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Abstract. A systematic and timely monitoring of land sur-
face parameters that affect the hydrological cycle at local
and global scales is of primary importance in obtaining a
better understanding of geophysical processes and in man-
aging environmental resources as well as natural disasters.
Soil moisture and snow water equivalent are two quantities
that play a major role in these applications. In this paper an
algorithm for hydrological purposes (called hereinafter Hy-
droAlgo), which is able to generate maps of snow depth (SD)
and soil moisture content (SMC) from AMSR-E data, has
been developed and implemented within the framework of
the JAXA ADEOS-II/AMSR-E and GCOM/AMSR-2 pro-
grams, as well as of a project of the Italian Space Agency
that is devoted to civil protection from floods and landslides.
As auxiliary output, the algorithm also generates maps of
vegetation biomass (VB). An initial phase of pre-processing
includes the improvement of spatial resolution, as well as
masking for urban areas, water bodies, and dense vegetation.
The algorithm was then split into two branches, the first of
which focused on the retrieval of SMC and the second, on
SD. Both parameters were retrieved using Artificial Neural
Network (ANN) methods. The algorithm was calibrated us-
ing a wide set of experimental data collected on three sites:
Mongolia and Australia (for SMC), and Siberia (for SD), in-
tegrated with model simulations. These results were then val-
idated by comparing the algorithm outputs with experimental
data collected on two additional sites: a part of a watershed
in Northern Italy, and a large portion of Scandinavia. An ad-
ditional test of the algorithm was also performed on a large
scale, and included sites characterized by differing climatic
and meteorological conditions.

1 Introduction

The number of weather-related natural disasters, such as
floods, storms, cyclones, drought and extreme temperatures,
is dramatically increasing, resulting in human and economic
losses which strike at least one third of the world’s pop-
ulation. Such disasters are primarily due to environmental
change and land degradation, which are mostly caused by
human impact on the territory (e.g. Bates et al., 2008).

Help in breaking this vicious cycle can be given by a more
in-depth knowledge of the environment and by further study-
ing the temporal evolution of the distribution and extent of
ecosystems. In particular, a close observation of land surface
properties can be crucial when analyzing the two fundamen-
tal cycles of our planet, namely the global carbon and hydro-
logical cycles. In particular, the water scarcity is one the main
problems, which we will have to face up to in a very near
future. A precise evaluation of water utilization on several
spatial scales (from local to regional) can be helpful for as-
sessing the waste of water due to human activities, especially
agricultural and industrial consumptions (Zang et al., 2012).
Earth observation satellites can be very useful tools in moni-
toring the basic parameters that affect these cycles, in partic-
ular soil moisture (SMC), snow water equivalent (SWE) or
snow depth (SD), and vegetation biomass (VB). These pa-
rameters play significant roles in the distribution of water
between blue and green, the latter being essential for agri-
cultural purposes (Liu et al., 2009; Liu and Yang, 2010). The
possibility of monitoring the water cycle in its various com-
ponents is, indeed, very appealing, particularly for agricul-
tural water use. Joint efforts by the national space agencies
are currently underway towards developing a global-scale
monitoring system that features numerous satellites equipped
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with onboard sensors for global surveillance and the retrieval
of information regarding the Earth’s conditions.

Several major ongoing projects focus on estimating the
most important parameters of the hydrological cycle. These
include the AQUA/AMSR-E (Advanced Microwave Scan-
ning Radiometer for EO) of NASA (National Aeronautics
and Space Administration) and JAXA (Japan Aerospace Ex-
ploration Agency) (Kawanishi et al., 2003), the ESA Soil
Moisture and Salinity Mission (SMOS) (Kerr et al., 2010),
as well as the future Soil Moisture Active Passive (SMAP)
of NASA (Edelstein et al., 2010), which is the follow-up
to an initial project called Hydros, and the Global Change
Observation Mission–Water (GCOM-W/AMSR-2) of JAXA
(Shimoda, 2009). An interesting survey of these projects
was published in a recent Special Issue of PIEEE (Tsang
and Jackson, 2010). In Italy, the PROSA (Products of Earth
Observation for the Meteorological Alert) national project,
funded by the Italian Space Agency (ASI), aimed to con-
tribute to civil protection from floods and landslides by de-
veloping a series of products derived from microwave and
optical satellite sensors (Pettinato et al., 2009). During such
emergencies, these products enable immediate assessment
of the areas at risk, and/or provide support in the decision-
making process regarding relief and clean-up operations.
Generations of real time SMC and SD maps from passive
microwave sensors are the key outputs of this project.

