a unified approach to the previous cases was presented discussing the

existence unique and asymptotic stability of classical solutions for a class of nonlinear
continuous dynamical systems.

In [8], Long et al. have studied the linear recursive schemes and asymptotic expansion
for the nonlinear wave equation

utt − uxx = f(x, t, u, ux, ut) + εf1(x, t, u, ux, ut), (1.7)

with the mixed nonhomogeneous conditions

ux(0, t) − h0u(0, t) = g0(t), u(1, t) = g1(t). (1.8)

In the case of g0, g1 ∈ C3(R+), f ∈ CN+1([0, 1] ×R+ ×R
3), f1 ∈ CN([0, 1] ×R+ ×R

3), and
some other conditions, an asymptotic expansion of the weak solution uε of order N + 1 in ε
is considered.

This paper consists of four sections. In Section 2, we present some preliminaries. Using
the Faedo-Galerkin method and the compact imbedding theorems, in Section 3, we prove the
solvability and the uniqueness of a weak solution of the problem (1.1)–(1.3). In Section 4,
based on the ideals and the techniques used in the above-mentioned papers, we study
a high-order asymptotic expansion of a weak solution for the problem (1.1)–(1.3), where
(1.1) has the form of a linear wave equation with nonlinear perturbations containing many
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small parameters. In order to avoid making the treatment too complicated without losing of
generality, at first, an asymptotic expansion of a weak solution u = uε1,ε2(x, t) of order N + 1
in two small parameters ε1, ε2 for the following equation:

utt − ∂

∂x

([
μ0(x, t) + ε1μ1(x, t, u)

]
ux

)
= f0(x, t) + ε2f1(x, t, u, ux, ut), (1.9)

associated with (1.2), (1.3), with μ0 ∈ C2([0, 1]×R+), μ1 ∈ CN+1([0, 1]×R+ ×R), μ0(x, t) ≥ μ∗ >
0, μ1(x, t, z) ≥ 0, for all (x, t, z) ∈ [0, 1] ×R+ ×R, f0 ∈ C1([0, 1] ×R+), and f1 ∈ CN([0, 1] ×R+ ×
R

3) is established. Next, we note that the same results are valid for the equation in p small
parameters ε1, . . . , εp as follows

utt − ∂

∂x

[(

μ0(x, t) +
p∑

i=1

εiμi(x, t, u)

)

ux

]

= f0(x, t) +
p∑

i=1

εifi(x, t, u, ux, ut), (1.10)

associated with (1.2), (1.3). The result obtained here is a relative generalization of [5–7, 14],
where asymptotic expansion of a weak solution in two or three small parameters is given.

2. Preliminaries

Put Ω = (0, 1). Let us omit the definitions of usual function spaces that will be used in what
follows such as Lp = Lp(Ω), Hm = Hm(Ω), Hm

0 = Hm
0 (Ω). The norm in L2 is denoted by ‖ · ‖.

We denote by 〈·, ·〉 the scalar product in L2 or a pair of dual products of continuous linear
functional with an element of a function space. We denote by ‖ · ‖X the norm of a Banach
space X and by X′ the dual space of X. We denote Lp(0, T ;X), 1 ≤ p ≤ ∞, the Banach space of
real functions u : (0, T) → X measurable, such that ‖u‖Lp(0,T ;X) < +∞, with

‖u‖Lp(0,T ;X) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(∫T

0
‖u(t)‖pXdt

)1/p

, if 1 ≤ p < ∞,

ess sup
0<t<T

‖u(t)‖X, if p = ∞.

(2.1)

Let u(t), u′(t) = ut(t) = u̇(t), u′′(t) = utt(t) = ü(t), ux(t) = ∇u(t), uxx(t) = Δu(t) denote
u(x, t), ∂u/∂t(x, t), ∂2u/∂t2(x, t), ∂u/∂x(x, t), ∂2u/∂x2(x, t), respectively. With f ∈ Ck([0, 1] ×
R+ × R

3), f = f(x, t, u, v,w), we put D1f = ∂f/∂x,D2f = ∂f/∂t,D3f = ∂f/∂u,D4f =
∂f/∂v,D5f = ∂f/∂w and Dαf = Dα1

1 Dα2
2 Dα3

3 Dα4
4 Dα5

5 f ; α = (α1, α2, α3, α4, α5) ∈ Z
5
+, |α| =

α1 + α2 + α3 + α4 + α5 = k, D(0,0,...,0)f = f .
Similarly, with μ ∈ Ck([0, 1] × R+ × R), μ = μ(x, t, z), we put D1μ = ∂μ/∂x,D2μ =

∂μ/∂t,D3μ = ∂μ/∂z and Dβμ = D
β1
1 D

β2
2 D

β3
3 , β = (β1, β2, β3) ∈ Z

3
+, |β| = β1 + β2 + β3 = k.

On H1, we will use the following norms:

‖v‖H1 =
(
‖v‖2 + ‖vx‖2

)1/2
. (2.2)

Then, we have the following lemma.
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Lemma 2.1. The imbedding H1 ↪→ C0(Ω) is compact and

‖v‖C0(Ω) ≤
√
2‖v‖H1 ∀v ∈ H1. (2.3)

The proof of Lemma 2.1 is easy, hence we omit the details.

Remark 2.2. On H1
0 , v �→ ‖v‖H1 and v �→ ‖vx‖ are two equivalent norms. Furthermore, we

have the following inequalities:

‖v‖C0(Ω) ≤ ‖vx‖ ∀v ∈ H1
0 . (2.4)

Remark 2.3. (i) Let us note more that a unique weak solution u of the problem (1.1)–(1.3)will
be obtained in Section 3 (Theorem 3.2) in the following manner.

Find u ∈ W̃ = {u ∈ L∞(0, T ;H1
0 ∩H2) : u′ ∈ L∞(0, T ;H1

0), u
′′ ∈ L∞(0, T ;L2)} such that u

verifies the following variational equation:

〈
u′′(t), w

〉
+
〈
μ(·, t, u(t))ux(t), wx

〉
=
〈
f
(·, t, u(t), ux(t), u′(t)

)
, w
〉
, ∀w ∈ H1

0 , (2.5)

and the initial conditions

u(0) = ũ0, u′(0) = ũ1. (2.6)

(ii) With the regularity obtained by u ∈ W̃ , it also follows from Theorem 3.2 that the
problem (1.1)–(1.3) has a unique strong solution u that satisfies

u ∈ C0
(
0, T ;H1

)
∩ C1

(
0, T ;L2

)
∩ L∞

(
0, T ;H2

)
, ut ∈ L∞

(
0, T ;H1

)
, utt ∈ L∞

(
0, T ;L2

)
.

(2.7)

On the other hand, by u ∈ W̃ , we can see that u, ux, ut, uxx, uxt, utt ∈ L∞(0, T ;L2) ⊂
L2(QT ).

Also, if (u0, u1) ∈ (H1
0 ∩H2) ×H1

0 , then the weak solution u of the problem (1.1)–(1.3)
belongs toH2(QT ). So, the solution is almost classical which is rather natural, since the initial
data (u0, u1) do not belong necessarily to C2(Ω) × C1(Ω).

3. The Existence and the Uniqueness of a Weak Solution

We make the following assumptions:

(H1) ũ0 ∈ H1
0 ∩H2, ũ1 ∈ H1

0 ,

(H2) μ ∈ C2([0, 1] × R+ × R), μ(x, t, z) ≥ μ∗ > 0, for all (x, t, z) ∈ [0, 1] × R+ × R,

(H3) f ∈ C1(Ω × R+ × R
3).



ISRN Applied Mathematics 5

With μ and f satisfying the assumptions (H2) and (H3), respectively, for each T ∗ > 0
and M > 0 are given, we put the following constants:

K̃M

(
μ
)
=
∥
∥μ
∥
∥
C2(D̃∗

M), (3.1)

KM

(
f
)
=
∥
∥f
∥
∥
C1(D∗

M), (3.2)

where D̃∗
M = {(x, t, z) : 0 ≤ x ≤ 1, 0 ≤ t ≤ T ∗, |z| ≤ M} andD∗

M = {(x, t, u, v,w) ∈ R+ ×R+ ×R
3 :

0 ≤ x ≤ 1, 0 ≤ t ≤ T ∗, |u|, |v|, |w| ≤ M}.
For each T ∈ (0, T ∗] and M > 0, we get

W(M,T) =
{
v ∈ L∞

(
0, T ;H1

0 ∩H2
)
: vt ∈ L∞

(
0, T ;H1

0

)
, vtt ∈ L2(QT ),

with ‖v‖L∞(0,T ;H1
0∩H2), ‖vt‖L∞(0,T ;H1

0 )
, ‖vtt‖L2(QT ) ≤ M

}
,

(3.3)

W1(M,T) =
{
v ∈ W(M,T) : vtt ∈ L∞

(
0, T ;L2

)}
, (3.4)

where QT = Ω × (0, T).
We choose the first term u0 ≡ ũ0 ∈ W1(M,T). Suppose that

um−1 ∈ W1(M,T), m ≥ 1. (3.5)

The problem (1.1)–(1.3) is associated with the following variational problem.
Find um ∈ W1(M,T) such that

〈
u′′
m(t), v

〉
+
〈
μm(t)∇um(t),∇v

〉
= 〈Fm(t), v〉, ∀v ∈ H1

0 , (3.6)

um(0) = ũ0, u′
m(0) = ũ1, (3.7)

where

μm(x, t) = μ(x, t, um−1(t)), Fm(x, t) = f
(
x, t, um−1(x, t),∇um−1(x, t), u′

m−1(x, t)
)
. (3.8)

Then, we have the following theorem.

Theorem 3.1. Let ( H1)–( H3) hold. Then, there exist two constants M > 0, T > 0 and the linear
recurrent sequence {um} ⊂ W1(M,T) defined by (3.6)–(3.8).

Proof. The proof consists of three steps.

