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ABSTRACT: 

 

Lane detection is a problem that has attracted in the last years the attention of the computer vision community. Most of approaches 

used until now to face this problem combine conventional image processing, image analysis and pattern classification techniques. In 

this paper, we propose a methodology based on so-called Ellipsoidal Neural Networks with Dendritic Processing (ENNDPs) as a new 

approach to provide a solution to this important problem. The functioning and performance of the proposed methodology is validated 

with a real video taken by a camera mounted on a car circulating on urban highway of Mexico City. 

 

 

1. INTRODUCTION  

Autonomous Car Technology (ACT) is recognized nowadays as 

one of the most important advances in urban mobilization. It is 

under development since 15 years. Between 2004 and 2005 

several vehicles competed to traverse the Mojave Desert in 

California covering more than 200 km in an autonomous way, 

following a map of GPS coordinates. The vehicles were built by 

universities such as Stanford and Carnegie Mellon, as well as by 

industries like Ensco and Velodyne Acoustics. The event was 

organized by DARPA-USA. In 2007, another competition was 

organized. It represented a major challenge: Vehicles were asked 

to avoid hitting other vehicles, cycles, pedestrian or traffic lights. 

They should also have the capacity to make “U” turns, when 

needed, and to transit under different weather conditions. In 2005 

and 2007 the two winners were Stanley (Thrun, 2006) and Boss 

(Urmson, 2008), respectively. 

 

Many approaches for automatic lane detection have been 

reported in the literature: (Assidiq 2008), (Fernando 2014), (Saha 

2012), (Van Winden 2016) and (Wang 2006), to mention a few. 

 

In (Assidiq 2008), for example, the authors solve lane detection 

by first acquiring a front view by a camera mounted on the 

vehicle. They then detect lanes by using a pair of hyperbolas 

which are fitting to the edges of the lane by means of so-called 

Hough transform. They show that their proposal is robust to light 

changes and shadows by testing it with both painted and 

unpainted road as well as curved and straight road in different 

weather conditions. 

 

In (Fernando 2014), the authors face lane detection by integrating 

two visual cues: 1) stripe-like features found on lane lines 

extracted using a two-dimensional symmetric Gabor filter, and 2) 

texture characteristic determined using the entropy measure of a 

predefined neighbourhood around a lane boundary line. They 

integrate both visual cues using a rule-based classifier which 

incorporates a modified sequential covering algorithm to 

improve robustness. They separate lane boundary lines from 

other similar features by using a road mask that uses road 
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chromaticity values estimated from CIE L*a*b* colour 

transformation. They validate their algorithm on a set of images 

of suburban streets. 

 

In (Saha 2012), the authors face the lane detection problem by 

first converting a RGB road scene image into a grey image. They 

then employ a flood-fill algorithm to label the connected 

components on the grey image. After that, they take the largest 

connected component as the road region. They finally subtract 

the marks or road lane and road boundary from the connected 

components. Thy show the performance of their algorithm on 

both straight and slightly curved road scene images under 

different day light conditions and the presence of shadows on the 

roads. 

 

In (Van Winden 2016), the authors describe a method for 

automatically deriving road attributes by analysing and mining 

movement trajectories (e.g. GPS tracks). They investigate how to 

automatically extract eight road attributes: directionality, speed 

limit, number of lanes, access, average speed, congestion, 

importance, and geometric offset. For this, they propose using a 

decision tree. They use their proposal to automatically update the 

OpenStreetMap (OSM) dataset of the Netherlands, increasing its 

level of completeness. 

 

In short, in (Wang 2006), the authors face real-time lane detection 

by combining a hyperbola-pair lane boundary model and an 

improved RANSAC paradigm. They introduce a fuzzy 

measurement into the RANSAC paradigm to improve accuracy 

and robustness when fitting boundaries points into the model. 

They test their proposal in many different conditions, including 

various conditions of illumination, weather and road. 