Research enabling the retrieval of SMC and SD from sin-
gle or multifrequency radiometric data dates back to the
late 1970’s, when several investigations indicated microwave
emission sensitivity to SMC and SWE (e.g. Njoku and Kong,
1977; Ulaby and Stiles, 1980; Hofer and Mätzler, 1980;
Shutko, 1982; Jackson et al., 1982; Chang et al., 1982). Al-
though microwave radiometers from space have a coarse
ground resolution, they are able to produce daily maps of
brightness temperature (Tb), which can then be converted to
SMC and SD by using appropriate inversion algorithms (e.g.
Shibata et al., 2003; Njoku et al., 2003; Kelly et al., 2003).

Measurements at frequencies between 1 and 3 GHz (L
band) are best suited for SMC detection, because energy
is emitted from a deeper soil layer and less energy is at-
tenuated by vegetation (e.g. Shutko, 1982; Paloscia et al.,
1993). The SMOS mission, which is specifically dedicated
to the estimating of SMC, is currently operating at 1.4 GHz
(Barre et al., 2008). However, there is potential in retrieving
SMC from space-borne instruments at higher frequencies, as
demonstrated in over ten years of research on the sensitivity
of emission at C-band (which is the lowest frequency channel
available from AMSR-E) to moisture of low vegetated soils
(e.g. Vinnikov et al., 1999; Jackson and Hsu, 2001; Macel-
loni et al., 2003). This higher frequency band has the advan-
tage of being less affected by the Radio Frequency Interfer-
ences (RFI), which may severely limit the proper functioning
of L-band systems (Skou et al., 2010; Balling et al., 2010).
RFI can be a serious problem, especially on densely popu-
lated areas, as it affects different frequencies depending on

the country. For example, C-band data are significantly con-
taminated in the US, Japan and the Middle East, so that some
algorithms for the retrieval of SMC employ higher frequency
data despite the higher sensitivity to vegetation and surface
roughness. In Europe, the problem is just the opposite, since
X-band data have been found to be the ones most affected by
RFI (Njoku et al., 2005).

Several approaches for the retrieval of SMC from single
or multifrequency radiometric data have been investigated in
previous studies. Most of these studies (Njoku et al., 2000,
2003; Jackson, 1993; Wigneron et al., 1995; Njoku and Li,
1999; Jackson et al., 2002; Paloscia et al., 2006; Paloscia
et al., 2001; Owe et al., 2001) are based on the inversion
of the so-called tau-omega model (Mo et al., 1982) by us-
ing an iterative minimization of the root mean square er-
ror between model simulations and measurements, and dif-
fer primarily in the methods used to correct the effects of
soil roughness, texture, vegetation, and surface temperature.
For example, in the National Snow and Ice Data Centre (NS-
DIC) algorithm (Njoku et al., 2003), correction for the ef-
fects of surface roughness is based on an empirical formu-
lation that relates the reflectivity of a rough soil surface to
that of the equivalent smooth surface (Wang and Choudhury,
1981). The retrieval methodology used in the Land Surface
Parameter Model (LPRM) (Owe et al., 2001, 2008) is a non-
linear iterative procedure in a forward modeling approach,
which solves the canopy optical depth by using an analyti-
cal approach, partitions the surface emission into the soil and
the canopy emission, and then optimizes the soil dielectric
constant. Measurement errors, and several other sources of
uncertainty that affect the accuracy of a theoretical retrieval
based on the tau-omega model, are assessed in Davenport et
al. (2005). The two techniques used to retrieve SMC from
AMSR-E data that are described in Njoku et al. (2003) and
Owe et al. (2008) were compared in Wagner et al. (2007a).
The authors found that the National Snow and Ice Data Cen-
ter (NSIDC) product (Njoku et al., 2003) provided a weaker
performance than the LPRM, and suggested that the NSIDC
algorithm is not able to describe the effects of vegetation
and/or surface temperature properly.

