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ABSTRACT: 

Land surface temperature image is an important product in many lithosphere and atmosphere applications. This image is retrieved 

from the thermal infrared bands. These bands have lower spatial resolution than the visible and near infrared data. Therefore, the 

details of temperature variation can't be clearly identified in land surface temperature images. The aim of this study is to enhance 

spatial information in thermal infrared bands. Image fusion is one of the efficient methods that are employed to enhance spatial 

resolution of the thermal bands by fusing these data with high spatial resolution visible bands. Multi-resolution analysis is an 

effective pixel level image fusion approach. In this paper, we use contourlet, non-subsampled contourlet and sharp frequency 

localization contourlet transform in fusion due to their advantages, high directionality and anisotropy. The absolute average 

difference and RMSE values show that with small distortion in the thermal content, the spatial information of the thermal infrared 

and the land surface temperature images is enhanced. 

1. INTRODUCTION

Thermal infrared (TIR) bands are used to retrieve land surface 

temperature (LST) images. LST is the thermodynamic 

temperature of the uppermost layer of the earth’s surface. It 

depends on the albedo, the vegetation cover and different types 

of land covers (Kumar et al., 2013). Thermal infrared bands are 

important data in climate research, weather forecast, hydrologic, 

ecological, urban climate, agricultural, geothermal and many 

other studies (Jin and Han, 2017). 

The thermal infrared bands have relatively lower spatial 

resolution than the visible (VIS) bands. Clarity and sharpness of 

the objects in TIR bands can be enhanced by fusing these data 

with high spatial resolution bands e.g., visible and panchromatic 

images (Liao et al., 2015). Spatial enhancement in TIR bands 

can help us to identify the detailed variations of LST, more 

accurately (Wang et al., 2014).   

The objective of this paper is spatial enhancement in the TIR 

bands with the minimum possible distortion in thermal 

characteristics of these images.   

Many methods have been proposed in image fusion. It can be 

categorized into following three levels: pixels, features and 

decision levels. In this paper, pixel level image fusion is 

applied. Multi-resolution analysis is part of transform domain 

methods in pixel level image fusion, including discrete wavelet 

(DWT), curvelet (CVT), contourlet (CT), nonsubsampled 

contourlet (NSCT) and sharp frequency localization contourlet 

transforms (SFLCT) (Li et al., 2010).  

Jin and Han (2017) fused Landsat 7 panchromatic and thermal 

infrared images. They did this using sparse representation 

technique. According to Landsat spectral response, a sparse 

representation relation between low and high resolution images 

was created. They concluded that their method improved spatial 

resolution and preserved the thermal properties of LST image 

(Jin and Han, 2017). Li et al. (2010) compared curvelet and 

contourlet methods in image fusion. They merged three 

categories of images: multi-focus, infrared-visible and medical 

images. They concluded that the shift invariant property is 

important for image fusion. The experimental results indicated 

that the nonsubsampled contourlet transform outperformed the 

existing methods (Li et al., 2010). 

Wavelet transforms are not optimal in detecting the smoothness 

along curves and edges, which these are found a lot in remote 

sensing images such as roads and smooth boundaries of the 

objects (Choi et al., 2013). Therefore we utilize and compare 

the three latest developed MRA techniques, contourlet, 

nonsubsampled contourlet and sharp frequency localization 

contourlet transforms, which they have not wavelet 

disadvantages.  

2. METHODOLOGY

2.1 Pre-processing 

First of all, the TIR and the VIS bands should be registered 

together. Then, we convert digital numbers of these data to top 

of atmosphere radiance values. Surface leaving radiances for 

TIR bands can be calculated using atmospheric correction 

parameters and emissivity values of the surface by equation 1 

(Barsi et al., 2003). 

LTOA = τεLT + Lu + τ(1 − ε)Ld (1) 

Where     LTOA= top of atmosphere radiance 

 τ = atmospheric transmission 

 ε = emissivity  

 LT = surface leaving radiance 

 Lu = upwelling or atmospheric path radiance 
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 Ld = downwelling or sky radiance 

τ , Lu and Ld are atmospheric parameters computed by 

atmospheric profiles. The ε values are estimated by normalized 

difference vegetation index (NDVI). These values are defined 

by equation 2 (Mobasheri and Amani, 2016).  

{

NDVI < −0.185: 𝜀 = 0.995
−0.185 ≤ NDVI < 0.157: 𝜀 = 0.97

0.157 ≤ NDVI < 0.727: 𝜀 = 1.0098 + 0.047 × 𝐿𝑛 (𝑁𝐷𝑉𝐼)
NDVI ≥ 0.727: ε = 0.99

(2) 

2.2 Decomposition Methods 

In the contourlet transform, the laplacian pyramid (LP) is used 

to multi-scale decomposition and directional filter bank (DFB) 

is used to multi-direction decomposition. Because of 

downsampling in the multi-scale stage in the CT, this transform 

is not shift invariant and exhibits spatial distortions, ringing and 

aliasing effects in the fusion results (Aiazzi et al., 2004). The 

nonsubsampled contourlet transform is shift invariant version of 

contourlet transform used two channel nonsubsampled 2-D 

filter banks in multi-scale and multi-directional levels. The 

filters used in DFB stage are not ideal and exhibit aliasing 

components at locations far away from desired support 

frequency regions. The mentioned drawback is solved by sharp 

frequency localization version of CT. In this transform, a new 

pyramidal structure is used for the multi-scale decomposition 

(Choi et al., 2013). 