 

It is worth mentioning that most lane detection methods are based 

on the Hough transform (Leng, 2010), (Li, 2014), (Tan, 2014), 

(Gaikwad, 2015), a well-known technique used to detect lines 

and curves (Duda, 1972). This kind of line detectors strongly 

depend on the pre-processing stage; they are typically combined 

with a Canny or Sobel edge detector or with an adaptive 

threshold. The main drawback is in the complexity of the 
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methodology and the required time. Our proposed does not use 

these filters and is so easy to implement. 

 

Most recent approaches make use of so-called deep networks 

(Kim, 2014), (Huval, 2015), (Gurghian, 2016). These techniques 

are so accurate and represent the state-of-the-art in image 

classification. They have three main disadvantages: need 1) 

thousands of examples for training, 2) specialized hardware to be 

implemented and 3) are time consuming. The besought method 

does not require a special hardware neither is time consuming.  

 

To end up with this discussion, in (Kaur 2015), the authors 

provide a comprehensive review of the literature in lane detection 

techniques with the aim to present to the reader the limitations of 

the existing lane detection methods. 

 

Also it is expected that in 2035, the more developed societies will 

adopt ACT as a normal transportation way. While that moment 

arrives, several intelligent vehicular assistants are under 

development. One of these systems concerns automatic lane 

detection. Systems like these alert the driver when his car starts 

to move out of the lane; either because the driver is distracted or 

tired. A system like this is particularly useful in highways where 

monotony of conduction can augment distraction. 

 

Artificial neural networks, on the other hand, have been 

successfully used in many tasks including signal analysis, noise 

cancellation, model identification, process control, object 

detection, and pattern recognition, in general. 

 

Many artificial neural network models have been reported in 

literature, since the very simple Threshold Logic Unit (TLU), 

introduced by McCulloch-Pitts (MuCulloch 1943) at the 

beginning of the 40´s, passing by the well-known Perceptron, 

presented to the world by Rosenblatt in the 50´s (Rosenblatt 

1958) and (Rosenblatt 1962) until the so called Morphological 

Neural Models with and without Dendritic Processing introduced 

by Ritter et al. in (Ritter 1996), (Sussner 1998), (Ritter 1999), 

(Ritter 2003), to mention a few.  

 

Interest in Morphological Neural Networks (MNNs) has 

increased in the last five years (Sossa, 2013), (Sossa, 2014), 

(Arce, 2016) and (Zamora, 2017). This kind of ANNs make use 

of min and max operations to segment the input space into hyper-

boxes. In particular, MMNs with dendritic processing have 

shown the capacity to efficiently solve low-dimensional 

classification problems where other reported methods fail 

(Zamora, 2016), (Hernandez, 2017).  

 

In this paper, we propose a new method for lane detection based 

on the functioning of so-called dendritic ellipsoidal neurons 

(DEN) (Arce, 2017). Instead of hyper-boxes, these neural 

networks use hyper-ellipsoids. 

 

The rest of the paper is organized as follows. In Section 2 we 

briefly present the architecture of an ellipsoidal neuron, while in 

Section 3 we describe, step by step, how this kind of neuron can 

be trained. Section 4, in the other hand, is focused to introduce 

the method for detecting lanes in an image. In Section 5 we 

present some results, while in Section 6 we summarize the 

conclusions and directions for further research. 

 

2. ARQUITECTURE OF A DEN 

Before presenting the DEN, we describe the conventional 

mathematical structure for a Dendrite Morphological Neuron 

(DMN). The dendrite output for a DMN is given by: 

𝛕𝑘

𝑗
= ⋀(𝑥𝑖 + 𝑤𝑖𝑘

1 ) ∧ −(𝑥𝑖 + 𝑤𝑖𝑘
0 )

𝑛

𝑖=1

 

 
(1) 

 

where 𝑥𝑖 is one of the 𝑛 components of an input vector of 𝐱 =
(𝑥1, 𝑥2, … , 𝑥𝑛)𝑇. 𝑤𝑖𝑘

0  and 𝑤𝑖𝑘
1  are the synaptic weights (𝑤𝑖𝑘

0  

inhibition, 𝑤𝑖𝑘
1  activation) of terminal fibres of the 𝑖𝑡ℎ neuron 

synapsing the 𝑘𝑡ℎ dendrite for the 𝑗𝑡ℎ class. More details can be 

found in (Ritter 2003) and (Ritter 2006). 