A powerful alternative method for retrieving SMC is based
on the Artificial Neural Network (ANN). ANN, especially if
combined with the use of an electromagnetic model, can be a
very useful tool for inversion in Remote Sensing, especially
when real-time estimates are needed. An ANN is an inter-
connection of processing elements (nodes) that are organized
into a sequence of fully connected layers. Each node calcu-
lates a weighted sum of inputs, and then transmits its function
value to other nodes. There are two main phases in the oper-
ation of a network. In the first training phase, the connection
weights are adapted in response to the training data presented
at the inputs and to the desired response at the output layer.
The response of the output layer is then obtained in the sec-
ond validation phase, during which the performance of the
trained ANN is also assessed. The training of the ANN can
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be carried out with model simulations, experimental data, or
a combination of the two. In the past ten years, ANNs have
been applied in several studies for the retrieval of SMC from
radiometric data (e.g. Liou et al., 2001; Liu et al., 2002; Del
Frate et al., 2003; Jiang and Cotton, 2004; Angiuli et al.,
2008; Chai et al., 2010). In general, the most widely used
topology is based on multilayer perceptrons with two or more
hidden layers with a nonlinear activation function and a back
propagation learning rule. A newly developed learning back-
propagation neural network trained with simulated data was
used to retrieve SMC from microwaveTb at L, C and X-band
(Liou et al., 2001; Liu et al., 2002). Del Frate et al. (2003)
used two neural network algorithms trained by a physical
vegetation model to retrieve SMC and vegetation variables
of wheat canopies throughout the entire crop cycle. A simi-
lar approach was used in Angiuli et al. (2008). More recently,
Chai et al. (2010) developed a novel approach based on an
ANN with two inputs, one hidden layer of 20 neurons, and
one output, to predict SMC at a 1-km resolution on different
dates. Good reviews of the potential of SMC retrieval algo-
rithms for hydrological applications are given in Wigneron et
al. (2003), Wagner et al. (2007b).

While the retrieval of SMC is based on low frequency
channels, detection of SD requires the use of higher frequen-
cies (Kelly et al., 2003; Chang et al., 1987; Hallikainen and
Jolma, 1992; Rott and Nagler, 1995; Jin, 1997; Goodison and
Walker, 1995; Grody and Basist, 1996; Hall et al., 2001; Pul-
liainen and Hallikainen, 2001; Tsang et al., 1992; Davis et al.,
1993; Tedesco et al., 2004; Pulliainen, 2006). Indeed, previ-
ous research has pointed out that the Frequency Index (FI),
i.e. the difference between the low (18/19 GHz) and high
(35/37 GHz) frequencyTb, may be related to the SWE or SD
(Chang et al., 1982; Kelly et al., 2003; Chang et al., 1987).
For example: good results for SWE retrieval were obtained in
Finland by adding the X-band channel of the Scanning Multi-
channel Microwave Radiometer (SMMR) and performing a
correlation analysis for 17 different brightness temperature
functions, each of which involved one or several frequen-
cies and polarizations (Hallikainen and Jolma, 1992). The
85 GHz channel was added in the algorithms developed in
Rott and Nagler (1995) and Jin (1997) in order to monitor
shallow snow from the Special Sensor Microwave Imager
(SSM/I) data, while a vertically polarizedTb gradient ratio
algorithm was developed in Canada (Goodison and Walker,
1995). A SWE regression algorithm based on spectral and
polarization differences was proposed in Hall et al. (2001)
and tested in Skou et al. (2010).

All of these approaches generally assumed that the average
snow density and grain size did not change over time. How-
ever, changes in these quantities can also affect the difference
between low and high frequencyTb. A dynamic approach
to retrieving global SD estimation is presented in Kelly et
al. (2003). The algorithm is still based on FI, and adjusts the
dimensional coefficient (cm K−1) to retrieve SD by predict-
ing how the grain size and snow density might vary and affect

the emission from a snowpack by using a Dense Medium
Radiative Transfer Model (Tsang et al., 2000). Compared
with static approaches, this dynamic algorithm tends to es-
timate SD with greater root mean squared error, but lower
mean error. The potential of ANNs in retrieving snow param-
eters was evaluated in (Tsang et al., 1992; Davis et al., 1993;
Tedesco et al., 2004), while a novel approach to improving
its accuracy in SWE retrieval by assimilating satellite radio-
metric data and ground-based observations was introduced in
Pulliainen (2006).

