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Abstract. A systematic and timely monitoring of land sur- 1 Introduction

face parameters that affect the hydrological cycle at local

and global scales is of primary importance in obtaining a

better understanding of geophysical processes and in manthe number of weather-related natural disasters, such as
aging environmental resources as well as natural disasterd00ds, storms, cyclones, drought and extreme temperatures,
Soil moisture and snow water equivalent are two quantities'S dramatically increasing, resulting in human and economic
that play a major role in these applications. In this paper arlosses which strike at least one third of the world’s pop-
algorithm for hydrological purposes (called hereinafter Hy- ulation. Such disasters are primarily due to environmental
droAlgo), which is able to generate maps of snow depth (SD)change and land degradation, which are mostly caused by
and soil moisture content (SMC) from AMSR-E data, has human impact on the territory (e.g. Bates et al., 2008).

been developed and implemented within the framework of Help inbreaking this vicious cycle can be given by a more
the JAXA ADEOS-II/AMSR-E and GCOM/AMSR-2 pro- in-depth knowledge of the environment and by further study-
grams, as well as of a project of the Italian Space Agencying the temporal evolution of the distribution and extent of
that is devoted to civil protection from floods and landslides. €cosystems. In particular, a close observation of land surface
As auxiliary output, the algorithm also generates maps ofProperties can be crucial when analyzing the two fundamen-
vegetation biomass (VB). An initial phase of pre-processingt@l cycles of our planet, namely the global carbon and hydro-
includes the improvement of spatial resolution, as well aslogical cycles. In particular, the water scarcity is one the main
masking for urban areas, water bodies, and dense vegetatioRroblems, which we will have to face up to in a very near
The algorithm was then split into two branches, the first offuture. A precise evaluation of water utilization on several
which focused on the retrieval of SMC and the second, onsPatial scales (from local to regional) can be helpful for as-
SD. Both parameters were retrieved using Artificial Neural $€Ssing the waste of water due to human activities, especially
Network (ANN) methods. The algorithm was calibrated us- agricultural and industrial consumptions (Zang et al., 2012).
ing a wide set of experimental data collected on three sitesEarth observation satellites can be very useful tools in moni-
Mongolia and Australia (for SMC), and Siberia (for SD), in- toring the basic parameters that affect these cycles, in partic-
tegrated with model simulations. These results were then valular soil moisture (SMC), snow water equivalent (SWE) or
idated by comparing the algorithm outputs with experimentalSnow depth (SD), and vegetation biomass (VB). These pa-
data collected on two additional sites: a part of a watershedameters play significant roles in the distribution of water
in Northern Italy, and a large portion of Scandinavia. An ad- between blue and green, the latter being essential for agri-
ditional test of the algorithm was also performed on a largecultural purposes (Liu et al., 2009; Liu and Yang, 2010). The
scale, and included sites characterized by differing climaticPssibility of monitoring the water cycle in its various com-

and meteorological conditions. ponents is, indeed, very appealing, particularly for agricul-
tural water use. Joint efforts by the national space agencies