 

The neural network model used in this paper also uses dendritic 

processing (Arce 2017), the authors call it as Dendrite Ellipsoidal 

Neuron (DEN). Instead of using hyper-boxes to cluster data, as 

normally used by standard DMNs, DENs use hyper-ellipsoids. 

Next we describe each of the parts of a DEN. This change is key 

for our lane detector because the hyper-boxes cannot be rotated. 

The hyper-boxes in the DMNs are always align to the coordinate 

axes which is a great limitation in the moment to segment the 

lane. In contrast, the hyper-ellipsoids have the flexibility to be 

rotated. This allows to need less number of dendrites to segment 

the same number of pixels for the lanes. Of course, everything 

has a cost. The DEN requires 𝑛(𝑛 + 1) number of learning 

parameters per dendrite, while the DMNs requires 2𝑛 parameters 

per dendrite, where 𝑛 is the dimension of patterns. Since the lane 

detection is a classification problem with 2 dimensions (for black 

and white images), this is not important for the lane detector. 

 

The architecture of a DEN is illustrated in Figure 1. As can be 

seen, it is composed of three layers as follows: 

  

2.1 Input Layer 

This layer receives at its input 𝑛-dimensional vectors of the form 

𝐱 = (𝑥1, 𝑥2, … , 𝑥𝑛)𝑇. This layer does not perform any 

processing, it only sends the information provided by the input 

patterns to the next layer, the so-called dendritic layer. 

 

2.2 Dendritic Layer 

This layer performs so-called dendritic computation over input 

patterns 𝐱𝑖, 𝑖 = 1, … , 𝑚, by applying the following equation: 

 

 
𝛕𝑘

𝑗
= (𝐱𝑖 + 𝛍

𝑘
)𝑇 ∑ (𝐱𝑖 + 𝛍

𝑘
)

−1

𝑘

 
 

(2) 

 

In this case, each variable is defined as follows: 

 

𝛕𝑘
𝑗

= Dendritic computation 𝑇 = Transpose 

𝐱𝑖 =  Input pattern 𝑗 =  Index of class 𝐶𝑗 

𝛍𝑘 = Centroid of ellipse 𝑘 𝑘 = Dendrite 

∑ =−1
𝑘  Covariance matrix 𝑚 = Number of training 

patterns 

 

𝛕𝑘

𝑗
 is the vector produced by all the dendrites; it represents the 

Mahalanobis distance between input pattern 𝐱𝑖 and all the 

generated ellipsoids. Each dendrite performs the operation given 

by Equation (2) on each input pattern. The number of dendrites 

as well as the number of centroids and covariance matrices are 

obtained during the training step. 

 

2.3 Output Layer 

This layer is composed of only one neuron. Once the dendritic 

step is performed, the output neuron choses the dendrite that has 
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generated the smallest distance between the input pattern and all 

generated ellipses; it then assigns the input pattern to the 

corresponding class. The following equation shows how this 

calculation is made: 

 

 𝜏𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑘

(𝛕𝑘

𝑗
) 

 

(3) 

𝜏𝑗 is a scalar value that indicates the nearest distance between the 

input pattern and all the placed ellipsoids.  

 

Given an input pattern: 𝐱𝑖 , if 𝜏𝑗 = 0, means that 𝐱𝑖  is exactly at 

the centroid of the hyper-ellipse. If  𝜏𝑗 < 1, 𝐱𝑖  is inside the hyper- 

ellipse, and if 𝜏𝑗 > 1, 𝐱𝑖  is out of the hyper-ellipse. 

 

Figure 1 shows the architecture of an ellipsoidal neuron with 

dendritic processing. Figure 2 shows an example (in 2D) of a 

hyper-ellipse generated by its two dendritic parameters (𝛍𝑘 and 

∑ )−1
𝑘 . 

