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1 Introduction
The Euler-Mascheroni constant was first introduced by Leonhard Euler (-) in
 as the limit of the sequence

γ (n) :=
n∑

m=


m

– lnn. (.)

There are many famous unsolved problems about the nature of this constant (see, e.g., the
survey papers or books of Brent and Zimmermann [], Dence and Dence [], Havil [] and
Lagarias []). For example, it is a long-standing open problem if the Euler-Mascheroni
constant is a rational number. A good part of its mystery comes from the fact that the
known algorithms converging to γ are not very fast, at least, when they are compared to
similar algorithms for π and e.
The sequence (γ (n))n∈N converges very slowly toward γ , like (n)–. Up to now, many

authors have been preoccupied with improving its rate of convergence (see, e.g., [, –]
and the references therein). We list some main results as follows:

n∑
m=


m

– ln

(
n +




)
= γ +O

(
n–

)
(DeTemple []),

n∑
m=


m

– ln
n + 

n
 + 

 +



n + n + 


= γ +O
(
n–

)
(Mortici []),

n∑
m=


m

– ln

(
 +


n

+


n
–


n

+


,n

)

= γ +O
(
n–

)
(Chen and Mortici []).
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Recently, Mortici and Chen [] provided a very interesting sequence,

ν(n) =
n∑

m=


m

–


ln

(
n + n +




)

–
( – 



(n + n + 
 )

+


,

(n + n + 
 )

+ +


,

(n + n + 
 )

+


,

(n + n + 
 )

)
,

and proved

lim
n→∞n

(
ν(n) – γ

)
= –

,
,,

. (.)

Hence the rate of convergence of the sequence (ν(n))n∈N is n–.
Very recently, by inserting the continued fraction term in (.), Lu [] introduced a class

of sequences (rk(n))n∈N (see Theorem ) and showed


(n + )

< γ – r(n) <


n
, (.)


(n + )

< r(n) – γ <


(n – )
. (.)

In fact, Lu [] also found a without proof. In general, the continued fraction method
could provide a better approximation than others, and has less numerical computations.
First, we will prove the following theorem.

Theorem For the Euler-Mascheroni constant,we have the following convergent sequence:

r(n) =  +


+ · · · + 

n
– lnn –

a
n + an

n+ an

n+
...

,

where (a,a,a,a,a,a,a) = (  ,

 ,


 ,


 ,

,
, ,

,,
,, ,

,,,
,,, ), and ak+ = –ak

for ≤ k ≤ .
Let

Rk(n) :=
a

n + an
n+ an

n+ an

...
n+ak

(see the Appendix for their simple expressions) and

rk(n) :=
n∑

m=


m

– lnn – Rk(n).

For ≤ k ≤ , we have

lim
n→∞nk+

(
rk(n) – γ

)
= Ck , (.)
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where

(C, . . . ,C) =
(
–



,–



,



,




,–


,
,–

,
,,

,


,
,

,
,,

,

–
,

,,
,–

,,,
,,,

,
,,

,,,
,

,,,,
,,,,,

,–
,,,

,,,,

)
.

Open problem For every k ≥ , we have ak+ = –ak .

Themain aim of this paper is to improve (.) and (.).We establish the followingmore
precise inequalities.

Theorem  Let r(n), r(n), C and C be defined in Theorem , then

C


(n + )
< γ – r(n) < C


n

, (.)

C


(n + )
< r(n) – γ < C


n

. (.)

Remark  In fact, Theorem  implies that r(n) is a strictly increasing function of n,
whereas r(n) is a strictly decreasing function of n. Certainly, it has similar inequalities
for rk(n) ( ≤ k ≤ ), we leave these for readers to verify. It is also should be noted that
(.) cannot deduce the monotonicity of r(n).

Remark  It is worth to point out that Theorem  provides sharp bounds for a harmonic
sequence which are superior to Theorems  and  of Mortici and Chen [].

2 The proof of Theorem 1
The following lemma gives a method for measuring the rate of convergence. This lemma
was first used by Mortici [, ] for constructing asymptotic expansions or to accelerate
some convergences. For proof and other details, see, e.g., [].

Lemma  If the sequence (xn)n∈N is convergent to zero and there exists the limit

lim
n→+∞ns(xn – xn+) = l ∈ [–∞, +∞] (.)

with s > , then there exists the limit

lim
n→+∞ns–xn =

l
s – 

. (.)

In the sequel, we always assume n≥ .
We need to find the value a ∈ R which produces the most accurate approximation of

the form

r(n) =
n∑

m=


m

– lnn –
a
n
, (.)
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here we note R(n) = a/n. To measure the accuracy of this approximation, we usually say
that approximation (.) is better as r(n) – γ faster converges to zero. Clearly,

r(n) – r(n + ) = ln

(
 +


n

)
–


n + 

+
a

n + 
–
a
n
. (.)

It is well known that for |x| < ,

ln( + x) =
∞∑
m=

(–)m– xm

m
and


 – x

=
∞∑
m=

xm.