are currently underway towards developing a global-scale
monitoring system that features numerous satellites equipped
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with onboard sensors for global surveillance and the retrievathe country. For example, C-band data are significantly con-
of information regarding the Earth’s conditions. taminated in the US, Japan and the Middle East, so that some
Several major ongoing projects focus on estimating thealgorithms for the retrieval of SMC employ higher frequency
most important parameters of the hydrological cycle. Thesedata despite the higher sensitivity to vegetation and surface
include the AQUA/AMSR-E (Advanced Microwave Scan- roughness. In Europe, the problem is just the opposite, since
ning Radiometer for EO) of NASA (National Aeronautics X-band data have been found to be the ones most affected by
and Space Administration) and JAXA (Japan Aerospace ExRFI (Njoku et al., 2005).
ploration Agency) (Kawanishi et al., 2003), the ESA Soil  Several approaches for the retrieval of SMC from single
Moisture and Salinity Mission (SMOS) (Kerr et al., 2010), or multifrequency radiometric data have been investigated in
as well as the future Soil Moisture Active Passive (SMAP) previous studies. Most of these studies (Njoku et al., 2000,
of NASA (Edelstein et al., 2010), which is the follow-up 2003; Jackson, 1993; Wigneron et al., 1995; Njoku and Li,
to an initial project called Hydros, and the Global Change 1999; Jackson et al., 2002; Paloscia et al., 2006; Paloscia
Observation Mission—Water (GCOM-W/AMSR-2) of JAXA et al., 2001; Owe et al., 2001) are based on the inversion
(Shimoda, 2009). An interesting survey of these projectsof the so-called tau-omega model (Mo et al., 1982) by us-
was published in a recent Special Issue of PIEEE (Tsandng an iterative minimization of the root mean square er-
and Jackson, 2010). In Italy, the PROSA (Products of Earthror between model simulations and measurements, and dif-
Observation for the Meteorological Alert) national project, fer primarily in the methods used to correct the effects of
funded by the Italian Space Agency (ASI), aimed to con-soil roughness, texture, vegetation, and surface temperature.
tribute to civil protection from floods and landslides by de- For example, in the National Snow and Ice Data Centre (NS-
veloping a series of products derived from microwave andDIC) algorithm (Njoku et al., 2003), correction for the ef-
optical satellite sensors (Pettinato et al., 2009). During sucHects of surface roughness is based on an empirical formu-
emergencies, these products enable immediate assessméaaion that relates the reflectivity of a rough soil surface to
of the areas at risk, and/or provide support in the decisionthat of the equivalent smooth surface (Wang and Choudhury,
making process regarding relief and clean-up operations1981). The retrieval methodology used in the Land Surface
Generations of real time SMC and SD maps from passiveParameter Model (LPRM) (Owe et al., 2001, 2008) is a hon-
microwave sensors are the key outputs of this project. linear iterative procedure in a forward modeling approach,
Research enabling the retrieval of SMC and SD from sin-which solves the canopy optical depth by using an analyti-
gle or multifrequency radiometric data dates back to thecal approach, partitions the surface emission into the soil and
late 1970’s, when several investigations indicated microwavethe canopy emission, and then optimizes the soil dielectric
emission sensitivity to SMC and SWE (e.g. Njoku and Kong, constant. Measurement errors, and several other sources of
1977; Ulaby and Stiles, 1980; Hofer andaktler, 1980; uncertainty that affect the accuracy of a theoretical retrieval
Shutko, 1982; Jackson et al., 1982; Chang et al., 1982). Albased on the tau-omega model, are assessed in Davenport et
though microwave radiometers from space have a coarsal. (2005). The two technigues used to retrieve SMC from
ground resolution, they are able to produce daily maps ofAMSR-E data that are described in Njoku et al. (2003) and
brightness temperatur&y), which can then be converted to Owe et al. (2008) were compared in Wagner et al. (2007a).
SMC and SD by using appropriate inversion algorithms (e.g.The authors found that the National Snow and Ice Data Cen-
Shibata et al., 2003; Njoku et al., 2003; Kelly et al., 2003). ter (NSIDC) product (Njoku et al., 2003) provided a weaker
Measurements at frequencies between 1 and 3 GHz (lperformance than the LPRM, and suggested that the NSIDC
band) are best suited for SMC detection, because energglgorithm is not able to describe the effects of vegetation
is emitted from a deeper soil layer and less energy is atand/or surface temperature properly.
tenuated by vegetation (e.g. Shutko, 1982; Paloscia et al., A powerful alternative method for retrieving SMC is based
1993). The SMOS mission, which is specifically dedicatedon the Artificial Neural Network (ANN). ANN, especially if
to the estimating of SMC, is currently operating at 1.4 GHz combined with the use of an electromagnetic model, can be a
(Barre et al., 2008). However, there is potential in retrieving very useful tool for inversion in Remote Sensing, especially
SMC from space-borne instruments at higher frequencies, aghen real-time estimates are needed. An ANN is an inter-
demonstrated in over ten years of research on the sensitivitgonnection of processing elements (nodes) that are organized
of emission at C-band (which is the lowest frequency channeinto a sequence of fully connected layers. Each node calcu-
available from AMSR-E) to moisture of low vegetated soils lates a weighted sum of inputs, and then transmits its function
(e.g. Vinnikov et al., 1999; Jackson and Hsu, 2001; Macel-value to other nodes. There are two main phases in the oper-
loni et al., 2003). This higher frequency band has the advanation of a network. In the first training phase, the connection
tage of being less affected by the Radio Frequency Interferweights are adapted in response to the training data presented
ences (RFI), which may severely limit the proper functioning at the inputs and to the desired response at the output layer.
of L-band systems (Skou et al., 2010; Balling et al., 2010).The response of the output layer is then obtained in the sec-
RFI can be a serious problem, especially on densely popuend validation phase, during which the performance of the
lated areas, as it affects different frequencies depending otrained ANN is also assessed. The training of the ANN can
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be carried out with model simulations, experimental data, orthe emission from a snowpack by using a Dense Medium
a combination of the two. In the past ten years, ANNs haveRadiative Transfer Model (Tsang et al., 2000). Compared
been applied in several studies for the retrieval of SMC fromwith static approaches, this dynamic algorithm tends to es-
radiometric data (e.g. Liou et al., 2001, Liu et al., 2002; Del timate SD with greater root mean squared error, but lower
Frate et al., 2003; Jiang and Cotton, 2004; Angiuli et al., mean error. The potential of ANNSs in retrieving snow param-
2008; Chai et al., 2010). In general, the most widely usedeters was evaluated in (Tsang et al., 1992; Davis et al., 1993;
topology is based on multilayer perceptrons with two or moreTedesco et al., 2004), while a novel approach to improving
hidden layers with a nonlinear activation function and a backits accuracy in SWE retrieval by assimilating satellite radio-
propagation learning rule. A newly developed learning back-metric data and ground-based observations was introduced in
propagation neural network trained with simulated data wasPulliainen (2006).
used to retrieve SMC from microwadg at L, C and X-band Vegetation cover is both the most important disturbing fac-
(Liou et al., 2001; Liu et al., 2002). Del Frate et al. (2003) tor in reducing the sensitivity of,, to SMC and SD and an
used two neural network algorithms trained by a physicaladditional target for land hydrology. Thus, the estimation of
vegetation model to retrieve SMC and vegetation variablesvegetation biomass (VB) so as to correct for the effect of low
of wheat canopies throughout the entire crop cycle. A simi-vegetation in the retrieval of SMC and snow cover, or to mask
lar approach was used in Angiuli et al. (2008). More recently,densely vegetated areas where the retrieval is impossible, has
Chai et al. (2010) developed a novel approach based on aled to the generation of vegetation maps as a useful byprod-
ANN with two inputs, one hidden layer of 20 neurons, and uct. One very effective index for characterizing vegetation
one output, to predict SMC at a 1-km resolution on differentbiomass, and in particular the Plant Water Content (PWC,
dates. Good reviews of the potential of SMC retrieval algo-i.e. the total amount of vegetation water per square meter),
rithms for hydrological applications are given in Wigneron et independently of the characteristics of the individual plant,
al. (2003), Wagner et al. (2007b). is the Polarization Index, as defined in (Paloscia and Pam-
While the retrieval of SMC is based on low frequency paloni, 1988; Becker and Choudhury, 1988) and tested on a
channels, detection of SD requires the use of higher frequenglobal scale in several works (e.g. Owe et al., 2008; Choud-
cies (Kelly et al., 2003; Chang et al., 1987; Hallikainen and hury, 1989; Paloscia, 1995; Wang and Choudhury, 1995).
Jolma, 1992; Rott and Nagler, 1995; Jin, 1997; Goodison andther indexes capable of characterizing the VB of agricul-
Walker, 1995; Grody and Basist, 1996; Hall et al., 2001; Pul-tural fields on local and global scales were also assessed in
liainen and Hallikainen, 2001; Tsang et al., 1992; Davis et al.,(Macelloni et al., 2003; Paloscia and Pampaloni, 1992). In
1993; Tedesco et al., 2004; Pulliainen, 2006). Indeed, previforests, the situation is more complex: indeed, although the
ous research has pointed out that the Frequency Index (Flfjrst studies of microwave emission from forests date back to
i.e. the difference between the low (18/19 GHz) and highthe mid 1970’s (Borodin et al., 1976), the retrieval of SMC
(35/37 GHz) frequenc¥},, may be related to the SWE or SD and SD under trees continues to pose a challenge. Specific
(Chang et al., 1982; Kelly et al., 2003; Chang et al., 1987).studies of transmissivity of forest canopies were described
For example: good results for SWE retrieval were obtained inin (Pampaloni, 2004; Hallikainen et al., 1988; Calvet et al.,
Finland by adding the X-band channel of the Scanning Multi- 1994; Kurvonen et al., 1998; Kruopis et al., 1999; Pulliainen
channel Microwave Radiometer (SMMR) and performing a et al., 1999; Santi et al., 2009).
correlation analysis for 17 different brightness temperature In this paper, the proposed algorithm, HydroAlgo, which
functions, each of which involved one or several frequen-focuses on estimating the SD and SMC of bare or weakly
cies and polarizations (Hallikainen and Jolma, 1992). Thevegetated soils, has been implemented and validated within
85 GHz channel was added in the algorithms developed irthe framework of both JAXA and ASI (Italian Space Agency)
Rott and Nagler (1995) and Jin (1997) in order to monitor pre-operational programs. This novel algorithm, which also
shallow snow from the Special Sensor Microwave Imagergenerates maps of vegetation cover/biomass as an auxiliary
(SSM/I) data, while a vertically polarizetl, gradient ratio  product, has been optimized by using data from the AMSR-E
algorithm was developed in Canada (Goodison and Walkersensor and is able to produce daily maps at a spatial resolu-
1995). A SWE regression algorithm based on spectral andion comparable to the one of the 37 GHz frequency channel
polarization differences was proposed in Hall et al. (2001)of this sensor (10 km). However, its use can be extended to
and tested in Skou et al. (2010). other sensors operating in similar frequency channels and, in
All of these approaches generally assumed that the averaggarticular, to AMSR-2 onboard GCOM-W, which will be the
snow density and grain size did not change over time. How-heir to the AMSR-E on AQUA. The snow product can also
ever, changes in these quantities can also affect the differendee generated by using SSM/I data, although obtaining a de-
between low and high frequend. A dynamic approach crease in spatial resolution and retrieval accuracy. The short
to retrieving global SD estimation is presented in Kelly et operational time of the algorithm was considered a major
al. (2003). The algorithm is still based on FI, and adjusts thefeature for operational services generating real-time maps.
dimensional coefficient (cm®) to retrieve SD by predict-  Thus, the retrieval procedures for estimating the surface pa-
ing how the grain size and snow density might vary and affectrameters from microwave data are based on ANN methods,
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which offer the best compromise between retrieval accuracyof Ty, from C- to Ka-band and the corresponding SMC mea-
and processing time for SMC and SD estimates. surements in the range from 0.08m—23 to ~ 0.40 M m—3
The algorithm has been developed and calibrated on theol. under different vegetation conditions.
basis of very large sets of experimental data acquired on An area for validating the SMC product in Northern Italy
three test areas in Mongolia, Australia and Siberia within thewas selected on the Scrivia watershed. The area is located
framework of the JAXA ADEOS-II/AMSR-E and GCOM- in northwestern Italy, close to the town of Alessandria. Itis a
W/AMSR-2 programs. The validation was then carried out flat alluvial agricultural area of 100 100 kn? that is crossed
by comparing the satellite-generated outputs with experiby many important rivers (Po, Tanaro, Scrivia, Bormida),
mental data collected on different test areas, including Norththus subjecting the area to frequent flood events. This loca-
ern Italy and four areas in US (for soil moisture) and Scandi-tion is characterized by large agricultural fields cropped with
navia (for snow). wheat, corn, and potatoes. Several ground campaigns were
This paper is organized as follows: Sect. 2 summarizescarried out in some selected subareas in order to collect veg-
the characteristics of the test sites and datasets used for thegation and soil parameters (crop type, plant height and den-
development and validation of the algorithm, Section 3 de-sity, biomass, SMC, and surface roughness). The volumetric
scribes the HydroAlgo algorithm, which is then validated in SMC (in cn? cm~3) was measured by using portable TDR
Sect. 4. Section 5 includes several examples of applicationprobes for a surface average soil layer 10-15cm in depth.
at global scale, while Sect. 6 provides a summary and a fewsurface roughness was measured (along and across rows) by
concluding remarks. using a 4 m needle profilometer, the digitalized soil profiles
of which were processed to retrieve the height standard devi-
ation and the correlation length of the surface. In this area,
2 Study sites and datasets for algorithm development AMSR-E images were gathered in different seasons from
and validation November 2003 to June 2009. In this case, ground measure-
ments sampled over an area of Q0 kn? were compared
The development, testing, and validation of the algorittmwith the output of the algorithm for a pixel centered ori A6
made use of large sets of experimental data that wer@&nd 8.88E.