 

 

Figure 1. Architecture of an ellipsoidal neuron with dendritic 

processing, composed of three layers. Taken from (Arce 2017). 

 

Figure 2. Example of a hyper-ellipsoid generated by the two 

parameters (𝛍𝑘 and ∑ )−1
𝑘  of the dendrite. Taken from (Arce 

2017). 

 

3. TRAINING OF A DEN 

One of the most important problems in training a neural network 

with dendritic processing is the selection of the number of 

dendrites. The method described in this note automatically 

determines the number of necessary dendrites to solve a given 

problem. In this section we explain the operation of the proposed 

algorithm. Before beginning, let us have the following 

definitions: 

 

Definition 1. For 𝐱1, 𝐱2, … , 𝐱𝑚, 𝑖 = 1,2, … , 𝑚 a finite set of 

patterns; 𝐱𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛)𝑇 ∈ ℝ𝑛 being one of these 

patterns. Each pattern 𝐱𝑖  belongs to only one of 𝑝 classes: 𝐶𝑗 , 𝑗 =
1,2, … , 𝑝, with 𝑝 > 1 a finite number. 

 

Definition 2. A hyper-ellipsoid 𝐻𝐸𝑛 is an 𝑛-dimensional 

ellipsoid that contains a finite set of patterns: 𝐱 ∈ ℝ𝑛. This 𝐻𝐸𝑛 

is defined by its dendritic parameters: (𝛍𝑘 and ∑ )−1
𝑘 . 

 
Equation 2 defines the Mahalanobis distance between pattern 𝐱𝑖  

and hyper-ellipsoid 𝐻𝐸𝑛. The goal of the proposed training 

algorithm is to create and position a set of hyper-ellipsoids 

𝐻𝐸𝐾
𝑁 ∈ ℝ𝐾×𝑛, with 𝐾 ∈ {1,2, … , 𝑘} that allow stablishing a 

decision surface among classes with the smallest number of 

dendrites. 

 

3.1 Steps of the Training Algorithm 

1) Define a global error (𝑒𝑟𝑟𝑜𝑟𝑔𝑙𝑜𝑏𝑎𝑙) and local error 

(𝑒𝑟𝑟𝑜𝑟𝑙𝑜𝑐𝑎𝑙). Both errors are referred to the allowed number 

of wrong classified patterns. 𝑒𝑟𝑟𝑜𝑟𝑔𝑙𝑜𝑏𝑎𝑙 is the total 

allowed error while 𝑒𝑟𝑟𝑜𝑟𝑙𝑜𝑐𝑎𝑙 makes reference to the 

allowed errors (positive failures and negative failures) for 

each class. 

 

2) For each class 𝐶𝑗, generate 𝑘 clusters using so-called  𝑘-

means++ algorithm (Arthur, 2007), 𝑘 ∈ ℤ+. 

 

a. Obtain the dendritic parameters (𝛍𝑘 and ∑ )−1
𝑘  of each 

cluster 𝑘. Inverse of the covariance matrix can be 

obtained by applying the pseudo-inverse Moore-

Penrose method. 

b. Compute 𝑒𝑟𝑟𝑜𝑟𝑙𝑜𝑐𝑎𝑙 counting the number of wrong 

classified patterns.  

c. If 𝑒𝑟𝑟𝑜𝑟𝑙𝑜𝑐𝑎𝑙 < 𝑒𝑟𝑟𝑜𝑟𝑔𝑙𝑜𝑏𝑎𝑙 continue with the 

following class and go back to step 2. Else, 𝑘 = 𝑘 + 1.  

 

Algorithm 1 depicts the training for an ellipsoidal neuron. Note 

that it uses counter 𝑐 to avoid falling in an infinite cycle when no 

better classification improvement is obtained. 