Vegetation cover is both the most important disturbing fac-
tor in reducing the sensitivity ofTb to SMC and SD and an
additional target for land hydrology. Thus, the estimation of
vegetation biomass (VB) so as to correct for the effect of low
vegetation in the retrieval of SMC and snow cover, or to mask
densely vegetated areas where the retrieval is impossible, has
led to the generation of vegetation maps as a useful byprod-
uct. One very effective index for characterizing vegetation
biomass, and in particular the Plant Water Content (PWC,
i.e. the total amount of vegetation water per square meter),
independently of the characteristics of the individual plant,
is the Polarization Index, as defined in (Paloscia and Pam-
paloni, 1988; Becker and Choudhury, 1988) and tested on a
global scale in several works (e.g. Owe et al., 2008; Choud-
hury, 1989; Paloscia, 1995; Wang and Choudhury, 1995).
Other indexes capable of characterizing the VB of agricul-
tural fields on local and global scales were also assessed in
(Macelloni et al., 2003; Paloscia and Pampaloni, 1992). In
forests, the situation is more complex: indeed, although the
first studies of microwave emission from forests date back to
the mid 1970’s (Borodin et al., 1976), the retrieval of SMC
and SD under trees continues to pose a challenge. Specific
studies of transmissivity of forest canopies were described
in (Pampaloni, 2004; Hallikainen et al., 1988; Calvet et al.,
1994; Kurvonen et al., 1998; Kruopis et al., 1999; Pulliainen
et al., 1999; Santi et al., 2009).

In this paper, the proposed algorithm, HydroAlgo, which
focuses on estimating the SD and SMC of bare or weakly
vegetated soils, has been implemented and validated within
the framework of both JAXA and ASI (Italian Space Agency)
pre-operational programs. This novel algorithm, which also
generates maps of vegetation cover/biomass as an auxiliary
product, has been optimized by using data from the AMSR-E
sensor and is able to produce daily maps at a spatial resolu-
tion comparable to the one of the 37 GHz frequency channel
of this sensor (10 km). However, its use can be extended to
other sensors operating in similar frequency channels and, in
particular, to AMSR-2 onboard GCOM-W, which will be the
heir to the AMSR-E on AQUA. The snow product can also
be generated by using SSM/I data, although obtaining a de-
crease in spatial resolution and retrieval accuracy. The short
operational time of the algorithm was considered a major
feature for operational services generating real-time maps.
Thus, the retrieval procedures for estimating the surface pa-
rameters from microwave data are based on ANN methods,
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which offer the best compromise between retrieval accuracy
and processing time for SMC and SD estimates.

The algorithm has been developed and calibrated on the
basis of very large sets of experimental data acquired on
three test areas in Mongolia, Australia and Siberia within the
framework of the JAXA ADEOS-II/AMSR-E and GCOM-
W/AMSR-2 programs. The validation was then carried out
by comparing the satellite-generated outputs with experi-
mental data collected on different test areas, including North-
ern Italy and four areas in US (for soil moisture) and Scandi-
navia (for snow).

This paper is organized as follows: Sect. 2 summarizes
the characteristics of the test sites and datasets used for the
development and validation of the algorithm, Section 3 de-
scribes the HydroAlgo algorithm, which is then validated in
Sect. 4. Section 5 includes several examples of applications
at global scale, while Sect. 6 provides a summary and a few
concluding remarks.

2 Study sites and datasets for algorithm development
and validation

The development, testing, and validation of the algorithm
made use of large sets of experimental data that were
acquired on different test sites.