2.3 Coefficient Combination 

The results of mentioned transforms applied on the input TIR 

and the VIS bands contain a low frequency component and 

multiple detail coefficients at different scales. In this paper, we 

choose the low frequency components of fused image from TIR 

approximation coefficients, so that the characteristics of thermal 

information are kept. The high frequency coefficients are 

chosen from either TIR or VIS components by comparing the 

local energy computed in 5×5 window.  

2.4 Spectral and Spatial Quality Assessment 

Absolute average difference (AAD) and non-reference image 

fusion metric based on mutual information of image features, 

which is called feature mutual information (FMI) are used for 

spectral and spatial quality assessment, respectively (Alparone 

et al., 2008) (Haghighat et al., 2011).  

2.5 Retrieval of Land Surface Temperature 

We retrieve LST from standard and sharpened TIR bands and 

then compared their results by root mean square error (RMSE), 

Mean Bias (MB) and R-squared values. LST can be computed 

from LT by equation 3 (Mobasheri and Amani, 2016).  

T =
k2

Ln(1 +
k1

LT
)

(3) 

Where  T= land surface temperature in kelvin 

       k1  and k2= plank constants (k1=774.89, k2=1321.08

for landsat 8 ) 

3. STUDY AREA AND DATA SETS

The TIR band used to test our downscaling methods is from 

Landsat-8 ETM+. Landsat-8 acquires VIS images with the 

spatial resolution of 30 m and TIR bands with the spatial 

resolution of 100 m. The tested data was acquired on 29 March 

2013 from 166/038 (path/row) in the world refrence system-2 

(WRS-2). The test data covers Ilam in southwest of Iran. We 

selected 512×512 pixels of TIR band 10 and VIS band 4 (red) 

Landsat-8. These images are presented in Figure 1. 

(a) (b) 

Figure 1. (a) VIS band 4, (b) TIR band 10 

4. RESULTS AND DISCUSSION

Three variants of contourlet methods are carried out with 

[2,3,3,4] parameter decomposition levels. The Cohen-

Daubechies-Feauveau 9/7 and pkva filters are used as pyramidal 

and directional decomposition filters, respectively. The fusion 

results obtained by CT, NSCT and SFLCT are given in Figure 

2.  

(a) (b) 

(c) 

Figure 2. TIR Fusion results obtained by (a) CT, (b) NSCT, (c) 

SFLCT 

From Figure 1 (b) and Figure 2, we see that all three versions of 

CT enhance the spatial and visualization sharpening. 

Quantitative assessment of the fusion results are shown in Table 

1. From Table 1, can be understood that the NSCT enhances
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better spatial observations and SFLCT preserves better thermal 

information. 

Indexes/Methods CT NSCT SFLCT 

AAD 0.2522 0.2441 0.2370 

FMI 0.7754 0.7761 0.7738 

Table 1. Spectral and spatial quality assessment 

LST results obtained by source TIR band and TIR sharpened 

band by CT, NSCT and SFLCT are presented in Figure 3, 

respectively.  

(a) 

(b) 

(c) 

(d) 

Figure 3. LST results obtained by (a) original LT,(b) sharpened 

LT by CT, (c) sharpened LT by NSCT (d) sharpened LT by SFCT 

methods 

For quantitative assessment and better comparison of LST 

results, minimum (Min), maximum (Max) and mean values of 

LST before and after fusion are presented in Table 2.  

Methods/ 

Indexes 
Min (kelvin) Max (kelvin) 

Mean 

(kelvin) 

Original LST 298.9367 351.6648 309.8292 

Sharpened 

LST by CT 
296.7331 347.5941 309.8062 

Sharpened 

LST by 

NSCT 

296.9525 349.6455 309.8060 

Sharpened 

LST by 

SFLCT 

296.6946 349.9634 309.8079 

Table 2. Min, max and mean of LST which are obtained by 

different methods 
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The MB, RMSE and R-squared indexes between original and 

sharpened values of LST are given in Table 3.  

 

Methods/ 

Indexes 

CT NSCT SFLCT 

MB (kelvin) 7.4919×10-5 7.4267×10-5 6.8749×10-5 

RMSE 

(kelvin) 

2.1319 2.0729 2.0260 

R-Squared 0.78553 0.79725 0.80631 
 

Table 3. MB and RMSE calculated between original and 

sharpened LST 
 

 

From Table 2 and 3, we can conclude that spatial enhancement 

in TIR bands using SFLCT method leads to less discrepancy in 

thermal contents of LST than the other methods.  

 

For additional comparison of original (standard) and sharpened 

values of LST, scatter plots between these values are presented 

in Figure 4. As we see that in Figure 4 (c), the gain of plot 

obtained by SFLCT is closer to 1 than the others. 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 4. Scatter plot 
 

 

 

5. CONCLUSIONS 

 

The thermal infrared bands have relatively lower spatial 

resolution than the VIS bands. Because of the importance of 

TIR bands in many applications specially retrieving land surface 

temperature, we attempted to fuse these data with VIS bands. 

CT, NSCT and SFLCT are utilized for fusion of VIS band 4 and 

TIR band 10 of Landsat-8. The experimental results indicate 

that the SFLCT preserves better thermal characteristics in TIR 

fused band and keeps more surface temperature properties in 

LST sharpened, while NSCT transforms more spatial details to 

the fused band and improves better object observability in LST 

image. Analysing the other filters in pyramidal and directional 

decompositions and the other fusion rules are suggested in 

future work.   
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