 

 

BEGIN 

Define 𝑒𝑟𝑟𝑜𝑟𝑔𝑙𝑜𝑏𝑎𝑙 y 𝑒𝑟𝑟𝑜𝑟𝑙𝑜𝑐𝑎𝑙 

FOR each class 𝐶𝑗, 𝑘 = 1: 

     WHILE 𝑒𝑟𝑟𝑜𝑟𝑙𝑜𝑐𝑎𝑙 > 𝑒𝑟𝑟𝑜𝑟𝑔𝑙𝑜𝑏𝑎𝑙: 

          Transform the 𝑘 clusters into hyper-ellipsoids  

          Compute 𝑒𝑟𝑟𝑜𝑟𝑙𝑜𝑐𝑎𝑙 

          IF 𝑒𝑟𝑟𝑜𝑟𝑙𝑜𝑐𝑎𝑙 == 0: 
               STOP 

          IF 𝑒𝑟𝑟𝑜𝑟𝑔𝑙𝑜𝑏𝑎𝑙 ≥ |𝑒𝑟𝑟𝑜𝑟𝑙𝑜𝑐𝑎𝑙[k − 1] − 𝑒𝑟𝑟𝑜𝑟𝑙𝑜𝑐𝑎𝑙[k]|: 

               𝑐 = 𝑐 + 1 

                   IF 𝑐 == 3 

                        STOP 

          𝑘 = 𝑘 + 1 
END 

 

Algorithm 1. Training algorithm for a DEN. 

 

To better understand the functioning of a DEN, the following 

straightforward example is provided. As can be seen from Figure 

3, it is two class problem: The blue dots belonging to the first 

class 𝐶1 and the green stars to the second class 𝐶2.  

 

We would like to classify pattern �̃�1 = [−1.0000  − 0.5000] 
which is supposed to belong to class 𝐶1 and pattern �̃�2 =
[0.0000  0.0000] from class 𝐶2. Table 1 presents the hyper-

parameters of the two generated ellipsoids by Algorithm 1. 
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Figure 3. DEN trained to solve a straightforward example. Blue 

ellipsoid encloses patterns belonging to first class; green 

ellipsoid does the same but patterns from second class. 

 

Table 1. Hyper-parameters of the trained DEN to solve the 

provided straightforward example. 

Hyper-parameters:  

𝛍1 = [−0.974     0.9325] 

∑ =
−1

𝑘
 [

0.0985 0.2328
0.2328 0.7862

] 

𝛍2 = [0.8518  − 1.0341] 

∑ =
2

−1

 [
0.42111 0.0672
0.0672 0.1722

] 

 

When Equation (2) is applied to both input patterns we obtained, 

we can show that: 

 

𝛕1
𝑗

= [3.2309  20.1368] 
 

and 

  

𝛕2
𝑗

= [19.0885  14.0108] 
 

respectively. 

 

Finally, by applying Equation (3) to these dendrite computations 

𝛕𝑘
𝑗
 and we obtain: 

 

𝜏1 = 𝑎𝑟𝑔𝑚𝑖𝑛([3.2309  20.1368] ) = 1 

 

And 

 

𝜏2 = 𝑎𝑟𝑔𝑚𝑖𝑛([19.0885  14.0108] ) = 2. 
 

Therefore pattern �̃�1 = [−1.0000  − 0.5000] is classified into 

class 𝐶1, while pattern �̃�2 = [0.0000  0.0000] is put into class 

𝐶2. Both noisy patterns are correctly classified as expected. 

 

4. LANE DETECTION USING A DEN 

In this section we describe the methodology for lane detection 

based on ellipsoidal neurons with dendritic processing. The 

experiment was performed by using a video taken at the 

“Viaducto Bicentenario” of the State of Mexico. The video 

consists in 3237 frames with a resolution of 580 × 620 pixels per 

frame. We used low resolution images due to we are focused to 

implement our proposal in a near future in an embedded device. 

The methodology was applied to each frame and uses the 

following four steps: 

4.1 Change of Colour Space 

The first step consists in changing the colour space from RGB to 

HLS. The idea is to work in the S cannel (Saturation) that 

provides the degree at which a primary colour is dissolved 

(yellow, orange, or pure red) pure with light (Gonzalez, 1987). 

Figure 4 shows an original image while Figure 5 depicts the S 

cannel of the HLS colour space. In Figure 5 we can observe the 

slight improvement in colour on the image lanes. 