Step 1. The Faedo-Galerkin approximation (introduced by Lions [15]).
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Consider a special basis {wj} on H1
0 : wj(x) =

√
2 sin(jπx), j ∈ N, formed by the

eigenfunctions of the Laplacian −Δ = −∂2/∂x2. Put

u
(k)
m (t) =

k∑

j=1

c
(k)
mj (t)wj, (3.9)

where the coefficients c(k)mj satisfy the system of linear differential equations

〈
ü
(k)
m (t), wj

〉
+
〈
μm(t)∇u

(k)
m (t),∇wj

〉
=
〈
Fm(t), wj

〉
, 1 ≤ j ≤ k, (3.10)

u
(k)
m (0) = ũ0k, u̇

(k)
m (0) = ũ1k, (3.11)

where

ũ0k =
k∑

j=1

α
(k)
j wj −→ ũ0 strongly in H1

0 ∩H2,

ũ1k =
k∑

j=1

β
(k)
j wj −→ ũ1 strongly in H1

0 .

(3.12)

Note that by (3.5), it is not difficult to prove that the system (3.10), (3.11) has a unique
solution u

(k)
m (t) on interval [0, T], so let us omit the details.

Step 2. A priori estimates. At first, put

s
(k)
m (t) = p

(k)
m (t) + q

(k)
m (t) +

∫ t

0

∥∥∥ü(k)
m (s)

∥∥∥
2
ds,

p
(k)
m (t) =

∥∥∥u̇(k)
m (t)

∥∥∥
2
+
∥∥∥∥

√
μm(t)∇u

(k)
m (t)

∥∥∥∥

2

,

q
(k)
m (t) =

∥∥∥∇u̇
(k)
m (t)

∥∥∥
2
+
∥∥∥∥

√
μm(t)Δu

(k)
m (t)

∥∥∥∥

2

.

(3.13)

Then, it follows from (3.9)–(3.11), (3.13) that

s
(k)
m (t) = s

(k)
m (0) + 2

〈∇μm(0)∇ũ0k,Δũ0k
〉
+ 2〈Fm(0),Δũ0k〉

+
∫ t

0
ds

∫1

0
μ′
m(x, s)

(∣∣∣∇u
(k)
m (x, s)

∣∣∣
2
+
∣∣∣Δu

(k)
m (x, s)

∣∣∣
2
)
dx + 2

∫ t

0

〈
Fm(s), u̇

(k)
m (s)

〉
ds

+ 2
∫ t

0

〈
∂

∂s

(
∇μm(s)∇u

(k)
m (s)

)
,Δu

(k)
m (s)

〉
ds − 2

〈
∇μm(t)∇u

(k)
m (t),Δu

(k)
m (t)

〉
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− 2
〈
Fm(t),Δu

(k)
m (t)

〉
+ 2

∫ t

0

〈
∂Fm

∂t
(s),Δu

(k)
m (s)

〉
ds +

∫ t

0

∥
∥
∥ü(k)

m (s)
∥
∥
∥
2
ds

= q
(k)
m (0) + 2

〈∇μm(0)∇ũ0k,Δũ0k
〉
+ 2〈Fm(0),Δũ0k〉 +

7∑

j=1

Ij .
(3.14)

Next, we will estimate the terms Ij , j = 1, 2, . . . , 7 on the right-hand side of (3.14) as
follows.

First Term I1

We have

μ′
m(t) = D2μ(x, t, um−1(t)) +D3μ(x, t, um−1(t))u′

m−1(t). (3.15)

From (3.1), (3.5), and (3.8), we have

∣∣μ′
m(x, t)

∣∣ ≤ (1 +M)K̃M

(
μ
)
. (3.16)

Hence,

I1 =
∫ t

0
ds

∫1

0
μ′
m(x, s)

(∣∣∣∇u
(k)
m (x, s)

∣∣∣
2
+
∣∣∣Δu

(k)
m (x, s)

∣∣∣
2
)
dx ≤ 1 +M

μ∗
K̃M

(
μ
)
∫ t

0
s
(k)
m (s)ds.

(3.17)

Second Term

By using (H3), we obtain from (3.2), (3.5), and (3.13)2 that

I2 = 2
∫ t

0

〈
Fm(s), u̇

(k)
m (s)

〉
ds ≤ TK2

M

(
f
)
+
∫ t

0
p
(k)
m (s)ds. (3.18)

Third Term

The Cauchy-Schwartz inequality yields

|I3| = 2

∣∣∣∣∣

∫ t

0

〈
∂

∂s

(
∇μm(s)∇u

(k)
m (s)

)
,Δu

(k)
m (s)

〉
ds

∣∣∣∣∣
≤ 2√

μ∗

∫ t

0
r
(k)
m (s)

√
q
(k)
m (s)ds, (3.19)

where r(k)m (s) = ‖∂/∂s(∇μm(s)∇u
(k)
m (s))‖.
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We note

r
(k)
m (s) =

∥
∥
∥
∥∇μm(s)∇u̇

(k)
m (s) +

∂

∂s

(∇μm(s)
)∇u

(k)
m (s)

∥
∥
∥
∥

≤
(
∥
∥∇μm(s)

∥
∥
C0(Ω) +

1√
μ∗

∥
∥
∥
∥
∂

∂s
∇μm(s)

∥
∥
∥
∥

)√
s
(k)
m (s).

(3.20)

On the other hand, by ∇μm(x, s) = D1μ(x, s, um−1(x, s)) + D3μ(x, s, um−1(x, s))
∇um−1(x, s), it is implies that

∥
∥∇μm(s)

∥
∥
C0(Ω) ≤ K̃M

(
μ
)(

1 + ‖∇um−1(s)‖C0(Ω)

)
≤ 2(1 +M)K̃M

(
μ
)
. (3.21)

Similarly, the following equality

∂

∂s
∇μm(x, s) = D1D1μ(x, s, um−1(x, s)) +D3D1μ(x, s, um−1(x, s))u′

m−1(x, s)

+
[
D1D3μ(x, s, um−1(x, s)) +D3D3μ(x, s, um−1(x, s))u′

m−1(x, s)
]∇um−1(x, s)

+D3μ(x, s, um−1(x, s))∇u′
m−1(x, s)

(3.22)

gives

∥∥∥∥
∂

∂s
∇μm(s)

∥∥∥∥ ≤
(
1 + 3M +M2

)
K̃M

(
μ
)
. (3.23)

It follows from (3.20)–(3.23) that

r
(k)
m (s) ≤

[

2(1 +M) +
1 + 3M +M2

√
μ∗

]

K̃M

(
μ
)√

s
(k)
m (s). (3.24)

Hence, we obtain from (3.19) and (3.24) that

|I3| ≤ 2√
μ∗

[

2(1 +M) +
1 + 3M +M2

√
μ∗

]

K̃M

(
μ
)
∫ t

0
s
(k)
m (s)ds. (3.25)

Fourth Term I4

By the Cauchy-Schwartz inequality, we have

|I4| =
∣∣∣−2

〈
∇μm(t)∇u

(k)
m (t),Δu

(k)
m (t)

〉∣∣∣ ≤ 1
β

∥∥∥∇μm(t)∇u
(k)
m (t)

∥∥∥
2
+ β
∥∥∥Δu

(k)
m (t)

∥∥∥
2
, (3.26)
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for all β > 0. On the other hand

∥
∥
∥∇μm(t)∇u

(k)
m (t)

∥
∥
∥ =

∥
∥
∥
∥
∥
∇μm(0)∇ũ0k +

∫ t

0

∂

∂s

(
∇μm(s)∇u

(k)
m (s)

)
ds

∥
∥
∥
∥
∥

≤ ∥∥∇μm(0)
∥
∥
C0(Ω)‖∇ũ0k‖ +

∫ t

0
r
(k)
m (s)ds.

(3.27)

Hence, we obtain from (3.26), (3.27) that

|I4| ≤
β

μ∗
q
(k)
m (t) +

2
β
‖∇μm(0)‖2C0(Ω)‖∇ũ0k‖2

+
2
β
T

[

2(1 +M) +
1 + 3M +M2

√
μ∗

]2
K̃2

M

(
μ
)
∫ t

0
s
(k)
m (s)ds,

(3.28)

for all β > 0.

Fifth Term I5

By (3.5), (3.8), and (3.13), we obtain

|I5| =
∣∣∣−2

〈
Fm(t),Δu

(k)
m (t)

〉∣∣∣ ≤ 1
β
‖Fm(t)‖2 + β

∥∥∥Δu
(k)
m (t)

∥∥∥
2

≤ 2
β
‖Fm(0)‖2 + 2

β
T

∫T

0

∥∥∥∥
∂Fm

∂s
(s)
∥∥∥∥

2

ds +
β

μ∗
s
(k)
m (t), ∀β > 0.

(3.29)

Note that

∂Fm

∂t
(t) = D2f[um−1] +D3f[um−1]u′

m−1(t) +D4f[um−1]∇u′
m−1(t) +D5f[um−1]u′′

m−1(t),

(3.30)

where we use the notation Dif[um−1] = Dif(x, t, um−1(x, t),∇um−1(x, t), u′
m−1(x, t)), i =

2, . . . , 5. By (3.2), (3.5), and (3.30), we obtain

∥∥∥∥
∂Fm

∂t
(t)
∥∥∥∥ ≤ KM

(
f
)(
1 + 2M +

∥∥u′′
m−1(t)

∥∥). (3.31)

Hence, we deduce from (3.29) and (3.31) that

|I5| ≤ 2
β
‖Fm(0)‖2 + 4

β
TK2

M

(
f
)[
(1 + 2M)2T +M2

]
+

β

μ∗
s
(k)
m (t), ∀β > 0. (3.32)
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Sixth Term I6

By (3.2), (3.5), (3.13)3, and (3.31), we get

|I6| = 2

∣
∣
∣
∣
∣

∫ t

0

〈
∂Fm

∂t
(s),Δu

(k)
m (s)

〉
ds

∣
∣
∣
∣
∣
≤
∫ t

0

∥
∥
∥
∥
∂Fm

∂t
(s)
∥
∥
∥
∥ds +

∫ t

0

∥
∥
∥
∥
∂Fm

∂t
(s)
∥
∥
∥
∥
∥
∥
∥Δu

(k)
m (s)

∥
∥
∥
2
ds

≤ KM

(
f
)
⎡

⎣(1 + 2M)T +
√
T

(∫T

0

∥
∥u′′

m−1(s)
∥
∥2ds

)1/2
⎤

⎦

+
1
μ∗

KM

(
f
)
∫ t

0

(
1 + 2M +

∥
∥u′′

m−1(s)
∥
∥)q(k)m (s)ds

≤ KM

(
f
)[
(1 + 2M)T +

√
TM

]
+

1
μ∗

KM

(
f
)
∫ t

0

(
1 + 2M +

∥∥u′′
m−1(s)

∥∥)q(k)m (s)ds. (3.33)

Seventh Term I7

Equation (3.10) is rewritten as follows:

〈
ü
(k)
m (t), wj

〉
−
〈

∂

∂x

(
μm(t)∇u

(k)
m (t)

)
, wj

〉
=
〈
Fm(t), wj

〉
, 1 ≤ j ≤ k. (3.34)

Hence, by replacing wj with ü
(k)
m (t) and integrating

I7 =
∫ t

0

∥∥∥ü(k)
m (s)

∥∥∥
2
ds ≤ 2

∫ t

0

∥∥∥∥
∂

∂x

(
μm(s)∇u

(k)
m (s)

)∥∥∥∥

2

ds + 2
∫ t

0
‖Fm(s)‖2ds

≤ 2
∫ t

0

∥∥∥∥
∂

∂x

(
μm(s)∇u

(k)
m (s)

)∥∥∥∥

2

ds + 2TK2
M

(
f
)
,

(3.35)

we need, estimate ‖∂/∂x(μm(s)∇v
(k)
m (s))‖.