2.1 Soil moisture

An extensive experimental dataset used for the develop-
ment of the SMC algorithm was kindly provided by JAXA.
This dataset consisted of two years of AMSR-E acquisi-
tions, from 1 January 2003 to 31 December 2004, regard-
ing two test sites located in Mongolia and Australia. The
Australian test area (Central coordinates: Lat. 35.10◦ S, Lon.
147.70◦ E) was characterized by low to moderate vegetation
conditions, with a marked seasonal vegetation cycle. Instead,
the Mongolia site (Lat. 46.25◦ N, Lon. 106.75◦ E) was typi-
fied by semi-arid conditions, with sparse vegetation and the
presence of snow in winter. Both sites covered an area of
approximately 120 km× 120 km, which corresponded to at
least 100 AMSR-E acquisitions. These acquisitions were co-
located with direct measurements of volumetric SMC de-
rived from an automatic network of TDR probes, for a total
of 18 sampling points in Australia and 15 sampling points
in Mongolia (CEOP, Coordinated Enhanced Observing Pe-
riod: http://www.ceop.net). SMC over a surface layer 3–4 cm
deep was sampled every 30–60 min, together with the soil
surface temperature. However, only the measurements col-
lected simultaneously with the AMSR-E overpasses were
considered in the dataset. For each test area, all the AMSR-
E acquisitions (both ascending and descending orbits) and
the corresponding SMC measurements, recorded within±1 h
from the satellite acquisition, were averaged daily. The re-
sulting dataset was composed of about 3000 measurements

of Tb from C- to Ka-band and the corresponding SMC mea-
surements in the range from 0.05 m3 m−3 to ∼ 0.40 m3 m−3

vol. under different vegetation conditions.
An area for validating the SMC product in Northern Italy

was selected on the Scrivia watershed. The area is located
in northwestern Italy, close to the town of Alessandria. It is a
flat alluvial agricultural area of 100× 100 km2 that is crossed
by many important rivers (Po, Tanaro, Scrivia, Bormida),
thus subjecting the area to frequent flood events. This loca-
tion is characterized by large agricultural fields cropped with
wheat, corn, and potatoes. Several ground campaigns were
carried out in some selected subareas in order to collect veg-
etation and soil parameters (crop type, plant height and den-
sity, biomass, SMC, and surface roughness). The volumetric
SMC (in cm3 cm−3) was measured by using portable TDR
probes for a surface average soil layer 10–15 cm in depth.
Surface roughness was measured (along and across rows) by
using a 4 m needle profilometer, the digitalized soil profiles
of which were processed to retrieve the height standard devi-
ation and the correlation length of the surface. In this area,
AMSR-E images were gathered in different seasons from
November 2003 to June 2009. In this case, ground measure-
ments sampled over an area of 10× 10 km2 were compared
with the output of the algorithm for a pixel centered on 45◦ N
and 8.85◦ E.

Four experimental watersheds of the Agricultural Re-
search Service (ARS) in US were selected for a further test
of the algorithm. Ground SMC data to be compared with
AMSR-E data were kindly provided by Dr. Tom Jackson.
These watersheds are well-instrumented with multiple sur-
face SMC and temperature sensors and have been the core
sites for several AMSR-E validation campaigns. Overall,
they represent a wide range of ground conditions and pre-
cipitation regimes. The test areas are the following: Little
Washita (OK) (610 km2), which was dominated by the pres-
ence of rangeland and pastures; Little River (GA) (334 km2),
which was heavily vegetated (forests, croplands, and pas-
ture); Walnut Gulch (AZ) (148 km2), which was a brush-
and grass-covered area characterized by a semi-arid climate;
Reynolds Creek (ID) (238 km2) was instead a rangeland area,
with snow- dominated precipitation (Jackson et al., 2010).