acquired on different test sites. Four experimental watersheds of the Agricultural Re-
search Service (ARS) in US were selected for a further test
2.1 Soil moisture of the algorithm. Ground SMC data to be compared with

AMSR-E data were kindly provided by Dr. Tom Jackson.
An extensive experimental dataset used for the developThese watersheds are well-instrumented with multiple sur-
ment of the SMC algorithm was kindly provided by JAXA. face SMC and temperature sensors and have been the core
This dataset consisted of two years of AMSR-E acquisi-sites for several AMSR-E validation campaigns. Overall,
tions, from 1 January 2003 to 31 December 2004, regardthey represent a wide range of ground conditions and pre-
ing two test sites located in Mongolia and Australia. The cipitation regimes. The test areas are the following: Little
Australian test area (Central coordinates: Lat. 353,0.on.  Washita (OK) (610 krf), which was dominated by the pres-
147.70 E) was characterized by low to moderate vegetationence of rangeland and pastures; Little River (GA) (334km
conditions, with a marked seasonal vegetation cycle. Insteadyhich was heavily vegetated (forests, croplands, and pas-
the Mongolia site (Lat. 46.23, Lon. 106.75E) was typi-  ture); Walnut Gulch (AZ) (148 k), which was a brush-
fied by semi-arid conditions, with sparse vegetation and theand grass-covered area characterized by a semi-arid climate;
presence of snow in winter. Both sites covered an area oReynolds Creek (ID) (238 ki was instead a rangeland area,
approximately 120 knx 120 km, which corresponded to at with snow- dominated precipitation (Jackson et al., 2010).
least 100 AMSR-E acquisitions. These acquisitions were co- An additional test area {620° N, 16°©—17 E) was identi-
located with direct measurements of volumetric SMC de-fied in a wide portion of Africa, from the Sahara desert to
rived from an automatic network of TDR probes, for a total the Equatorial forest, which includes a very high variabil-
of 18 sampling points in Australia and 15 sampling pointsity of vegetation types and landscape. This area was used
in Mongolia (CEOP, Coordinated Enhanced Observing Pefor checking the capabilities of Polarization Index at X band
riod: http://www.ceop.ngt SMC over a surface layer 3—4 cm (Ply) in identifying vegetation cover and biomass (VB) and
deep was sampled every 30—60 min, together with the soiby comparing its performances with those of NDVI. Data
surface temperature. However, only the measurements cokollected over this region with AMSR-E and SPOT4 in dif-
lected simultaneously with the AMSR-E overpasses wereferent seasonal periods have been analyzed. Africa was cho-
considered in the dataset. For each test area, all the AMSRsen also due to the availability of large homogeneous regions
E acquisitions (both ascending and descending orbits) anthat are compatible with the coarse ground resolution of the
the corresponding SMC measurements, recorded withih microwave sensor.
from the satellite acquisition, were averaged daily. The re-
sulting dataset was composed of about 3000 measurements
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2.2 Snow 3 Description of the algorithm