Combining (3.1), (3.5), and (3.13) yields

∥∥∥∥
∂

∂x

(
μm(s)∇u

(k)
m (s)

)∥∥∥∥ =
∥∥∥∇μm(s)∇u

(k)
m (s) + μm(s)Δu

(k)
m (s)

∥∥∥

≤ ∥∥∇μm(s)
∥∥
C0(Ω)

∥∥∥∇u
(k)
m (s)

∥∥∥ +
∥∥μm(s)

∥∥
C0(Ω)

∥∥∥Δu
(k)
m (s)

∥∥∥

≤ 2√
μ∗

(1 +M)K̃M

(
μ
)√

p
(k)
m (s) +

1√
μ∗

K̃M

(
μ
)√

q
(k)
m (s)

≤ 3√
μ∗

(1 +M)K̃M

(
μ
)√

s
(k)
m (s).

(3.36)
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Therefore, from (3.35) and (3.36), we obtain

I7 ≤ 2TK2
M

(
f
)
+
18
μ∗

(1 +M)2K̃2
M

(
μ
)
∫ t

0
s
(k)
m (s)ds. (3.37)

Choosing β > 0, with 2β/μ∗ ≤ 1/2, it follows from (3.13), (3.14), (3.17), (3.18), (3.25),
(3.28), (3.32), (3.33), and (3.37) that

s
(k)
m (t) ≤ C̃0k + C̃1(M,T) +

∫ t

0

(
C̃2(M,T) +

2
μ∗

KM

(
f
)∥∥u′′

m−1(s)
∥
∥
)
s
(k)
m (s)ds, (3.38)

where

C̃0k = C̃0k
(
β, f, μ, ũ0, ũ1, ũ0k, ũ1k

)

= 2s(k)m (0) + 4
〈∇μm(0)∇ũ0k,Δũ0k

〉
+ 4〈Fm(0),Δũ0k〉

+
4
β
‖∇μm(0)‖2C0(Ω)‖∇ũ0k‖2 + 4

β
‖Fm(0)‖2,

C̃1(M,T) = C̃1
(
β, f,M, T

)

= 2
(
3 +

4
β

[
(1 + 2M)2T +M2

])
TK2

M

(
f
)

+ 2
[
M + (1 + 2M)

√
T
]√

TKM

(
f
)
,

C̃2(M,T) = C̃2
(
β, f, μ,M, T

)

= 2 +
2
μ0

(1 + 2M)KM

(
f
)

+
2
μ∗

[(
1 + 4

√
μ∗
)
(1 +M) + 2

(
1 + 3M +M2

)]
K̃M

(
μ
)

+
4
μ∗

[
1
β
T
(
2(1 +M)

√
μ∗ + 1 + 3M +M2

)2
+ 9(1 +M)2

]
K̃2

M

(
μ
)
.

(3.39)

By (H1), we deduce from (3.12), (3.39)1 that there exists M > 0 independent of m and
k, such that

C̃0k ≤ 1
2
M2. (3.40)

Notice that by (H3), we deduce from (3.39)2,3 that

lim
T → 0+

C̃1(M,T) = lim
T → 0+

TC̃2(M,T) = 0. (3.41)
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So, from (3.39) and (3.41), we can choose T > 0 such that

(
1
2
M2 + C̃1(M,T)

)
exp

(
TC̃2(M,T) +

2
μ0

KM

(
f
)√

TM

)
≤ M2, (3.42)

kT =

(

1 +
1√
μ∗

)√
T
√
4K2

M

(
f
)
+ (4 +M)2M2K̃2

M

(
μ
)
eT[1+((1+M)/2μ∗)K̃M(μ)] < 1. (3.43)

Finally, it follows from (3.38), (3.40), and (3.42) that

s
(k)
m (t) ≤ M2 exp

(
−TC̃2(M,T) − 2

μ0
KM

(
f
)√

TM

)

+
∫ t

0

(
C̃2(M,T) +

2
μ0

KM

(
f
)∥∥u′′

m−1(s)
∥
∥
)
s
(k)
m (s)ds.

(3.44)

By using Gronwall’s lemma, we deduce from (3.44) that

s
(k)
m (t) ≤ M2 exp

(
−TC̃2(M,T) − 2

μ0
KM

(
f
)√

TM

)

× exp

[∫T

0

(
C̃2(M,T) +

2
μ0

KM

(
f
)∥∥u′′

m−1(s)
∥∥
)
ds

]

≤ M2 exp
(
−TC̃2(M,T) − 2

μ0
KM

(
f
)√

TM

)

× exp
[
TC̃2(M,T) +

2
μ0

KM

(
f
)√

T
∥∥u′′

m−1
∥∥
L2(QT )

]
≤ M2.

(3.45)

Therefore, we have

u
(k)
m ∈ W(M,T), ∀m, k ∈ N. (3.46)

Step 3. Limiting process.

From (3.46), we can extract from {u(k)
m } a subsequence still denoted by {u(k)

m } such that

u
(k)
m −→ um in L∞

(
0, T ;H1

0 ∩H2
)
weak∗,

u̇
(k)
m −→ u′

m in L∞
(
0, T ;H1

0

)
weak∗,

ü
(k)
m −→ u′′

m in L2(QT ) weak,

(3.47)

as k → ∞, and

um ∈ W(M,T). (3.48)
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Based on (3.47), passing to limit in (3.10), (3.11) as k → ∞, we have um satisfying
(3.6)–(3.8). On the other hand, it follows from (3.5), (3.6), and (3.47) that

u′′
m = ∇μm∇um + μmΔum + f

(
x, t, um−1,∇um−1, u′

m−1
) ∈ L∞

(
0, T ;L2

)
. (3.49)

Hence, um ∈ W1(M,T), and the proof of Theorem 3.1 is complete.

Theorem 3.2. Let ( H1)–( H3) hold. Then, there exist M > 0 and T > 0 satisfying (3.40), (3.42),
and (3.43) such that the problem (1.1)–(1.3) has a unique weak solution u ∈ W1(M,T).

Furthermore, the linear recurrent sequence {um} defined by (3.6)–(3.8) converges to the
solution u strongly in the space

W1(T) =
{
w ∈ L∞

(
0, T ;H1

0

)
: w′ ∈ L∞

(
0, T ;L2

)}
, (3.50)

with the following estimation:

‖um − u‖L∞(0,T ;H1
0 )
+
∥∥u′

m − u′∥∥
L∞(0,T ;L2) ≤ Ckm

T , ∀m ∈ N, (3.51)

where kT < 1 as in (3.43) and C is a constant depending only on T, ũ0, ũ1 and kT .

Proof. (i) The existence. First, we note that W1(T) is a Banach space with respect to the norm
(see Lions [15])

‖w‖W1(T) = ‖w‖L∞(0,T ;H1
0 )
+
∥∥w′∥∥

L∞(0,T ;L2). (3.52)

Next, we prove that {um} is a Cauchy sequence in W1(T). Let vm = um+1 − um. Then,
vm satisfies the variational problem

〈
v′′
m(t), w

〉
+
〈
μm+1(t)∇vm(t),∇w

〉
=
〈

∂

∂x

[(
μm+1(t) − μm(t)

)∇um(t)
]
, w

〉

+ 〈Fm+1(t) − Fm(t), w〉, ∀w ∈ H1
0 ,

vm(0) = v′
m(0) = 0.

(3.53)

Taking w = v′
m in (3.53)1, after integrating in t, we get

Zm(t) =
∫ t

0
ds

∫1

0
μ′
m+1(x, s)|∇vm(s)|2dx + 2

∫ t

0

〈
Fm+1(s) − Fm(s), v′

m(s)
〉
ds

+ 2
∫ t

0

〈
∂

∂x

[(
μm+1(s) − μm(s)

)∇um(s)
]
, v′

m(s)
〉
ds =

3∑

i=1

Ji,

(3.54)
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in which

Zm(t) =
∥
∥v′

m(t)
∥
∥2 +

∥
∥
∥
∥

√
μm+1(t)∇vm(t)

∥
∥
∥
∥

2

, (3.55)

and all integrals on the right-hand side of (3.54) are estimated as follows.