Developing expression (.) into power series expansion in /n, we obtain

r(n) – r(n + ) =
(


– a

)

n

+
(
a –




)

n

+
(


– a

)

n

+O
(


n

)
. (.)

FromLemma , we see that the rate of convergence of the sequence (r(n)–γ )n∈N is even
higher than the value s satisfying (.). By Lemma , we have

(i) If a �= 
 , then the rate of convergence of (r(n) – γ )n∈N is n– since

lim
n→∞n

(
r(n) – γ

)
=


– a �= .

(ii) If a = 
 , from (.) we have

r(n) – r(n + ) = –




n

+O
(


n

)
.

Hence the rate of convergence of (r(n) – γ )n∈N is n– since

lim
n→∞n

(
r(n) – γ

)
= –




.

We also observe that the fastest possible sequence (r(n))n∈N is obtained only for a = 
 .

Just as Lu [] did, we may repeat the above approach to determine a to a step by
step. However, the computations become very difficult when k ≥ . In this paper we use
Mathematica software to manipulate symbolic computations.
Let

rk(n) =
n∑

m=


m

– lnn – Rk(n), (.)

then

rk(n) – rk(n + ) = ln

(
 +


n

)
–


n + 

+ Rk(n + ) – Rk(n). (.)

It is easy to get the following power series:

ln

(
 +


n

)
–


n + 

=
∞∑
m=

(–)m
m – 
m


nm

. (.)

Hence the key step is to expand Rk(n+ ) –Rk(n) into power series in 
n . Here we use some

examples to explain our method.
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Step : For example, given a to a, find a. Define

R(n) =



n +
n


n+
– n


n+

 n

n+
–
 n

n+

 n

n+
–
 n
n+a

=
– + ,a + ,n + ,an – n + ,an + ,n

(a + an + n + an + ,an + ,n)
. (.)

By usingMathematica software (Mathematica Program is very similar to the one given
in Remark ; however, it has a parameter a), we obtain

R(n + ) – R(n)

= –


n
+


n

–


n
+


n

–


n
+


n

–

n

+
, – ,a

,n
+
–, + ,a + ,a

,n
+O

(

n

)
. (.)

Substituting (.) and (.) into (.), we get

r(n) – r(n + ) =
(
–


+
, – ,a

,

)

n

+
(




+
–, + ,a + ,a

,

)

n

+O
(


n

)
. (.)

The fastest possible sequence (r(n))n∈N is obtained only for a = ,
, . At the same time,

it follows from (.) that

r(n) – r(n + ) =
,

,,

n

+O
(


n

)
, (.)

the rate of convergence of (r(n) – γ )n∈N is n– since

lim
n→∞n

(
r(n) – γ

)
= –

,
,,

.

We can use the above approach to find ak ( ≤ k ≤ ). Unfortunately, it does not work
well for a. Since a = –a, a = –a and a = –a. So, we may conjecture a = –a. Now
let us check it carefully.
Step : Check a = –,

, to a = –,,,
,,, .

Let a, . . . ,a and R(n) be defined in Theorem . Applying Mathematica software, we
obtain

R(n + ) – R(n) = –


n
+


n

–


n
+


n

–


n
+


n

–

n

+




n

–




n

+
,
,


n

+O
(


n

)
, (.)
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which is the desired result. Substituting (.) and (.) into (.), we get

r(n) – r(n + ) = –
,
,,


n

+O
(


n

)
, (.)

the rate of convergence of (r(n) – γ )n∈N is n– since

lim
n→∞n

(
r(n) – γ

)
= –

,
,,

.

Next, we can use Step  to find a, and Step  to check a and a. It should be noted
that Theorem  will provide the other proofs for a and a. So we omit the details here.
Finally, we check a = –,,,

,,, .

R(n + ) – R(n)

= –


n
+


n

–


n
+


n

–


n
+


n

–

n

+




n

–




n

+




n

–




n

+




n

–




n

+
,,,,
,,,,


n

+O
(


n

)
. (.)

Substituting (.) and (.) into (.), one has

r(n) – r(n + ) = –
,,,
,,,,


n

+O
(


n

)
. (.)

Since

lim
n→∞n

(
r(n) – γ

)
= –

,,,
,,,,

,

thus the rate of convergence of (r(n) – γ )n∈N is n–.
This completes the proof of Theorem .

Remark  In fact, if the assertion a = –,,,
,,, holds, then the other values aj

( ≤ j ≤ ) must be true. The following Mathematica Program will generate R(n +
) – R(n) into power series in 

n with order : Normal[Series[(R[n + ] – R[n])/.
n→ /x, {x, , }]]/. x→ /n.

Remark  It is a very interesting question to find ak for k ≥ . However, it seems impos-
sible by the above method.

3 The proof of Theorem 2
Before we prove Theorem , let us give a simple inequality by the Hermite-Hadamard
inequality, which plays an important role in the proof.