As in the case of Mongolia, JAXA provided significant In the HydroAlgo algorithm, the retrieval of SMC is mainly
collection of data for developing the SD Algorithm. The based on the low frequency C-band channel, together with
dataset was composed of co-located AMSR-E acquisitionsX-, Ku-, and Ka-band, while a combination of only high-
and hourly ground measurements of SD and air temperaturéequency (X-, Ku-, and Ka-bands) data enables the retrieval
provided by 7 stations located in the eastern part of Siberiaof SD. As a secondary quantity, the Vegetation Biomass (VB)
The stations were dislocated in order to cover a flat area ofs also obtained by means of the X-band Polarization Index
about 20in latitude, 4% in longitude, at an average altitude (Plx). VB is expressed as the Plant Water Content (PWC, in
of 300 ma.s.l., and characterized by low vegetation. In thiskg m—2), a parameter that is closely related to total biomass
region, snow is generally present from the beginning of Oc-and physically influences microwave emission (Macelloni et
tober to the end of May, with a depth that does not exceedl., 2003; Paloscia and Pampaloni, 1992). The flowchart of
50 cm. The average air temperature ranges freB0°C in the algorithm is shown in Fig. 1.

winter to 20°C in summer. The acquired dataset covered 7 The algorithm presents the results on three different maps,
winter seasons, from October 2002 to May 2009, with a sig-one for each quantity. However, the retrieval of SMC and SD
nificant lack of data for the 2008—2009 winter. cannot be carried out beneath forest and dense vegetation,

The dataset was obtained by considering all the AMSR-due to the high attenuation of soil emission caused by the
E acquisitions from C- to Ka-band, with the footprint center overlaying cover. Moreover, snow cover also hampers the es-
within a radius of 10 km from the coordinates of each station.timate of the SMC below it. Thus, the output of VB is used to
These data were combined with the ground measurementgxclude the regions covered by dense vegetation in the SMC
which were recorded withie:1 h from the satellite acquisi- and SD maps, while the areas covered by snow are obscured
tion. After filtering the no data and no snow values, a datasetn the SMC maps. In addition, VB maps are also used to cor-
was obtained that included 17 000 valuesrpfat all bands rect the retrieval of SMC of poorly-vegetated soils, as de-
and the associated direct measurements of SD and air tenscribed in greater detail later in this section.
perature. On this relatively small area, a further averaging of
the 10-15 AMSR-E acquisitions, collected daily, as well as 1. Extraction of 7;, collected over the areas of interest
the corresponding ground measurements, was carried out in ~ from the Hierarchical Data Format (HDF) files deliv-
order to obtain daily mean values representative of the whole ~ €red by National Snow and Ice Data Center (NSIDC)
test area. This operation resulted in an averaged dataset of ~and containing the calibrated and geocoded acquisitions
about 1500 samples, in which the radiometric data displayed ~ of AMSR-E from AQUA satellite (Level 2 data) at C-,
certain sensitivity to the snow parameters. X-, Ku- and Ka-band in both polarizations (H, V).

The test area used for validating the snow-depth
retrieval was a region of about 260200kn? lo-
cated between Finland and Norway that contains the
meteorological stations of Kautokeino (Lat. °69' N
Lon. 2304 E), Sodankyla (Finland — Lat. 624 N,
Lon. 2635 E), Muonio (Finland — Lat. 658 N, Lon.
23?40 E), and Pajala (Sweden — Lat. @6 N, Lon.

2¥22'E). This area, which was selected by using 3. Application of the multisensor image fusion procedure

2. Check of data for possible miscalibration (Paloscia et
al., 2006) and for the presence of the Radio Frequency
Interference (RFI) at C- and X-bands. The check for RFI
was carried out using a simple threshold method (Njoku
et al., 2005) at both C- and X-bands, and all data over
this threshold were eliminated from the dataset.

the Ecoclimap databasét(p://www.cnrm.meteo.frigmme/ to enhance the spatial resolution of the low frequency
PROJETS/ECOCLIMAP/pagecoclimap.htjy has an alti- channels and to reduce the effect of mixed pixels.
tude varying between 200 and 600 ma.s.I. and consists of  This procedure, which is based on the SFIM (Smooth-
tundra for more than 60% of its surface with evergreen  ing Filter-base Intensity Modulation) technique (Santi,
forests and several water bodies in the remaining 40 %. 2010; Liu, 2000), is aimed at increasing the resolution

The AMSR-E acquisitions, which were collected during of C- and X-bands up to values close to the sampling

the 2002-2003 and 2003-2004 winters, were related to the  rate (i.e. 10 kmx 10 km) by means of the higher resolu-

SD measured by the stations. The ground measurements of  tion Ka band channel.