First Integral

By (3.16), we obtain

|J1| ≤
∣
∣
∣
∣
∣

∫ t

0
ds

∫1

0
μ′
m+1(x, s)|∇vm(s)|2dx

∣
∣
∣
∣
∣
≤ 1 +M

μ∗
K̃M

(
μ
)
∫ t

0
Zm(s)ds. (3.56)

Second Integral

By (H3),

‖Fm+1(t) − Fm(t)‖ ≤ 2KM

(
f
)[‖∇vm−1(t)‖ +

∥∥v′
m−1(t)

∥∥] ≤ 2KM

(
f
)‖vm−1‖W1(T), (3.57)

so

|J2| ≤ 2

∣∣∣∣∣

∫ t

0

〈
Fm+1(s) − Fm(s), v′

m(s)
〉
ds

∣∣∣∣∣
≤ 4KM

(
f
)‖vm−1‖W1(T)

∫ t

0

∥∥v′
m(s)

∥∥ds

≤ 4TK2
M

(
f
)‖vm−1‖2W1(T) +

∫ t

0
Zm(s)ds.

(3.58)

Third Integral

Using (H2) again, we get

|J3| = 2

∣∣∣∣∣

∫ t

0

〈
∂

∂x

[(
μm+1(s) − μm(s)

)∇um(s)
]
, v′

m(s)
〉
ds

∣∣∣∣∣

≤
∫ t

0

∥∥∥∥
∂

∂x

[(
μm+1(s) − μm(s)

)∇um(s)
]
∥∥∥∥

2

ds +
∫ t

0
Zm(s)ds.

(3.59)

Note that

∂

∂x

[(
μm+1(s) − μm(s)

)∇um(s)
]

=
(
μm+1(s) − μm(s)

)
Δum(s)

+
(
D1μ[um] −D1μ[um−1]

)∇um(s) +
(
D3μ[um] −D3μ[um−1]

)|∇um(s)|2

+D3μ[um−1]∇vm−1(s)∇um(s).

(3.60)
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Hence,

∥
∥
∥
∥

∂

∂x

[(
μm+1(s) − μm(s)

)∇um(s)
]
∥
∥
∥
∥ ≤ ∥∥μm+1(s) − μm(s)

∥
∥
C0(Ω)‖Δum(s)‖

+
∥
∥(D1μ[um] −D1μ[um−1]

)∥∥
C0(Ω)‖∇um(s)‖

+
∥
∥(D1μ[um] −D1μ[um−1]

)∥∥
C0(Ω)‖∇um(t)‖2C0(Ω)

+
∥
∥D3μ[um−1]

∥
∥
C0(Ω)‖∇um(s)‖C0(Ω)‖∇vm−1(s)‖.

(3.61)

We also note that

∥
∥μm+1(s) − μm(s)

∥
∥
C0(Ω) ≤ K̃M

(
μ
)‖wm−1‖W1(T),

∥∥Diμ[um] −Diμ[um−1]
∥∥
C0(Ω) ≤ K̃M

(
μ
)‖wm−1‖W1(T), i = 1, 3,

‖∇um(s)‖C0(Ω) ≤
√
2‖∇um(s)‖H1 ≤

√
2
√
‖∇um(s)‖2 + ‖Δum(s)‖2 ≤ 2M,

∥∥D3μ[um]
∥∥
C0(Ω) ≤ K̃M

(
μ
)
,

(3.62)

where we use the notation Diμ[um−1] = Diμ(x, t, um(x, t)), i = 1, 2, 3. Therefore, it implies
from (3.61) and (3.62) that

∥∥∥∥
∂

∂x

[(
μm+1(s) − μm(s)

)∇um(s)
]
∥∥∥∥ ≤ (4 +M)MK̃M

(
μ
)‖vm−1‖W1(T). (3.63)

Hence,

|J3| ≤ (4 +M)2M2TK̃2
M

(
μ
)‖vm−1‖2W1(T) +

∫ t

0
Zm(s)ds. (3.64)

Combining (3.54)–(3.56), (3.58), and (3.64) yields

Zm(t) ≤ T
[
4K2

M

(
f
)
+ (4 +M)2M2K̃2

M

(
μ
)]‖vm−1‖2W1(T) +

(
2 +

1 +M

μ∗
K̃M

(
μ
)
)∫ t

0
Zm(s)ds.

(3.65)

Using Gronwall’s lemma, (3.65) gives

‖vm‖W1(T) ≤ kT‖vm−1‖W1(T) ∀m ∈ N, (3.66)

where kT < 1 as in (3.43).
Hence, we obtain from (3.66) that

∥∥um+p − um

∥∥
W1(T)

≤ km
T

1 − kT
‖u1 − u0‖W1(T) ∀m, p ∈ N, (3.67)
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It follows that {um} is a Cauchy sequence inW1(T). Then, there exists u ∈ W1(T) such
that

um −→ u strongly in W1(T). (3.68)

On the other hand, from (3.48), we deduce the existence of a subsequence {umj} of
{um} such that

umj −→ u in L∞
(
0, T ;H1

0 ∩H2
)
weak ∗,

u′
mj

−→ u′ in L∞
(
0, T ;H1

0

)
weak ∗,

u′′
mj

−→ u′′ in L2(QT ) weak,

(3.69)

u ∈ W(M,T). (3.70)

Note that

∣∣μm(x, t) − μ(x, t, u(x, t))
∣∣ ≤ K̃M

(
μ
)‖um−1 − u‖W1(T),

∥∥Fm(t) − f
(·, t, u(t), ux(t), u′(t)

)∥∥ ≤ 2KM

(
f
)‖um−1 − u‖W1(T).

(3.71)

Hence, from (3.68) and (3.71), we obtain

μm −→ μ(·, ·, u) strongly in L∞(QT ),

Fm −→ f
(·, t, u(t), ux(t), u′(t)

)
strongly in L∞

(
0, T ;L2

)
.

(3.72)

Finally, passing to limit in (3.6)–(3.8) as m = mj → ∞, it implies from (3.68), (3.69),
and (3.72) that there exists u ∈ W(M,T) satisfying the equation

〈
u′′(t), w

〉
+
〈
μ(·, t, u(t))ux(t),∇w

〉
=
〈
f
(·, t, u(t), ux(t), u′(t)

)
, w
〉
, ∀w ∈ H1

0 ,

u(0) = ũ0, u′(0) = ũ1.
(3.73)

On the other hand, by (H2), we obtain from (3.70), (3.72)2, and (3.73)1 that

u′′ = D1μ[u]ux +D3μ[u]u2
x + μ[u]uxx + f

(
x, t, u, ux, u

′) ∈ L∞
(
0, T ;L2

)
, (3.74)

thus u ∈ W1(M,T), and Step 1 follows.
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(ii) The uniqueness of the solution.
Let u1, u2 ∈ W1(M,T) be two weak solutions of the problem (1.1)–(1.3). Then, u =

u1 − u2 satisfies the variational problem

〈u′′(t), w〉 + 〈μ1(t)ux(t), wx〉 =
〈

∂

∂x

([
μ1(t) − μ2(t)

]
u2x(t)

)
, w

〉

+ 〈F2(t) − F1(t), w〉, ∀w ∈ H1
0 ,

u(0) = u′(0) = 0,

μi(t) = μ(x, t, ui(t)) ≡ μ[ui], Fi(t)

= f
(
x, t, ui(t), uix(t), u′

i(t)
)
, i = 1, 2.

(3.75)

We take w = u′ in (3.75)1 and integrate in t to get

ρ(t) =
∫ t

0
ds

∫1

0
μ′
1(x, s)u

2
x(x, s)dx + 2

∫ t

0

〈
F1(s) − F2(s), u′(s)

〉
ds

+ 2
∫ t

0

〈
∂

∂x

([
μ1(s) − μ2(s)

]
u2x(s)

)
, u′
〉
ds ≡

3∑

i=1

ρi(t),

(3.76)

where

ρ(t) =
∥∥u′(t)

∥∥2 +
∥∥∥∥

√
μ1(t)ux(t)

∥∥∥∥

2

. (3.77)

We now estimate the terms on the right-hand side of (3.76) as follows:

ρ1(t) =
∫ t

0
ds

∫1

0
μ′
1(x, s)u

2
x(x, s)dx ≤ 1

μ∗
(1 +M)K̃M

(
μ
)
∫ t

0
ρ(s)ds ≡ ρ

(1)
M

∫ t

0
ρ(s)ds, (3.78)

ρ2(t) = 2
∫ t

0

〈
F1(s) − F2(s), u′(s)

〉
ds ≤ 4KM

(
f
)
∫ t

0

(‖ux(s)‖ +
∥∥u′(s)

∥∥)∥∥u′(s)
∥∥ds

≤ 4

(

1 +
1√
μ∗

)

KM

(
f
)
∫ t

0
ρ(s)ds ≡ ρ

(2)
M

∫ t

0
ρ(s)ds,

(3.79)

ρ3(t) = 2
∫ t

0

〈
∂

∂x

([
μ1(s) − μ2(s)

]
u2x(s)

)
, u′
〉
ds ≤ 2

∫ t

0

∥∥∥∥
∂

∂x

([
μ1(s) − μ2(s)

]
u2x(s)

)
∥∥∥∥
∥∥u′(s)

∥∥ds.

(3.80)

On the other hand

∂

∂x

([
μ1(s) − μ2(s)

]
u2x(s)

)
=
[
μ1(s) − μ2(s)

]
u2xx(s) +

(
D1μ[u1] −D1μ[u2]

)
u2x(s)

+
(
D3μ[u1] −D3μ[u2]

)
u1xu2x +D3μ[u2]uxu2x.

(3.81)
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Hence,

∥
∥
∥
∥

∂

∂x

([
μ1(s) − μ2(s)

]
u2x(s)

)
∥
∥
∥
∥ ≤ ∥∥μ1(s) − μ2(s)

∥
∥
C0(Ω)‖u2xx(s)‖

+
∥
∥D1μ[u1] −D1μ[u2]

∥
∥
C0(Ω)‖u2x(s)‖

+
∥
∥D3μ[u1] −D3μ[u2]

∥
∥
C0(Ω)‖u1x(s)‖C0(Ω)‖u2x(s)‖C0(Ω)

+
∥
∥D3μ[u2]

∥
∥
C0(Ω)‖ux(s)‖‖u2x(s)‖C0(Ω)

≤ (3 +M)MK̃M

(
μ
)‖ux(s)‖.

(3.82)

It follows from (3.80), (3.82) that

ρ3(t) ≤ 1√
μ∗

(3 +M)MK̃M

(
μ
)
∫ t

0
ρ(s)ds ≡ ρ

(3)
M

∫ t

0
ρ(s)ds. (3.83)

Combining (3.76)–(3.79) and (3.83) yields

ρ(t) ≤
(
ρ
(1)
M + ρ

(2)
M + ρ

(3)
M

)∫ t

0
ρ(s)ds. (3.84)

Using Gronwall’s lemma, it follows from (3.84) that ρ ≡ 0 that is, u1 ≡ u2.
Theorem 3.2 is proved completely.