An additional test area (0◦–20◦ N, 16◦–17◦ E) was identi-
fied in a wide portion of Africa, from the Sahara desert to
the Equatorial forest, which includes a very high variabil-
ity of vegetation types and landscape. This area was used
for checking the capabilities of Polarization Index at X band
(PIX) in identifying vegetation cover and biomass (VB) and
by comparing its performances with those of NDVI. Data
collected over this region with AMSR-E and SPOT4 in dif-
ferent seasonal periods have been analyzed. Africa was cho-
sen also due to the availability of large homogeneous regions
that are compatible with the coarse ground resolution of the
microwave sensor.
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2.2 Snow

As in the case of Mongolia, JAXA provided significant
collection of data for developing the SD Algorithm. The
dataset was composed of co-located AMSR-E acquisitions
and hourly ground measurements of SD and air temperature
provided by 7 stations located in the eastern part of Siberia.
The stations were dislocated in order to cover a flat area of
about 20′ in latitude, 45′ in longitude, at an average altitude
of 300 m a.s.l., and characterized by low vegetation. In this
region, snow is generally present from the beginning of Oc-
tober to the end of May, with a depth that does not exceed
50 cm. The average air temperature ranges from−50◦C in
winter to 20◦C in summer. The acquired dataset covered 7
winter seasons, from October 2002 to May 2009, with a sig-
nificant lack of data for the 2008–2009 winter.

The dataset was obtained by considering all the AMSR-
E acquisitions from C- to Ka-band, with the footprint center
within a radius of 10 km from the coordinates of each station.
These data were combined with the ground measurements,
which were recorded within±1 h from the satellite acquisi-
tion. After filtering the no data and no snow values, a dataset
was obtained that included 17 000 values ofTb at all bands
and the associated direct measurements of SD and air tem-
perature. On this relatively small area, a further averaging of
the 10–15 AMSR-E acquisitions, collected daily, as well as
the corresponding ground measurements, was carried out in
order to obtain daily mean values representative of the whole
test area. This operation resulted in an averaged dataset of
about 1500 samples, in which the radiometric data displayed
certain sensitivity to the snow parameters.

The test area used for validating the snow-depth
retrieval was a region of about 200× 200 km2 lo-
cated between Finland and Norway that contains the
meteorological stations of Kautokeino (Lat. 69◦01′ N
Lon. 23◦04′ E), Sodankyla (Finland – Lat. 67◦24′ N,
Lon. 26◦35′ E), Muonio (Finland – Lat. 67◦58′ N, Lon.
23◦40′ E), and Pajala (Sweden – Lat. 67◦16′ N, Lon.
23◦22′ E). This area, which was selected by using
the Ecoclimap database (http://www.cnrm.meteo.fr/gmme/
PROJETS/ECOCLIMAP/pageecoclimap.htm), has an alti-
tude varying between 200 and 600 m a.s.l. and consists of
tundra for more than 60 % of its surface with evergreen
forests and several water bodies in the remaining 40 %.

The AMSR-E acquisitions, which were collected during
the 2002–2003 and 2003–2004 winters, were related to the
SD measured by the stations. The ground measurements of
SD were derived from the Russian archives (http://meteo.
infospace.ru). For both winters, snow was present from the
end of October to the middle of May, with the depth reaching
60–70 cm. The resulting dataset was made up of more than
400 daily AMSR-E measurements and the corresponding
ground data.

3 Description of the algorithm

In the HydroAlgo algorithm, the retrieval of SMC is mainly
based on the low frequency C-band channel, together with
X-, Ku-, and Ka-band, while a combination of only high-
frequency (X-, Ku-, and Ka-bands) data enables the retrieval
of SD. As a secondary quantity, the Vegetation Biomass (VB)
is also obtained by means of the X-band Polarization Index
(PIX). VB is expressed as the Plant Water Content (PWC, in
kg m−2), a parameter that is closely related to total biomass
and physically influences microwave emission (Macelloni et
al., 2003; Paloscia and Pampaloni, 1992). The flowchart of
the algorithm is shown in Fig. 1.

The algorithm presents the results on three different maps,
one for each quantity. However, the retrieval of SMC and SD
cannot be carried out beneath forest and dense vegetation,
due to the high attenuation of soil emission caused by the
overlaying cover. Moreover, snow cover also hampers the es-
timate of the SMC below it. Thus, the output of VB is used to
exclude the regions covered by dense vegetation in the SMC
and SD maps, while the areas covered by snow are obscured
in the SMC maps. In addition, VB maps are also used to cor-
rect the retrieval of SMC of poorly-vegetated soils, as de-
scribed in greater detail later in this section.