SD were derived from the Russian archivésty://meteo.

infospace.rii For both winters, snow was present from the 4. Computation of the Ri, which is to be used for estimat-

end of October to the middle of May, with the depth reaching ing vegetation biomass and is defined as follows:

60—70 cm. The resulting dataset was made up of more than

400 daily AMSR-E measurements and the correspondindDIX = 2(Tovx — Torx)/ (Tovx + TbHx) @)

ground data. whereTpyx and Tpyx are the brightness temperatures at X
band at V and H polarizations, respectively.
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With this index it is possible to separate deserts and After this joint initial process, the algorithm is split into
poorly-vegetated areas, where SMC can be estimated, frotwo main parts, which generate the output products of
forests and dense vegetation regions, where retrieval is unSMC and SD.
realistic due to the high attenuation induced by vegetation Along with the maps of SMC and SD, a reliability index
material. The ability of the polarization index to estimate of each output product is computed. This index accounts for
the vegetation optical depth and to identify different levels the percentage of bad input data (including those affected by
of biomass, already established in past research carried olRFI) and the estimate of output parameters outside the es-
on agricultural fields (Choudhury, 1989; Paloscia and Pam-+ablished range. When inputs outside the range considered
paloni, 1992; Paloscia, 1995; Wang and Choudhury, 1995)for training are presented to the ANN, the latter is unable to
is due to the depolarization of the soil emission, which is predict the right output and answers with an “outlier”, i.e. an
based on the amount of vegetation overlaying soil. This effecestimate that falls outside the range of values considered in
is particularly evident at X band, which is consequently thethe training phase. An evaluation of the consistency of the
most suitable frequency for quantifying vegetation biomassoutput product can therefore be done by accounting for the
and was also used in this paper to correct the effect of lowpercentage of outliers. This reliability index is listed in the
vegetation on the SMC estimate. It should be noted that Pl header file associated with each output.
is also sensitive to SMC, although the effect of vegetation
is clearly dominant (Njoku et al., 2003; Choudhury, 1989; 3.1 Estimate of soil moisture content (SMC)

Paloscia and Pampaloni, 1992).

The Pk performances were tested on a wide portion
of Africa, from the Sahara desert to the Equatorial for-
est, an area which includes a very high variability of veg-
etation types and landscape. On this area, the PWC (i

The estimate of SMC is based on an Atrtificial Neural Net-
work (ANN) algorithm trained with both experimental and

simulated data. The basic microwave measurement igithe
@t C band, i.e. the lowest AMSR-E frequency, in order to
kgm~2) computed from AMSR-E R (Paloscia and Pam- minimize the vegetation attenuation. The use of vertical po-
paloni, 1988) was compared with the PWC values derived@rization at the nominal incidence angle of AMSR-E {53
from NDVI thanks to the relationship established by Jack-close to Brewster angle) guarantees a relative independence
son et al. (2004). Although the latter relationship was ini- {© the soil surface roughness (e.g. Schwank et al., 2010).
tially developed for cormn and soybean vegetation, it has bee,l]\llo_reover, a (_:Ios_er look at the experimental data reveals that
found to be valid for other types of vegetation, too (Palos- /b in H polarization appears to be less related to SMC than
cia et al., 2011). NDVI data, which were obtained from V polarization, probably due to the greater influence of the
http://free.vgt.vito.be/home.phms resulting from 10 days Surface features. Figure 3 representsfiheneasurements in

of SPOT4 acquisitions, were resampled at a 10«0 km both H and V polarizations for the entire available dataset.
resolution and compared with the corresponding 10 days ofl "€ computed regression equations are

AMSR-E acquisitions, in both ascending and descending or-, 2

bits, for November 2003, April 2004, June 2004, and Jan—TbV = —76.5SMC+ 29031K(R" = 0.56) (32)
uary 2005, in order to be representative of the whole seasonat,,, — —20.96SMC+ 25911K(R? = 0.03). (3b)
cycle.

The result of this comparison is shown in Fig. 2, and the Additional parameters include:

relationship obtained is o
— The AMSR-ET}, at X-band (H and V polarizations) for

PWGpix = 1.04PWGpvi +0.14, 2 computing Pk and correcting for the effect of low veg-
etation on soil emission.

with a determination coefficient,R2=0.92, and a o ]
RMSE=0.63 kg nr2. — The T}, at Ka-band, V polarization, used to normalize

for the daily and seasonal variation of the surface tem-

used to produce vegetation maps on a global scale by sep- perature, due to its strong rela_ltionship with the Ia_tter pa-
arating 3—4 levels of biomass without any need of further ~ rameter (Owe and Van De Griend, 2001; Paloscia et al.,

information from other sensors. 2006).

According to this result, the RIcan then be legitimately

5. Masking of the area where the parameters cannot be rel ' ANN used has a feed-forward multilayer perceptron

liably estimated: deserts, dense vegetation for SMC andMLP) configuration, with a certain number of hidden lay-
SD, and snow cover for SMC. This process is performed®'s of neurons between the input and the output. In MLPs,

by using Pk for dense vegetation (Rl< 0.05), with the successive layers of neurons are fully interconnected, with

map of snow cover extent being generated by the a|go_trainablg connection weights that control the strength of the
rithm itself. connections. MLP ANNSs can be trained to represent arbi-
trary input-output relations (Hornik, 1989; Linden and Kin-

derman, 1989). The trained ANN can be considered to be
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Fig. 1. Flowchart of the HydroAlgo algorithm for estimating both
snow depth (SD) and soil moisture (SMC). Fig. 2. The Plant Water Content (PWC, in kg*r%) estimated from

the X-band Polarization index, compared to the PWC estimated
from NDVI, for a large area in Africa (0—2(N/16°-17 E). The

. . . line represents the regression equation.
a type of nonlinear, least-mean-square-interpolation formula

for the discrete set of data points in the training set. The algo-
rithm chosen for the training phase was the back-propagation
learning rule, which is an iterative gradient descent algorithm
that is designed to minimize the mean square error betweer
the desired target vectors and the actual output vectors. 1 290 -
should be noted that the gradient-descent method sometime 270 -
suffers from slow convergence, due to the presence of one ol
more local minima, which may also affect the final result of

the training. In order to overcome this problem, the training

was repeated several times, with a resetting of the initial con-
ditions and a verification that each training process led to the® 190 -

=
2
S 230 -
=
Q
-
[+

same convergence results in termsk8fand RMSE, by in- 170 -

creasing it until negligible improvements were obtained. This ., ‘ . ‘ .

was done in order to define the minimal ANN architecture ca- 0 10 20 30 40 50
pable of providing an adequate fit for the training data, so as Soil Moisture Content {% vol.)

to prevent overfitting problems. Overfitting is related to the Fig. 3. The brightness temperature, measured at C-band (in V