Remark 3.3. (i) In the case of μ ≡ 1, f ∈ C1(Ω × R+ × R
3) and the boundary condition in [4]

standing for (1.2), we obtained some similar results in [4].
(ii) In the case of μ ≡ 1, f ∈ C1(Ω × R+ × R

3), f(1, t, u, v,w) = 0, for allt ≥
0, for all(u, v,w) ∈ R

3, and the boundary condition in [8] standing for (1.2), some results
as above were given in [8].

Remark 3.4. By Galerkin method, as in Remark 2.3, the local existence of a strong solution
u ∈ H2(QT ) of the problem (1.1)–(1.3) is proved.

In the case of μ = μ(x, t) and f = f(x, t), obviously, the problem (1.1)–(1.3) is linear.
Then, by the same method and applying Banach’s theorem [16, Chapter 5, Theorem 17.1], it
is not difficult to prove that the problem (1.1)–(1.3) is global solvability. To strengthen some
hypotheses, it is possible to prove existence of a classical solution u ∈ C2(QT ) ∩ C1(QT ).

4. Asymptotic Expansion of a Weak Solution in
Many Small Parameters

In this section, we will study a high-order asymptotic expansion of a weak solution for the
problem (1.1)–(1.3), in which (1.1) has the form of a linear wave equation with nonlinear
perturbations containing many small parameters.
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The Problem with Two Small Parameters

At first, we consider the case of the nonlinear perturbations containing two small parameters.
Let (H1) hold. We make the following assumptions:

(H4) μ0 ∈ C2([0, 1] × R+), μ1 ∈ CN+1([0, 1] × R+ × R), μ0 ≥ μ∗ > 0, μ1 ≥ 0,

(H5) f0 ∈ C1([0, 1] × R+), f1 ∈ CN([0, 1] × R+ × R
3).

We consider the following perturbed problem, where ε1, ε2 are two small parameters
such that 0 ≤ εi ≤ εi∗ < 1, i = 1, 2:

utt − ∂

∂x

(
με1(x, t, u)ux

)
= Fε2(x, t, u, ux, ut), 0 < x < 1, 0 < t < T,

u(0, t) = u(1, t) = 0,

u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x),

με1(x, t, u) = μ0(x, t) + ε1μ1(x, t, u),

Fε2(x, t, u, ux, ut) = f0(x, t) + ε2f1(x, t, u, ux, ut).

(P−→ε )

By Theorem 3.2, the problem (P−→ε ) has a unique weak solution u depending on −→ε =
(ε1, ε2) : u−→ε = u(ε1, ε2). When −→ε = (0, 0), (P−→ε ) is denoted by (P0). We will study the asymptotic
expansion of u−→ε with respect to ε1, ε2.

We use the following notations. For a multi-index α = (α1, α2) ∈ Z
2
+, and

−→ε = (ε1, ε2) ∈
R

2, we put

|α| = α1 + α2, α! = α1!α2!,

∥∥−→ε∥∥ =
√
ε21 + ε22,

−→ε α = εα1
1 εα2

2 ,

α, β ∈ Z
2
+, α ≤ β ⇐⇒ αi ≤ βi ∀i = 1, 2.

(4.1)

We first note the following lemma.

Lemma 4.1. Letm,N ∈ N and uα ∈ R, α ∈ Z
2
+, 1 ≤ |α| ≤ N. Then,

⎛

⎝
∑

1≤|α|≤N
uα

−→ε α

⎞

⎠

m

=
∑

m≤|α|≤mN

T
(m)
α [u]−→ε α

, (4.2)
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where the coefficients T (m)
α [u], m ≤ |α| ≤ mN depending on u = (uα), α ∈ Z

2
+, 1 ≤ |α| ≤ Nare

defined by the recurrent formulas

T
(1)
α [u] = uα, 1 ≤ |α| ≤ N,

T
(m)
α [u] =

∑

β∈A(m)
α

uα−βT
(m−1)
β [u], m ≤ |α| ≤ mN, m ≥ 2,

A
(m)
α =

{
β ∈ Z

2
+ : β ≤ α, 1 ≤ ∣∣α − β

∣
∣ ≤ N, m − 1 ≤ ∣∣β∣∣ ≤ (m − 1)N

}
.

(4.3)

The proof of Lemma 4.1 can be found in [6].
We also use the notations f1[u] = f1(x, t, u, ux, ut), μ1[u] = μ1(x, t, u).
Let u0 be a unique weak solution of the problem (P0) corresponding to −→ε = (0, 0) that

is,

u′′
0 −

∂

∂x

(
μ0(x, t)u0x

)
= f0(x, t), 0 < x < 1, 0 < t < T,

u0(0, t) = u0(1, t) = 0,

u0(x, 0) = ũ0(x), u′
0(x, 0) = ũ1(x),

u0 ∈ W1(M,T).

(P0)

Let us consider the sequence of weak solutions uγ , γ ∈ Z
2
+, 1 ≤ |γ | ≤ N, defined by the

following problems:

u′′
γ −

∂

∂x

(
μ0(x, t)uγx

)
= Fγ , 0 < x < 1, 0 < t < T,

uγ(0, t) = uγ(1, t) = 0,

uγ(x, 0) = u′
γ(x, 0) = 0,

uγ ∈ W1(M,T),

(P̃γ)

where Fγ , γ ∈ Z
2
+, 1 ≤ |γ | ≤ N are defined by the recurrent formulas as follows:

Fγ = π
(2)
γ

[
f1
]
+

∑

2≤|ν|≤|γ|,ν≤γ
∂

∂x

(
ρ
(1)
ν

[
μ1
]∇uγ−ν

)
, 1 ≤ ∣∣γ∣∣ ≤ N, (4.4)
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with ρδ[μ1] = ρδ[μ1; {uγ}γ≤δ], ρ(1)δ [μ1] = ρ
(1)
δ [μ1; {uγ}γ≤δ], πδ[f1] = πδ[f1; {uγ}γ≤δ], π(2)

δ [f1] =

π
(2)
δ [f1; {uγ}γ≤δ], |δ| ≤ N − 1 defined by

ρδ
[
μ1
]
=

⎧
⎪⎪⎨

⎪⎪⎩

μ1[u0], |δ| = 0,

|δ|∑

m=1

1
m!

Dm
3 μ1[u0]T

(m)
δ [u], 1 ≤ |δ| ≤ N − 1,

(4.5)

ρ
(1)
δ

[
μ1
]
= ρδ1−1,δ2

[
μ1
]
, δ = (δ1, δ2) ∈ Z

2
+,

ρ
(1)
δ

[
μ1
]
= ρ

(1)
0,δ2

[
μ1
]
= ρ−1,δ2

[
μ1
]
= 0, if δ1 = 0,

(4.6)

πδ

[
f1
]
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

f1[u0], |δ| = 0,
∑

1≤|m|≤|δ|
m=(m1,m2,m3)∈Z

3
+

∑

(α,β,γ)∈A(m,N)
α+β+γ=δ

1
m!

Dmf1[u0]T
(m1)
α

×[u]T (m2)
β [∇u]T (m3)

γ [u′], 1 ≤ |δ| ≤ N − 1,

(4.7)

where m = (m1, m2, m3) ∈ Z
3
+, |m| = m1 + m2 + m3, m! = m1!m2!m3!, Dmfj = Dm1

3 Dm2
4 Dm3

5 fj ,
A(m,N) = {(α, β, γ) ∈ (Z2

+)
3 : m1 ≤ |α| ≤ m1N,m2 ≤ |β| ≤ m2N,m3 ≤ |γ | ≤ m3N},

π
(2)
δ

[
f1
]
= πδ1,δ2−1

[
f1
]
, δ = (δ1, δ2) ∈ Z

2
+,

π
(2)
δ

[
f1
]
= π

(2)
δ1,0

[
f1
]
= πδ1,−1

[
f1
]
= 0, if δ2 = 0.

(4.8)

Then, we have the following lemma.

Lemma 4.2. Let ρν[μ1], πν[f1], |ν| ≤ N − 1 be the functions defined by (4.5) and (4.7). Put h =∑
|γ |≤N uγ

−→ε γ , then one has

μ1[h] =
∑

|ν|≤N−1
ρν
[
μ1
]−→ε ν +

∥∥−→ε∥∥NR̃
(1)
N−1

[
μ1,

−→ε ], (4.9)

f1[h] =
∑

|ν|≤N−1
πν

[
f1
]−→ε ν +

∥∥−→ε∥∥NR
(1)
N−1

[
f1,

−→ε ], (4.10)

where ‖R̃(1)
N−1[μ1,

−→ε ]‖
L∞(0,T ;L2) + ‖R(1)

N−1[f1,
−→ε ]‖

L∞(0,T ;L2) ≤ C, with C is a constant depending only on
N,T, f1, μ1, uγ , |γ | ≤ N.

Proof. (i) In the case of N = 1, the proof of (4.9) is easy, hence we omit the details. We only
prove with N ≥ 2. We write h = u0 +

∑
1≤|γ |≤N uγ

−→ε γ ≡ u0 + h1.
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Using Taylor’s expansion of the function μ1[h] = μ1[u0 +h1] around the point u0 up to
order N, we obtain from (4.2) that

μ1[u0 + h1] = μ1[u0] +
N−1∑

m=1

1
m!

Dm
3 μ1[u0]hm

1 +
1

(N − 1)!

∫1

0
(1 − θ)N−1DN

3 μ1[u0 + θh1]hN
1 dθ

= μ1[u0] +
N−1∑

m=1

1
m!

Dm
3 μ1[u0]

∑

m≤|ν|≤mN

T
(m)
ν [u]−→ε ν + R̃

(1)
N−1

[
μ1, h1

]

= μ1[u0] +
N−1∑

m=1

1
m!

Dm
3 μ1[u0]

∑

m≤|ν|≤N−1
T
(m)
ν [u]−→ε ν

+
N−1∑

m=1

1
m!

Dm
3 μ1[u0]

∑

N≤|ν|≤mN

T
(m)
ν [u]−→ε ν + R̃

(1)
N−1

[
μ1, h1

]
,

(4.11)

where

R̃
(1)
N−1

[
μ1, h1

]
=

1
(N − 1)!