Lemma  Let f be twice derivable with f ′′ continuous. If f ′′(x) > , then

∫ a+

a
f (x)dx > f (a + /). (.)
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In the sequel, the notation Pk(x) means a polynomial of degree k in x with all of its non-
zero coefficients positive, which may be different at each occurrence.
Let us begin to prove Theorem . Note r(∞) = , it is easy to see

γ – r(n) =
∞∑
m=n

(
r(m + ) – r(m)

)
=

∞∑
m=n

f (m), (.)

where

f (m) =


m + 
– ln

(
 +


m

)
– R(m + ) + R(m).

Let D = ,,,
,,, . By usingMathematica software, we have

f ′(x) +D


(x + )
= –

P(x)(x – ) + ,,,, · · ·,,
,,,x( + x)P()

 (x)P
()
 (x)

< ,

and

f ′(x) +D


(x + 
 )

=
P(x)

,,,x( + x)( + x)P()
 (x)P

()
 (x)

> .

Hence, we get the following inequalities for x≥ :

D


(x + )
< –f ′(x) <D


(x + 

 )
. (.)

Applying f (∞) = , (.) and Lemma , we get

f (m) = –
∫ ∞

m
f ′(x)dx≤D

∫ ∞

m

(
x +




)–

dx

=
D



(
m +




)–

≤ D



∫ m+

m
x– dx. (.)

From (.) and (.) we obtain

γ – r(n) ≤
∞∑
m=n

D



∫ m+

m
x– dx

=
D



∫ ∞

n
x– dx =

D



n

. (.)

Similarly, we also have

f (m) = –
∫ ∞

m
f ′(x)dx≥D

∫ ∞

m
(x + )– dx

=
D


(m + )– ≥ D



∫ m+

m+
x– dx
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and

γ – r(n) ≥
∞∑
m=n

D



∫ m+

m+
x– dx

=
D



∫ ∞

n+
x– dx =

D




(n + )
. (.)

Combining (.) and (.) completes the proof of (.).
Note r(∞) = , it is easy to deduce

r(n) – γ =
∞∑
m=n

(
r(m) – r(m + )

)
=

∞∑
m=n

g(m), (.)

where

g(m) = ln

(
 +


m

)
–


m + 

– R(m) + R(m + ).

We write D = ,,
,, . By usingMathematica software, we have

–g ′(x) –D


(x + )
=

P(x)
,,x( + x)P()

 (x)P()
 (x)

> 

and

–g ′(x) –D


(x + 
 )

= –
P(x)(x – ) + ,,,,,,,,,,

,,x( + x)( + x)P()
 (x)P()

 (x)
< .

Hence, for x ≥ ,

D


(x + )
< –g ′(x) <D


(x + 

 )
. (.)

Applying g(∞) = , (.) and (.), we get

g(m) = –
∫ ∞

m
g ′(x)dx≤D

∫ ∞

m

(
x +




)–

dx

=
D



(
m +




)–

≤ D



∫ m+

m
x– dx. (.)

It follows from (.) and (.) that

r(n) – γ ≤
∞∑
m=n

D



∫ m+

m
x– dx

=
D



∫ ∞

n
x– dx =

D



n

. (.)
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Finally,

g(m) = –
∫ ∞

m
g ′(x)dx≥D

∫ ∞

m
(x + )– dx

=
D


(m + )– ≥ D



∫ m+

m+
x– dx

and

r(n) – γ ≥
∞∑
m=n

D



∫ m+

m+
x– dx

=
D



∫ ∞

n+
x– dx =

D




(n + )
. (.)

Combining (.) and (.) completes the proof of (.).

Remark  As an example, we give Mathematica Program for the proof of the left-hand
side of (.):

(i) Together [D[f [x], {x, }] +D(x + )];
(ii) Take out the numerator P[x] of the above rational function, then manipulate the

program: Apart [P[x]/(x – )].

Appendix
For the reader’s convenience, we rewrite Rk(n) (k ≤ ) with minimal denominators as
follows.

R(n) =

n

,

R(n) =

n

–




n

,

R(n) =

n

–


( + n)
,

R(n) =

n

–


,

n

–


( + n)
,

R(n) =

n

–
( + n)

( + ,n + ,n)
,

R(n) =

n

–
,
,


n

–
,,, + ,,n

,,(, + ,n + ,n)
,

R(n) =

n

–
,,, + ,,,n + ,,,n

,(,, + ,,n + ,,n + ,,n)
,

R(n) =


n + 
,

R(n) =
 + n

( + n + n)
,

R(n) =
( + n + n)

( + n + n + ,n)
,
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R(n) =
, + ,,n + ,,n + ,,n

(, + ,n + ,n + ,n + ,n)
,

R(n) =
(

(
,, + ,,n + ,,n

+ ,,n + ,,n
))

/
(


(
,, + ,,n + ,,n

+ ,,n + ,,n + ,,n
))
,

R(n) =
(
,,,,, + ,,,,,n

+ ,,,,,n + ,,,,,n

+ ,,,,,n + ,,,,,n
)

/
(
,

(
,,,, + ,,,,n

+ ,,,,n + ,,,,n + ,,,,n

+ ,,,,n + ,,,,n
))
.
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