OverSIng_ of the AN.N’ .and may cau;e Con.SIderabIe. errorsand H pol.) in Australian and Mongolian test sites as a function of
when testing ANN with input data that is not included in the |, metric SMC (Mm=3).

training set. In order to define the optimal ANN architecture,
after the training phase, the ANN was tested using data not
included in the training set, and the training and testing re-
sults were then compared. The ANN configuration was thenndicate the vegetation seasonal cycle of the Australian site,
increased, until the ANN architecture was found to have aas is shown for example for one of the ground stations in
negligible improvement in the training and a worsening in the site (ADELONGROCHEDALE station, Lat. 35.37S,
the test results. A configuration with two hidden layers of tenLon. 148.08 E) (Fig. 4), whereas the semi-arid region of
perceptrons each was finally chosen as the optimal one.  Mongolia did not show any significant periodic variation.
On both these sites, thg, at C-band, in V polarization

ANN training and test and at incidence angte 50°, showed a noticeable sensitiv-

ity to SMC (see Fig. 3). The data spread indicates that the
The training of the ANN was carried out by using the exten- effect of other factors was important, and that it undoubtedly
sive experimental dataset available on the Mongolia and Ausplays a major role among those types of vegetation. On the
tralia sites, integrated by model simulationsk Rlas able to  other hand, the R, used as input of the ANN, performs the
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Fig. 6. Experimental (red) and simulated (blug) data (V pol.) of
the whole dataset (Australia and Mongolia) as a function of SMC,
in m3m=3 (top: C-band; bottom: Ka band).

\ ‘ \ ‘ \ \ ‘ Table 1. Comparison between measured and estimated averaged
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

values of SMC (in rﬁm_s) for the Scrivia test area at different
Taux dates.
Fig. 5. Ply, derived from the AMSR-E measurements, as a func- -
tion of the optical depth estimated by using the Nelder—-Mead inver- SMC measu;ed SMC (3est|m3ated
sion method. The obtained regression is; P111.18 exp 3.12r) Dates (Mm=3) (m>m™=)
2_
(R®=0.99). 07 November 2003 0.293 0.295
04 June 2004 0.204 0.175
31 March 2008 0.236 0.231
correction for vegetation effects through its correlation to the 24 April 2008 0.298 0.244
optical depth. 01 July 2008 0.244 0.198
In order to increase the amount of data for the training 30 September 2008 0.143 0.135
and testing processes, the experimental dataset described 29 May 2009 0.237 0.199

above was enlarged with simulated data by using the Ra- 18 June 2009 0.228 0.182

diative Transfer Theory in the formulation of the tau-omega

model. Model simulations performed at all the frequen-

cies and polarizations considered were iterated by randomlyand the range of the other two inputs required by the model,
varying the input values of SMC and surface temperature namely the optical depthc{ and the equivalent single scat-
Ts, in a reasonable range of expected values (i.e. SMC fromtering albedod), was set so as to assure consistency between
0.05mm~3 to 0.5nPm~3, and 7s from 275K to 320K).  the model simulations and the experimental data.

The lower threshold of 275 K was selected in order to elim-  Since no direct measurements of vegetation were included
inate frozen soils. The effect due to surface roughness was the dataset, the values efand w were estimated from
taken into account by including in the ANN training Bt  the experimental data by using a direct minimization method.
data corresponding to different surface roughness conditionsThis was done by searching for a coupleroandw values

In the end, a dataset of 10000 simulated valuegipofvas  that would minimize the RMS error between tlfig simu-
generated. The dielectric constant was derived from the inpulated for each measured SMC value and the corresponding
of SMC by means of the model from Dobson et al. (1985), AMSR-E acquisition.
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045 Table 2. Statistical parameters of the relationships between mea-
Y=l e sured and estimated averaged values of SMC imm?) for each

040 1 ARS test area and for both ascending (top) and descending (bottom)
o orbits.
TE 035
i Ascending Orbits ~ R?> RMSE  BIAS
% Little Washita 0.37 0.046 —0.006
0 e Walnut Guich 030  0.019 —0.0003
% 5t Little River 0.28 0.043 0.017
E River Creek 0.52  0.039 0.011
@ 015 Descending Orbits k2 RMSE  BIAS

010 Little Washita 0.33 0.048 —0.008

Walnut Guich 0.26 0.020 0.0011
0.05 1 Little River 0.36 0.039  0.0021
- River Creek 0.29  0.065 0.022

000 005 010 015 020 025 030 035 040 045

measured SMC (m3/m?) .
between the average valueswff) andw(f) of the entire

Fig. 7. SMC estimated by using the ANN algorithm as a function of dataset and the frequency are shown in the following equa-

SMC measured on ground for the part of Australian and Mongoliantions

dataset not used for training.

7(f) = 0.0388f + 0.08(R? = 0.98) (5)

_ 2 _

The minimization was implemented through the Nelder—w(f) =0.0011f +0.0414R" =039 )

Mead simplex algorithm (Nelder and Mead, 1965), which is where f is the frequency in GHz.

a popular search method for multidimensional unconstrained The reliability of this inversion method in estimatingyal-

minimization. ues was verified by representing the polarization index at X-
In this case, the Cost Function (CF) to be minimized by hand (Pk) derived from the AMSR-E as a function of(at
varyingt andw was the same frequency) estimated as above by using the Nelder—
2 Mead inversion.
CHr, )= sqrt[(Tme(f)) — Tovs(f) The relationship obtained is shown in Fig. 5 and in the

+(Torm(f) — Tons(/)?] () following Eq.(7)

Plx = 11.18exg—3.12r)(R? = 0.99) (7)
where:

which is in agreement with the results found in Paloscia and
— Tovm(f) andToum(f) are theT, measured at thé fre- Pampaloni (1988).
quency (from C- to Ka-band). Once the relationships (4—7) were assessed, the tau-omega

— Thvs(f) and Tous(f) are the outputs of the tau-omega model was iterated 10 000 times with the following random

model for each measured value of SMC and surfacePUts:

temperature, which were obtained by varying thend — SMC between 0.058m=23 and 0.5mm—3 — dielec-
w values until the minimum of the above function was tric constant> surface reflectivity.
reached.