∫1

0
(1 − θ)N−1DN

3 μ1[u0 + θh1]hN
1 dθ. (4.12)

We note that

N−1∑

m=1

1
m!

Dm
3 μ1[u0]

∑

m≤|ν|≤N−1
T
(m)
ν [u]−→ε ν =

∑

1≤|ν|≤N−1

( |ν|∑

m=1

1
m!

Dm
3 μ1[u0]T

(m)
ν [u]

)
−→ε ν

. (4.13)

On the other hand, if we put

R̃
(1)
N−1

[
μ1,

−→ε ] = ∥∥−→ε∥∥−N
⎛

⎝
N−1∑

m=1

1
m!

Dm
3 μ1[u0]

∑

N≤|ν|≤mN

T
(m)
ν [u]−→ε ν + R̃

(1)
N−1

[
μ1, h1

]
⎞

⎠, (4.14)

then by the boundedness of the functions uγ ,∇uγ , u
′
γ , |γ | ≤ N in the function space

L∞(0, T ;H1), we obtain from (4.3), (4.12), and (4.14) that ‖R̃(1)
N−1[μ1,

−→ε ]‖
L∞(0,T ;L2) ≤ C, with

and C is a constant depending only on N,T, μ1, uγ , |γ | ≤ N. Therefore, we obtain from (4.5),
(4.11), (4.13), and (4.14) that

μ1[u0 + h1] = μ1[u0] +
∑

1≤|ν|≤N−1

( |ν|∑

m=1

1
m!

Dm
3 μ1[u0]T

(m)
ν [u]

)
−→ε ν +

∥∥−→ε∥∥NR̃
(1)
N−1

[
μ1,

−→ε ]

=
∑

|ν|≤N−1
ρν
[
μ1
]−→ε ν +

∥∥−→ε∥∥NR̃
(1)
N−1

[
μ1,

−→ε ].
(4.15)

Hence, (4.9) in Lemma 4.2 is proved.
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(ii) We also only prove (4.10) with N ≥ 2. Using Taylor’s expansion of the function
f1[u0 + h1] around the point u0 up to order N + 1, we obtain from (4.2) that

f1[u0 + h1] = f1[u0] +D3f1[u0]h1 +D4f1[u0]∇h1 +D5f1[u0]h′
1

+
∑

2≤|m|≤N−1
m=(m1,m2,m3)∈Z

3
+

1
m!

Dmf1[u0]h
m1
1 (∇h1)

m2
(
h′
1

)m3 + R
(1)
N−1

[
f1, h1

]

= f1[u0] +D3f1[u0]h1 +D4f1[u0]∇h1 +D5f1[u0]h′
1

+
∑

2≤|m|≤N−1
m=(m1,m2,m3)∈Z

3
+

∑

|m|≤|ν|≤|m|N

∑

(α,β,γ)∈A(m,N)
α+β+γ=ν

1
m!

Dmf1[u0]T
(m1)
α [u]T (m2)

β [∇u]T (m3)
γ

[
u′]−→ε ν

+ R
(1)
N−1

[
f1, h1

]

= f1[u0] +D3f1[u0]h1 +D4f1[u0]∇h1 +D5f1[u0]h′
1

+
∑

2≤|m|≤N−1
m=(m1,m2,m3)∈Z

3
+

∑

|m|≤|ν|≤N−1

∑

(α,β,γ)∈A(m,N)
α+β+γ=ν

1
m!

Dmf1[u0]T
(m1)
α [u]T (m2)

β [∇u]T (m3)
γ

[
u′]−→ε ν

+
∑

2≤|m|≤N−1
m=(m1,m2,m3)∈Z

3
+

∑

N≤|ν|≤|m|N

∑

(α,β,γ)∈A(m,N)
α+β+γ=ν

1
m!

Dmf1[u0]T
(m1)
α [u]T (m2)

β [∇u]T (m3)
γ

[
u′]−→ε ν

+ R
(1)
N−1

[
f1, h1

]
, (4.16)

where

R
(1)
N−1

[
f1, h1

]
=

∑

|m|=N
m=(m1,m2,m3)∈Z

3
+

N

m!

∫1

0
(1 − θ)N−1Dmf1[u0 + θh1]h

m1
1 (∇h1)

m2
(
h′
1

)m3dθ. (4.17)

We also note that

f1[u0] +D3f1[u0]h1 +D4f1[u0]∇h1 +D5f1[u0]h′
1

+
∑

2≤|m|≤N−1
m=(m1,m2,m3)∈Z

3
+

∑

|m|≤|ν|≤N−1

∑

(α,β,γ)∈A(m,N)
α+β+γ=ν

1
m!

Dmf1[u0]T
(m1)
α [u]T (m2)

β [∇u]T (m3)
γ

[
u′]−→ε ν

= f1[u0] +
∑

1≤|m|≤N−1
m=(m1,m2,m3)∈Z

3
+

∑

|m|≤|ν|≤N−1

∑

(α,β,γ)∈A(m,N)
α+β+γ=ν

1
m!

Dmf1[u0]T
(m1)
α [u]T (m2)

β [∇u]T (m3)
γ

[
u′]−→ε ν
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= f1[u0] +
∑

1≤|ν|≤N−1

∑

1≤|m|≤|ν|
m=(m1,m2,m3)∈Z

3
+

∑

(α,β,γ)∈A(m,N)
α+β+γ=ν

1
m!

Dmf1[u0]T
(m1)
α [u]T (m2)

β [∇u]T (m3)
γ

[
u′]−→ε ν

=
∑

|ν|≤N−1
πν

[
f1
]−→ε ν

. (4.18)

Similarly,

∑

2≤|m|≤N−1
m=(m1,m2,m3)∈Z

3
+

∑

N≤|ν|≤|m|N

∑

(α,β,γ)∈A(m,N)
α+β+γ=ν

1
m!

Dmf1[u0]T
(m1)
α [u]T (m2)

β [∇u]T (m3)
γ

[
u′]−→ε ν

+ R
(1)
N−1

[
f1, h1

]
=
∥
∥−→ε∥∥NR

(1)
N−1

[
f1,

−→ε ],

(4.19)

where ‖R(1)
N−1[f1,

−→ε ]‖
L∞(0,T ;L2) ≤ C, with C is a constant depending only on N,T, f1, uγ , |γ | ≤

N.
Then, (4.10) holds. Lemma 4.2 is proved.

Remark 4.3. Lemma 4.2 is a generalization of the formula given in [17, page 262, formula
(4.38)], and it is useful to obtain Lemma 4.4 below. These lemmas are the key to the
asymptotic expansion of a weak solution u = u(ε1, ε2) of orderN + 1 in two small parameters
ε1, ε2.

By u−→ε = u(ε1, ε2) ∈ W1(M,T) as a unique weak solution of (P−→ε ), v = u−→ε −
∑

|γ |≤N uγ
−→ε γ ≡

u−→ε − h satisfies the problem

v′′ − ∂

∂x

(
με1[v + h]vx

)
= ε2

(
f1[v + h] − f1[h]

)
+ ε1

∂

∂x

[(
μ1[v + h] − μ1[h]

)
hx

]

+ E−→ε (x, t), 0 < x < 1, 0 < t < T,

v(0, t) = v(1, t) = 0,

v(x, 0) = v′(x, 0) = 0,

με1[v] = μ0 + ε1μ1[v] = μ0(x, t) + ε1μ1(x, t, v),

f1[v] = f1
(
x, t, v, vx, v

′), μ1[v] = μ1(x, t, v),

(4.20)

where

E−→ε (x, t) = ε2f1[h] + ε1
∂

∂x

[(
μ1[h] − μ1[u0]

)
hx

] −
∑

1≤|γ|≤N
Fγ

−→ε γ
. (4.21)

Lemma 4.4. Let (H1), (H4) and (H5) hold. Then

‖E−→ε ‖L∞(0,T ;L2) ≤ E∗
∥∥−→ε∥∥N+1

, (4.22)

where E∗ is a constant depending only on N,T, f0, f1, μ0, μ1, uγ , |γ | ≤ N.
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Proof. We only need prove with N ≥ 2.
Using (4.9) for the function μ1[h], we obtain

μ1[h] = μ1[u0] +
∑

1≤|ν|≤N−1
ρν
[
μ1
]−→ε ν +

∥
∥−→ε∥∥NR̃

(1)
N−1

[
μ1,

−→ε ]. (4.23)

By (4.6), (4.8), we write

ε1
(
μ1[h] − μ1[u0]

)
=

∑

1≤|ν|≤N−1
ρν
[
μ1
]
ε1
−→ε ν + ε1

∥
∥−→ε∥∥NR̃

(1)
N−1

[
μ1,

−→ε ]

=
∑

2≤|ν|≤N,ν1≥1
ρν1−1,ν2

[
μ1
]−→ε ν + ε1

∥
∥−→ε∥∥NR̃

(1)
N−1

[
μ1,

−→ε ]

=
∑

2≤|ν|≤N
ρ
(1)
ν

[
μ1
]−→ε ν + ε1

∥∥−→ε∥∥NR̃
(1)
N−1

[
μ1,

−→ε ].