 

 

Figure 4. Original imagen taken at the “Viaducto Bicentenario” 

of the State of Mexico. 

 

 

Figure 5. Saturation channel S of colour space HLS of the 

original image. 

 

4.2 Selection of the Interest Area 

The following step consists in selecting an interest area in the 

image. The idea is to isolate from the S-image an area containing, 

with a high probability, the lanes we would like to further detect. 

Figure 6 depicts an example of interest area.  

 

 

Figure 6. Selection of the area of interest. 
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The interest area is defined to have a trapezoidal form, taking into 

account the knowledge that at the distance lanes tend to join. The 

lower corners of the trapezoid are chosen as the image corners to 

the left and to the right of the image. The upper corners of the 

trapezoid are marked by using the perspective information of the 

camera. 

 

 

Figure 7. Thresholding of the interest area. 

 

4.3 Interest Area Thresholding 

Once the interest area has been selected, the proposed 

methodology proceeds to threshold it. Two thresholds were used: 

50 and 120, respectively. Figure 7 presents the thresholded 

interest area. As can be appreciated this area contains interest 

pixels (in red) and non-interesting pixels (in black). 

 

 

Figure 8. Establishment of the ellipses on the binary image by 

means of an ENNDP. 

 

4.4 Application of the ENNDPs to The Binary image 

The following step consists in stablishing ellipses over the 

thresholded image by means of the trained ellipsoidal neuron.  To 

carry out this, during training the red pixels were assigned to a 

first class (class “0”) and the black pixels to the second class 

(class “1”). Instead of assigning an optimal number of ellipses as 

it will done when applying Algorithm 1, a constant number of 16 

ellipses per frame were marked. This allows reducing 

computation times. Figure 8 shows the ellipses generated by the 

proposal using the ellipsoidal neuron. 

 

4.5 Ellipse Filtering 

The last step of the methodology for automatic lane detection 

consisted in filtering ellipses by their centroids, created in 

advance by means of RANSAC method. This random algorithm 

is normally used, as it is known, to eliminate atypical values not 

coinciding with the model (Fischler, 1981). Figure 9 shows the 

filtered ellipses using RANSAC. 

 

 
 

Figure 9. Ellipse filtering using RANSAC. 

 

5. EXPERIMENTAL RESULTS 

As already mentioned in Section 4, the described methodology 

was applied on a video composed of 3237 frames with a 

resolution of 580 × 620 pixels per frame, taken with camera 

mounted on a car circulating on “Viaducto Bicentenario”, State 

of Mexico. Figure 9 shows nine of the results obtained by the 

application of the described methodology. 

 

   
 

   
 

   

Figure 9. Nine of the images with the ellipses superimposed by 

the algorithm over the lanes. 

 

It is worth mentioning to say that in 74 frames the algorithm fails 

to correctly superimpose the ellipses. The calculated accuracy of 

the proposed methodology over this set of images was thus of 

0.977.  

 

The main drawback of the proposed algorithm is the required 

time by the filtering stage; it consumes 40% of the total 

processing time. A possible solution could be using other filtering 

techniques and an implementation of the algorithm in a Graphic 

Processing Unit (GPU). 

 

6. CONCLUSIONS AND FUTURE WORK 

We have presented a methodology based on the pattern 

recognition capacities of the so-called dendrite ellipsoidal 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W3, 2017 
2nd International Conference on Smart Data and Smart Cities, 4–6 October 2017, Puebla, Mexico

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-4-W3-13-2017 | © Authors 2017. CC BY 4.0 License.

 
17



 

neuron. We have shown how the proposed methodology can be 

successfully applied to automatically detect lanes in urban 

highways. 

 

Future work includes the implementation of the besought 

algorithm on a portable Graphic Processing Unit (GPU) and the 

execution of this on a scaled exploration car. Another future work 

will be the use of other filtering techniques focused in the time 

reduction in this stage.  

 

Finally, a formal evaluation and a deep analysis of the proposed 

method are necessary to validate its whole capacities compared 

to other methods and algorithms reported in literature. 
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