— Surface temperature between 275K and 320 K.
The above procedure was repeated for égotouple (V and

H pol.) of the experimental dataset, thus enabling us to as- — T (C-band) between 0.16 and 1z at higher frequen-
sociate the estimated valuesofndw with each AMSR-E cies computed from Eq. (5).

acquisition and to establish empirical relationships between
these two quantities and the frequency.

For the dataset considered, thealues obtained at C-band
ranged between 0.16 and 1.1, while the correspondingl- The results of these iterations, combined with the experi-
ues were between 0.03 and 0.08. The variation ahd w mental data, are shown in Fig. 6, whefigat C- (top) and
with the frequency was also investigated, in order to estabKa- (bottom) bands (V pol.) are represented as a function
lish empirical relationships for deriving their values at fre- of SMC, within the variability of the surface parameters,
quencies higher than C band. For example, the relationshipas assumed above.

— w(C-band) between 0.03 and 0.@8at higher frequen-
cies computed from the one at C-band.
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Fig. 8. Temporal trends of}, at X-, Ku- and Ka- bands and the corresponding snow depth (SD, in cm) measurements obtained for the Siberia
dataset from 2002 to 2009.
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Fig. 9. Estimated vs. ground measured SD for the Siberian test aredrig. 10.Estimated vs. ground measured SD for the test area in Scan-
dinavia (Kautokeino, Sodankyla, Muonio and Pajala stations).

The training of the ANN was carried out by using half
(6500) of all these experimental and simulated data. The te

performed on the second half of the experimental data proyyg estimate of SD was likewise carried out by means of a

duced the diagram of Fig. 7, in which the soil moisture esti- o004 ANN, trained with an extensive set of experimental
mated by the algorithm (SMéy is compared with the Soil - a5 (siberian dataset) and kindly provided by JAXA. The
moisture measured on the ground (Sites.- The regression AN used had the same basic characteristics (e.g. type and
equation is training procedures) as the ones used for SMC retrieval. The
key frequency channels in detecting the presence of snow on
SMCest= 0.76SMGneas+ 4.98 (8)  ground and its depth or water equivalent were at Ku- and Ka-
band (V and H polarizations) (Chang et al., 1982; Kelly et
with  a R?=0.8, RMSE=0.035nfm=3, and al., 2003). Moreover, X-band data were also considered, due

Sfti.z Estimate of Snow Depth

BIAS =0.02n¥ m=3, to a certain sensitivity to SD demonstrated by this frequency.
This result can be considered to be the main test of thelThus, all three of these frequencies were used for implement-
algorithm’s performances in estimating SMC. ing the ANN algorithm.
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SMC map 27-11-2003 A direct correlation betweef, at Ka-, X-, and Ku-band and
SD resulted in the following relationships
Thy, = —0.50SD+ 14934  (R?=0.07) (11)
The,y = —0.44SD+ 25655  (R?=0.35) (12)
Thyoy = —1.44SD+ 25586 (R =0.69) (13)

where V is the polarization and Ku (or Ka or X) is the fre-
guency band considered.

No model simulations were added to the training of the
ANN, due to the very large extent of the database. The
training of the ANN was carried out by using half of all these
experimental data. The test performed on the second half of
the dataset produced the diagram in Fig. 9, in which the SD
estimated by the algorithm (SE) is compared with the SD
measured on the ground (§E49. The regression equation
is

SDest= 0.78SDeas+ 5.97 (14)

with a RZ = 0.79, RMSE=5.54cm, and BIAS=0.059 cm.
Also in this case, the result can be considered to be the main
Water 0.05 0.10 020 0.30 0.40 Dense Veg test for the performances of the algorithm in estimating SD.

Fig. 11. SMC maps generated by using HydroAlgo in North-
ern ltaly. Maps were carried out on 27 November 2003 and on4 Validation
4 June 2004. Black circles indicate the ground truth data area.
Validation of the algorithm was carried out on some test ar-
eas in Europe and the US, where ground measurements were
Since the ANN is not able to separate snow cover fromavailable. One area was located in Northern Italy (approx-
snow-free areas, we used a Frequency Index (FI) as a threskmately 100x 100 knf) and four others of smaller dimen-

old indicator of snow presence, expressed as follows sions in the US, for SMC. Moreover, a further area in Scan-
dinavia (200x 100200 knd) was chosen for SD validation.
FI = [(Toxuwy — Tokay) + (Tokun — Tokar)1/2 (®)  This validation procedure was also useful in evaluating the

where V and H are the polarizations, and Ku and Ka are the’ erformance of HydroAlgo at different spatial scales.

frequencies considered.
The analysis of the experimental data collected in the

Siberian site and in other regions of the world with SSM/I The validation of HydroA|go for the retrieval of SMC was
and AMSR-E (Macelloni et al., 2003) showed that Fl is a performed on the Scrivia watershed in Italy, where a long-
gOOd indicator of the presence of snow. The threshold forterm experimenta| Study devoted to SMC and Vegetation
having snow on ground was established in was carried out in the hopes of fine-tuning operational
Fl > 4K (10) procedures for flood forecasting and _alert. The validation
= was repeated for all the dates for which ground measure-

Thus, the retrieval of SD was planned in two phases. The firsinents were available. The results are shown in Table 1. The

step was the identification of the snow-covered area, by usinéta\tistical parameters of the regression between estimated
FI: ANN was then used to retrieve SD. and measured SMC arg? = 0.82, RMSE=0.035n% m—3,

BIAS =0.09 ¥ m~3.
ANN training and test A further and more performing test was carried out by
comparing AMSR-E data to the ground SMC data collected
In this case, the training of the ANN was carried out by usingin four experimental watersheds of the Agricultural Research
the extensive experimental dataset available on the Siberia8ervice (ARS) in the US, kindly provided by Dr. Tom Jack-
sites. The temporal trends @f at X-, Ku- and Ka-band at son (Jackson et al., 2010).
V polarization collected from 2002 to 2009 on these sites These watersheds have been already described in Sect. 2.1.
showed good agreement with the corresponding SD meak Table 2, values oR?, RMSE and BIAS of the relationship
surements for the whole dataset, as can be observed in Fig. 8etween estimated and measured on ground SMC are shown.