(4.24)

On the other hand, from (4.24), we compute

ε1
(
μ1[h] − μ1[u0]

)
hx =

⎛

⎝
∑

2≤|ν|≤N
ρ
(1)
ν

[
μ1
] −→ε ν + ε1

∥∥−→ε∥∥NR̃
(1)
N−1

[
μ1,

−→ε ]
⎞

⎠hx

=

⎛

⎝
∑

2≤|ν|≤N
ρ
(1)
ν

[
μ1
]−→ε ν

⎞

⎠
∑

|α|≤N
∇uα

−→ε α + ε1
∥∥−→ε∥∥NR̃

(1)
N−1

[
μ1,

−→ε ]hx

=
∑

2≤|ν|≤N,|α|≤N
ρ
(1)
ν

[
μ1
]∇uα

−→ε ν+α +
∥∥−→ε∥∥N+1

R̃
(1)
N

[
μ1,

−→ε ]

=
∑

2≤|ν|≤N,|α|≤N
ρ
(1)
ν

[
μ1
]∇uα

−→ε ν+α +
∥∥−→ε∥∥N+1

R̃
(1)
N

[
μ1,

−→ε ]

=
∑

2≤|γ|≤2N

∑

2≤|ν|≤N,|γ−ν|≤N
ρ
(1)
ν

[
μ1
]∇uγ−ν

−→ε γ +
∥∥−→ε∥∥N+1

R̃
(1)
N

[
μ1,

−→ε ]

=
∑

2≤|γ|≤N

∑

2≤|ν|≤N,|γ−ν|≤N
ρ
(1)
ν

[
μ1
]∇uγ−ν

−→ε γ

+
∑

N+1≤|γ|≤2N

∑

2≤|ν|≤N,|γ−ν|≤N
ρ
(1)
ν

[
μ1
]∇uγ−ν

−→ε γ +
∥∥−→ε∥∥N+1

R̃
(1)
N

[
μ1,

−→ε ]

=
∑

2≤|γ|≤N

∑

2≤|ν|≤N,|γ−ν|≤N
ρ
(1)
ν

[
μ1
]∇uγ−ν

−→ε γ +
∥∥−→ε∥∥N+1

R̃
(2)
N

[
μ1,

−→ε ]

=
∑

2≤|γ|≤N

∑

2≤|ν|≤N,ν≤γ
ρ
(1)
ν

[
μ1
]∇uγ−ν

−→ε γ +
∥∥−→ε∥∥N+1

R̃
(2)
N

[
μ1,

−→ε ],

(4.25)
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where

R̃
(1)
N

[
μ1,

−→ε ] = ε1∥
∥−→ε∥∥ R̃

(1)
N−1

[
μ1,

−→ε ]hx,

∥
∥−→ε∥∥N+1

R̃
(2)
N

[
μ1,

−→ε ] =
∑

N+1≤|γ|≤2N

∑

2≤|ν|≤N,|γ−ν|≤N
ρ
(1)
ν

[
μ1
]∇uγ−ν

−→ε γ +
∥
∥−→ε∥∥N+1

R̃
(1)
N

[
μ1,

−→ε ]. (4.26)

Hence,

ε1
∂

∂x

[(
μ1[h] − μ1[u0]

)
hx

]
=

∂

∂x

⎡

⎣
∑

2≤|γ|≤N

∑

2≤|ν|≤N,ν≤γ
ρ
(1)
ν

[
μ1
]∇uγ−ν

−→ε γ +
∥
∥−→ε∥∥N+1

R̃
(2)
N

[
μ1,

−→ε ]
⎤

⎦

=
∑

2≤|γ|≤N

∑

2≤|ν|≤N,ν≤γ

∂

∂x

[
ρ
(1)
ν

[
μ1
]∇uγ−ν

]−→ε γ +
∥
∥−→ε∥∥N+1 ∂

∂x
R̃

(2)
N

[
μ1,

−→ε ].

(4.27)

Similarly, we write

ε2f1[h] = ε2

⎛

⎝
∑

|ν|≤N−1
πν

[
f1
]−→ε ν +

∥∥−→ε∥∥NR
(1)
N−1

[
f1,

−→ε ]
⎞

⎠

=
∑

1≤|ν|≤N
π

(2)
ν

[
f1
]−→ε ν +

∥∥−→ε∥∥N+1
R

(1)
N

[
f1,

−→ε ],
(4.28)

where R
(1)
N [f1,

−→ε ] = ε2/‖−→ε ‖R(1)
N−1[f1,

−→ε ] is bounded in the function space L∞(0, T ;L2) by a
constant depending only onN,T, f1, uγ , |γ | ≤ N.

Combining (4.4), (4.21), (4.27), and (4.28) yields

E−→ε (x, t) = ε2f1[h] + ε1
∂

∂x

[(
μ1[h] − μ1[u0]

)
hx

] −
∑

1≤|γ |≤N
Fγ

−→ε γ

=
∑

1≤|γ|≤N

⎧
⎨

⎩

⎡

⎣π(2)
ν

[
f1
]
+

∑

2≤|ν|≤N,ν≤γ

∂

∂x

[
ρ
(1)
ν

[
μ1
]∇uγ−ν

]
⎤

⎦ − Fγ

⎫
⎬

⎭
−→ε γ

+
∥∥−→ε∥∥N+1

(
R

(1)
N

[
f1,

−→ε ] + ∂

∂x
R̃

(2)
N

[
μ1,

−→ε ]
)

=
∥∥−→ε∥∥N+1

(
R

(1)
N

[
f1,

−→ε ] + ∂

∂x
R̃

(2)
N

[
μ1,

−→ε ]
)
.

(4.29)

By the boundedness of the functions uγ ,∇uγ , u
′
γ , |γ | ≤ N in the function space

L∞(0, T ;H1), we obtain from (4.26) and (4.29) that

‖E−→ε ‖L∞(0,T ;L2) ≤ E∗
∥∥−→ε∥∥N+1

, (4.30)

where E∗ is a constant depending only on N,T, f0, f1, μ0, μ1, uγ , |γ | ≤ N.
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The proof of Lemma 4.4 is complete.

Now, we consider the sequence of functions {vm} defined by

v0 ≡ 0,

v′′
m−1 −

∂

∂x

(
με1[vm−1 + h]vmx

)
= ε2

(
f1[vm−1 + h] − fi[h]

)

+ ε1
∂

∂x

[(
μ1[vm−1 + h] − μ1[h]

)
hx

]
+ E−→ε (x, t), 0 < x < 1, 0 < t < T,

vm(0, t) = vm(1, t) = 0,

vm(x, 0) = v′
m(x, 0) = 0, m ≥ 1.

(4.31)

With m = 1, we have the problem

v′′
1 −

∂

∂x

(
με1[h]v1x

)
= E−→ε (x, t), 0 < x < 1, 0 < t < T,

v1(0, t) = v1(1, t) = 0,

v1(x, 0) = v′
1(x, 0) = 0.

(4.32)

Multiplying two sides of (4.32)1 by v′
1, we compute without difficulty from (4.22) that

‖v′
1(t)‖2 +

∥∥∥∥

√
μ1,ε1(t)v1x(t)

∥∥∥∥

2

= 2
∫ t

0

〈
E−→ε (s), v

′
1(s)

〉
ds +

∫ t

0
ds

∫1

0
μ′
1,ε1(x, s)v

2
1x(x, s)dx

≤TE2
∗
∥∥−→ε∥∥2N+2 +

∫ t

0

∥∥v′
1(s)

∥∥2ds +
∫ t

0
ds

∫1

0

∣∣∣μ′
1,ε1(x, s)

∣∣∣v2
1x(x, s)dx,

(4.33)

where μ1,ε1(x, t) = με1[h(x, t)] = μ0(x, t) + ε1μ1(x, t, h(x, t)). By

μ′
1,ε1(x, t) = μ′

0(x, t) + ε1
[
D2μ1(x, t, h(x, t)) +D3μ1(x, t, h(x, t))h′(x, t)

]
, (4.34)

we get

∣∣∣μ′
1,ε1(x, t)

∣∣∣ ≤ K̃
(
μ0
)
+ (1 +M∗)K̃M∗

(
μ1
) ≡ ζ0, (4.35)

withM∗ = (N + 1)M, K̃(μ0) = ‖μ0‖C1(QT∗ )
.

It follows from (4.33), (4.35) that

‖v′
1(t)‖2 + μ∗‖v1x(t)‖2 ≤ TE2

∗
∥∥−→ε∥∥2N+2 +

∫ t

0

∥∥v′
1(s)

∥∥2ds + ζ0

∫ t

0
‖v1x(s)‖2ds. (4.36)
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Using Gronwall’s lemma, (4.36) gives

‖v′
1‖L∞(0,T ;L2) + ‖v1x‖L∞(0,T ;L2) ≤

(

1 +
1√
μ∗

)√
TE∗

∥
∥−→ε∥∥N+1 exp

[(
μ∗ + ζ0

)
T

2μ∗

]

. (4.37)

We will prove that there exists a constant CT , independent of m and −→ε , such that

∥
∥v′

m

∥
∥
L∞(0,T ;L2) + ‖vmx‖L∞(0,T ;L2) ≤ CT

∥
∥−→ε∥∥N+1

, with
∥
∥−→ε∥∥ ≤ ε∗ < 1, ∀m. (4.38)

Multiplying two sides of (4.31)1 with v′
m and after integrating in t, we obtain without

difficulty from (4.22) that

‖v′
m(t)‖2 + μ∗‖vmx(t)‖2 ≤ TE2

∗
∥∥−→ε∥∥2N+2 +

∫ t

0

∥∥v′
m(s)

∥∥2ds +
∫ t

0
ds

∫1

0

∣∣μ′
m,ε1(x, s)

∣∣v2
mx(x, s)dx

+ 2ε2

∫ t

0

∥∥f1[vm−1 + h] − f1[h]
∥∥∥∥v′

m(s)
∥∥ds

+ 2ε1

∫ t

0

∥∥∥∥
∂

∂x

[(
μ1[vm−1 + h] − μ1[h]

)
hx

]
∥∥∥∥
∥∥v′

m(s)
∥∥ds

= TE2
∗
∥∥−→ε∥∥2N+2 +

∫ t

0

∥∥v′
m(s)

∥∥2ds + Ĵ1(t) + Ĵ2(t) + Ĵ3(t),

(4.39)

where μm,ε1(x, t) = με1[vm−1 +h] = μ0(x, t) + ε1μ1(x, t, vm−1(x, t) +h(x, t)). We will estimate the
integrals on the right-hand side of (4.39) as follows.

First Integral Ĵ1(t)

We have

μ′
m,ε1(x, t) = μ′

0(x, t) + ε1
[
D2μ1(x, t, vm−1 + h) +D3μ1(x, t, vm−1 + h)

(
v′
m−1 + h′)], (4.40)

hence

∣∣μ′
m,ε1(x, t)

∣∣ ≤ K̃
(
μ0
)
+ (1 +M1∗)K̃M1∗

(
μ1
) ≡ χ1, with M1∗ = (N + 2)M. (4.41)

It follows from (4.41) that

Ĵ1(t) =
∫ t

0
ds

∫1

0

∣∣μ′
m,ε1(x, s)

∣∣v2
mx(x, s)dx ≤ χ1

∫ t

0
‖vmx(s)‖2ds. (4.42)
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Second Integral Ĵ2(t)

We note that

∥
∥f1[vm−1 + h] − f1[h]

∥
∥ ≤ 2KM1∗

(
f1
)‖vm−1‖W1(T). (4.43)

Therefore,

Ĵ2(t) = 2ε2

∫ t

0

∥
∥f1[vm−1 + h] − f1[h]

∥
∥
∥
∥v′

m(s)
∥
∥ds ≤ Tχ2

2

∥
∥−→ε∥∥2‖vm−1‖2W1(T) +

∫ t

0

∥
∥v′

m(s)
∥
∥2ds,

(4.44)

where χ2 = χ2(M1∗, f1) = 2KM1∗(f1).

Third Integral Ĵ3(t)

First, we need to estimate ‖∂/∂x[(μ1[vm−1 + h] − μ1[h])hx]‖.
From the equation

∂

∂x

[(
μ1[vm−1 + h] − μ1[h]

)
hx

]

=
(
μ1[vm−1 + h] − μ1[h]

)
hxx +

∂

∂x

(
μ1[vm−1 + h] − μ1[h]

)
hx

=
(
μ1[vm−1 + h] − μ1[h]

)
hxx +

(
D1μ1[vm−1 + h] −D1μ1[h]

)
hx

+
(
D3μ1[vm−1 + h] −D3μ1[h]

)
(∇vm−1 +∇h)hx +D3μ1[h]∇vm−1hx,

(4.45)

it implies that

∥∥∥∥
∂

∂x

[(
μ1[vm−1 + h] − μ1[h]

)
hx

]
∥∥∥∥

≤ ∥∥μ1[vm−1 + h] − μ1[h]
∥∥
C0(Ω)‖hxx‖

+
∥∥D1μ1[vm−1 + h] −D1μ1[h]

∥∥
C0(Ω)‖hx‖

+
∥∥D3μ1[vm−1 + h] −D3μ1[h]

∥∥
C0(Ω)‖∇vm−1 +∇h‖C0(Ω)‖hx‖

+
∥∥D3μ1[h]

∥∥
C0(Ω)‖vm−1‖W1(T)‖hx‖C0(Ω).

(4.46)

On the other hand, we have

∥∥μ1[vm−1 + h] − μ1[h]
∥∥
C0(Ω) ≤ K̃M1∗

(
μ1
)‖vm−1‖W1(T),

∥∥Djμ1[vm−1 + h] −Djμ1[h]
∥∥
C0(Ω) ≤ K̃M1∗

(
μ1
)‖vm−1‖W1(T), j = 1, 3,

∥∥D3μ1[h]
∥∥
C0(Ω) ≤ K̃M1∗

(
μ1
)
.

(4.47)
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We deduce from (4.46) and (4.47) that

∥
∥
∥
∥

∂

∂x

[(
μ1[vm−1 + h] − μ1[h]

)
hx

]
∥
∥
∥
∥ ≤ (3 + 2M1∗)M1∗K̃M1∗

(
μ1
)‖vm−1‖W1(T). (4.48)

Next, by (4.48), it follows that

Ĵ3(t) = 2ε1

∫ t

0

∥∥
∥
∥

∂

∂x

[(
μ1[vm−1 + h] − μ1[h]

)
hx

]
∥∥
∥
∥
∥
∥v′

m(s)
∥
∥ds

≤ Tχ2
3

∥
∥−→ε∥∥2‖vm−1‖2W1(T) +

∫ t

0

∥
∥v′

m(s)
∥
∥2ds,

(4.49)

where χ3 = χ3(M1∗, μ1) = (3 + 2M1∗)M1∗K̃M1∗(μ1).
Combining (4.39), (4.42), (4.44), and (4.49) gives

‖v′
m(t)‖2 + μ∗‖vmx(t)‖2 ≤ TE2

∗
∥∥−→ε∥∥2N+2 + T

(
χ2
2 + χ2

3

)∥∥−→ε∥∥2‖vm−1‖2W1(T)

+ 3
∫ t

0

∥∥v′
m(s)

∥∥2ds + χ1

∫ t

0
‖vmx(s)‖2ds

≤ TE2
∗
∥∥−→ε∥∥2N+2 + T

(
χ2
2 + χ2

3

)∥∥−→ε∥∥2‖vm−1‖2W1(T)

+
(
3 +

χ1

μ∗

)∫ t

0

(∥∥v′
m(s)

∥∥2 + μ∗‖vmx(s)‖2
)
ds.

(4.50)

Using Gronwall’s lemma, we deduce from (4.50) that

‖vm‖W1(T) ≤ σT‖vm−1‖W1(T) + δ, ∀m ≥ 1, (4.51)

where

σT =
√
χ2
2 + χ2

3ηT , δ = ηTE∗
∥∥−→ε∥∥N+1

, ηT =

(

1 +
1√
μ∗

)√
T exp

[
T

2

(
3 +

χ1

μ∗

)]
. (4.52)

We can assume that

σT < 1, (4.53)

with sufficiently small T > 0.

Lemma 4.5. Let the sequence {ζm} satisfy

ζm ≤ σζm−1 + δ ∀m ≥ 1, ζ0 = 0, (4.54)

where 0 ≤ σ < 1, δ ≥ 0 are the given constants. Then,
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ζm ≤ δ

(1 − σ)
∀m ≥ 1. (4.55)

This lemma is useful, as it will be said below, and it is easy to prove.

Applying Lemma 4.5 with ζm = ‖vm‖W1(T), σ = σT =
√
χ2
2 + χ2

3ηT < 1, δ = ηTE∗‖−→ε ‖N+1,
it follows from (4.55) that

∥
∥v′

m

∥
∥
L∞(0,T ;L2) + ‖vmx‖L∞(0,T ;L2) = ‖vm‖W1(T) ≤

δ

(1 − σT )
≡ CT

∥
∥−→ε∥∥N+1

. (4.56)

On the other hand, the linear recurrent sequence {vm} defined by (4.31) converges
strongly in the space W1(T) to the solution v of the problem (4.20). Hence, letting m → +∞
in (4.56) yields

∥∥v′∥∥
L∞(0,T ;L2) + ‖vx‖L∞(0,T ;L2) ≤ CT

∥∥−→ε∥∥N+1
, (4.57)

it means that

∥∥∥∥∥∥
u′ −

∑

|γ|≤N
u′
γ
−→ε γ

∥∥∥∥∥∥
L∞(0,T ;L2)

+

∥∥∥∥∥∥
ux −

∑

|γ|≤N
uγx

−→ε γ

∥∥∥∥∥∥
L∞(0,T ;L2)

≤ CT

∥∥−→ε∥∥N+1
. (4.58)

Consequently, we obtain the following theorem.

Theorem 4.6. Let (H1), (H4) and (H5) hold. Then there exist constantsM > 0 and T > 0 such that,
for every −→ε , with ‖−→ε ‖ ≤ ε∗ < 1, the problem (P−→ε ) has a unique weak solution u = u−→ε ∈ W1(M,T)
satisfying an asymptotic expansion up to order N + 1 as in (4.58), where the functions uγ , |γ | ≤ N

are the weak solutions of the problems (P0), (P̃γ), 1 ≤ |γ | ≤ N, respectively.

The Problem with Many Small Parameters

Next, we note that the results as above still hold for the problem in p small parameters
ε1, . . . , εp as follows:

utt − ∂

∂x

[(

μ0(x, t) +
p∑

i=1

εiμi(x, t, u)

)

ux

]

= f0(x, t) +
p∑

i=1

εifi(x, t, u, ux, ut), 0 < x < 1, 0 < t < T,

u(0, t) = u(1, t) = 0,

u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x).

(P̂−→ε )



32 ISRN Applied Mathematics

For more detail, we also make the following assumptions:

(Ĥ4) μ ∈ C2([0, 1] × R+), μi ∈ CN+1([0, 1] × R+ × R), μ0 ≥ μ∗ > 0, μi ≥ 0, i = 1, 2, . . . , p,

(Ĥ5) f0 ∈ C1([0, 1] × R+), fi ∈ CN([0, 1] × R+ × R
3), i = 1, 2, . . . , p.

For a multi-index α = (α1, . . . , αp) ∈ Z
p
+, and

−→ε = (ε1, . . . , εp) ∈ R
p, we also put

|α| = α1 + · · · + αp, α! = α1! · · ·αp!,

∥
∥−→ε∥∥ =

√
ε21 + · · · + ε2p,

−→ε α = εα1
1 · · · εαp

p ,

α, β ∈ Z
p
+, α ≤ β ⇐⇒ αi ≤ βi ∀i = 1, . . . , p.

(4.59)

Let u0 be a unique weak solution of the problem (P0), which is (P̂−→ε ) corresponding to−→ε = (0, . . . , 0). Let the sequence of weak solutions uγ , γ ∈ Z
p
+, 1 ≤ |γ | ≤ N be defined by the

problems (P̃γ), in which Fγ , γ ∈ Z
p
+, 1 ≤ |γ | ≤ N, are defined by suitable recurrent formulas.

Then, the following similar theorem holds.

Theorem 4.7. Let (H1),(Ĥ4) and (Ĥ5) hold. Then there exist constantsM > 0 and T > 0 such that,
for every −→ε , with ‖−→ε ‖ ≤ ε∗ < 1, the problem (P̂−→ε ) has a unique weak solution u = u−→ε ∈ W1(M,T)
satisfying an asymptotic estimation up to order N + 1 as follows:

∥∥∥∥∥∥
u′ −

∑

|γ|≤N
u′
γ
−→ε γ

∥∥∥∥∥∥
L∞(0,T ;L2)

+

∥∥∥∥∥∥
ux −

∑

|γ|≤N
uγx

−→ε γ

∥∥∥∥∥∥
L∞(0,T ;L2)

≤ CT

∥∥−→ε∥∥N+1
. (4.60)

The proof of Theorem 4.7 is similar the one as above let us omit it.

Remark 4.8. Typical examples about asymptotic expansion of solutions in a small parameter
can be found in the research of many authors such as [1, 3, 4, 8, 9, 17–19]. However, to our
knowledge, in the case of asymptotic expansion in many small parameters, there is only
partial results, for example, [5–7, 14], concerning asymptotic expansion of solutions in two or
three small parameters.
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