4.1 Soil moisture
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December
2009

June 2010

February
2010

August 2010

April 2010
2 October
2010

Water 005 010 0.20 0.30 0,40 Dense Veg  Snow

Water D.03 0.10 0.20 030 040 DenseVeg Snow

Fig. 12. (a)SMC maps (in mm~3) of the entire world obtained in December 2009, February and April 2010, by using HydroAlgo. Some
AMSR-E scans are missing, as we can see in Africa and North America in February(Bp$0AC maps (in mm—3) of the entire world

obtained in June, August, and October 2010, by using HydroAlgo. Some AMSR-E scans are missing, as we can see in Africa and South
America (black lines).

These statistical parameters were obtained for each test aré&a Algorithm applications

and for both ascending and descending orhittsis gener-

ally not very high, whereas RMSE and BIAS are rather low Once the algorithm was validated on relatively small areas,
and< 0.05m® m3 and< 0.02 m® m—3, respectively. Results ~an attempt to test its validity further on a larger scale was car-
demonstrated that the algorithm performs within a specifiedied out. Although it cannot be considered a real validation,

accuracy of< 0.06 m? m—2 (Paloscia et al., 2012). due to the absence of corresponding and adequate ground
data, this study can be useful for understanding the capability
4.2 Snow Depth of the algorithm to reasonably estimate SMC, SD and PWC

in other regions with respect to those where it has been tested
The SD retrieval was validated over a test area in Scandiand therefore to also verify its flexibility. This is particularly
navia, by comparing the algorithm outputs with the averagedmportant for evaluating the capabilities of ANN to general-
SD measurements of four meteorological stations located ifze the training phase that was based on data derived from
Kautokeino, Sodankyla, Muonio, and Pajala. Once the snowsmall areas. Although it is difficult to obtain ground data of
covered areas had been identified by means of the#K  sMC, SD and PWC in order to validate the algorithm at a so
threshold, the relationship obtained by comparing the meaiarge scale, we have observed that the range of these parame-
sured on ground SD (SRag and the corresponding outputs ters is generally compatible with the climatic regions and the
of ANN (SDesp was the following: meteorological conditions related to latitude and seasons.

In order to do this, the algorithm was assessed on the Po
Valley in Northern Italy and over the entire terrestrial globe
for the SMC, on a portion of Europe and over the entire ter-
restrial globe for the SD, and over Africa for PWC. In all
these cases, only modest information on ground truth was

SDest: OSlSDneas‘l‘ 754 (15)

with a R2 = 0.79, RMSE=9.13cm, and BIAS= —0.95cm.
The results obtained are shown in Fig. 10.
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Fig. 13.SD maps (in cm) retrieved on Europe before and after heavy snowfall events in December 2009 and 2010. On 15 December 2009
and 9 December 2010 the snow cover is sparse and almost limited to Scandinavia and Alps, whereas, after the events, the snow cover appea
to be much more spread and evident even in Central Italy, where the snow depth measured on 20 December 2009 in the area close to Florenc
(white circle) was about 10 cm on the ground, which is the value estimated by the algorithm.

available, and an evaluation of the resulting maps was thusecognizable and is in agreement with the seasonal and me-
performed on the basis of climatic and meteorological charteorological conditions. In November, the weather was wet

acteristics of the regions of the globe investigated. with frequent rainfalls, whereas in June a severe drought oc-
curred. The black circles represent the test area of Alessan-
51 Soil moisture dria, where ground measurements were collected on the same

dates and the algorithm was validated. It is interesting to note

SMC maps produced with the algorithm over all of Northern that a region of rice fields close to Vercelli, in the north-

ltaly are shown in Fig. 11. The maps refer to 27 Novem- western area of the images, is clearly recognizable as it is

ber 2003, and 4 June 2004. In spite of the coarse ground reSq_enerally wetter than the other agricultural fields, especially

olution, a marked difference in SMC between the two dates isIn June when the rice fields were flooded.
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Fig. 14.SD map (in cm) of the entire world obtained by HydroAlgo

in December 2009 and February 2010. The greater snow cover ir
Europe in February is evident. Some AMSR-E scans are missing, "|
as we can see in Africa and North America in February 2010.

ok

SMC maps of the entire world obtained at different dates *|°
(December 2009, February, April, August and October 2010)
are shown in Fig. 12a, b. Snow cover and forests are maske:™|
in the images. At least 4 levels of SMC can easily be iden- »
tified. Although no ancillary information is available, the re- =

sults are in reasonable agreement with the climatic and sez-ig. 15 \egetation maps of PWC for the entirety of Africa extracted
sonal meteorological conditions of the various zones. Th&rom Ply (top) and NDVI (bottom), respectively. The relationship
slightly higher SMC values for the Arabian and Australian between NDVI and PWC was derived from Jackson et al. (2004).
coasts correspond to the presence of sparse vegetation, as

these regions are more humid than the desert zones. The

seasonal variation in SMC shows an opposite trend in the Lastly, two SD maps of the whole world, obtained in De-
two hemispheres: e.g. Australia is wetter in August thancember 2009 and February 2010 by using HydroAlgo, are
in February. shown in Fig. 14. The presence of snow, especially in the

Northern hemisphere, is clearly pointed out.

5.2 Snow Depth
5.3 \egetation biomass
The SD maps of all of Europe, generated in December 2009
and 2010 are shown in Fig. 13, in order to include the Alps, In this context, vegetation maps of PWC (kg are gener-
the Apennines, and the Balkan Mountains as well. The snowated from Pk mainly to mask dense vegetation in SMC and
covered areas are clearly visible, and at least 4 ranges dfD maps and to correct the SMC estimate for the effects of
SD can also be distinguished. The maps were made beforlow vegetation. However, these maps can represent an addi-
and immediately after heavy snowfall events. On 15 Decem4ional output of the algorithm.
ber 2009 and 9 December 2010, the snow cover was sparse For example, a vegetation map of Africa computed from
and almost limited to Scandinavia and the Alps, whereas thé?lx is shown in Fig. 15a and b, in which the PWC ob-
snow cover after the events appears to have been much motgined from Pk is compared with the one derived from
spread and evident even in Central Italy, where the SD meafoptical) NDVI obtained from Free Vegetation Products
sured on the ground in the area close to Florence was abohttp:/free.vgt.vito.be/home.phpThe direct comparison in
10 cm, which is the value estimated by the algorithm. the two maps between the PWC values from SPOT4 and
from Plx, carried out pixel by pixel gave the follow-
ing statistical parametersk? =0.87, RMSE=1kgm 2,
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