1. Extraction of Tb collected over the areas of interest
from the Hierarchical Data Format (HDF) files deliv-
ered by National Snow and Ice Data Center (NSIDC)
and containing the calibrated and geocoded acquisitions
of AMSR-E from AQUA satellite (Level 2 data) at C-,
X-, Ku- and Ka-band in both polarizations (H, V).

2. Check of data for possible miscalibration (Paloscia et
al., 2006) and for the presence of the Radio Frequency
Interference (RFI) at C- and X-bands. The check for RFI
was carried out using a simple threshold method (Njoku
et al., 2005) at both C- and X-bands, and all data over
this threshold were eliminated from the dataset.

3. Application of the multisensor image fusion procedure
to enhance the spatial resolution of the low frequency
channels and to reduce the effect of mixed pixels.
This procedure, which is based on the SFIM (Smooth-
ing Filter-base Intensity Modulation) technique (Santi,
2010; Liu, 2000), is aimed at increasing the resolution
of C- and X-bands up to values close to the sampling
rate (i.e. 10 km× 10 km) by means of the higher resolu-
tion Ka band channel.

4. Computation of the PIX , which is to be used for estimat-
ing vegetation biomass and is defined as follows:

PIX = 2(TbVX − TbHX)/(TbVX + TbHX) (1)

whereTbVX andTbHX are the brightness temperatures at X
band at V and H polarizations, respectively.

www.hydrol-earth-syst-sci.net/16/3659/2012/ Hydrol. Earth Syst. Sci., 16, 3659–3676, 2012

http://www.cnrm.meteo.fr/gmme/PROJETS/ECOCLIMAP/page_ecoclimap.htm
http://www.cnrm.meteo.fr/gmme/PROJETS/ECOCLIMAP/page_ecoclimap.htm
http://meteo.infospace.ru
http://meteo.infospace.ru


3664 E. Santi et al.: HydroAlgo

With this index it is possible to separate deserts and
poorly-vegetated areas, where SMC can be estimated, from
forests and dense vegetation regions, where retrieval is un-
realistic due to the high attenuation induced by vegetation
material. The ability of the polarization index to estimate
the vegetation optical depth and to identify different levels
of biomass, already established in past research carried out
on agricultural fields (Choudhury, 1989; Paloscia and Pam-
paloni, 1992; Paloscia, 1995; Wang and Choudhury, 1995),
is due to the depolarization of the soil emission, which is
based on the amount of vegetation overlaying soil. This effect
is particularly evident at X band, which is consequently the
most suitable frequency for quantifying vegetation biomass
and was also used in this paper to correct the effect of low
vegetation on the SMC estimate. It should be noted that PIX
is also sensitive to SMC, although the effect of vegetation
is clearly dominant (Njoku et al., 2003; Choudhury, 1989;
Paloscia and Pampaloni, 1992).

The PIX performances were tested on a wide portion
of Africa, from the Sahara desert to the Equatorial for-
est, an area which includes a very high variability of veg-
etation types and landscape. On this area, the PWC (in
kg m−2) computed from AMSR-E PIX (Paloscia and Pam-
paloni, 1988) was compared with the PWC values derived
from NDVI thanks to the relationship established by Jack-
son et al. (2004). Although the latter relationship was ini-
tially developed for corn and soybean vegetation, it has been
found to be valid for other types of vegetation, too (Palos-
cia et al., 2011). NDVI data, which were obtained from
http://free.vgt.vito.be/home.php, as resulting from 10 days
of SPOT4 acquisitions, were resampled at a 10 km× 10 km
resolution and compared with the corresponding 10 days of
AMSR-E acquisitions, in both ascending and descending or-
bits, for November 2003, April 2004, June 2004, and Jan-
uary 2005, in order to be representative of the whole seasonal
cycle.

The result of this comparison is shown in Fig. 2, and the
relationship obtained is

PWCPIX = 1.04PWCNDVI + 0.14, (2)

with a determination coefficient,R2
= 0.92, and a

RMSE= 0.63 kg m−2.
According to this result, the PIX can then be legitimately

used to produce vegetation maps on a global scale by sep-
arating 3–4 levels of biomass without any need of further
information from other sensors.

5. Masking of the area where the parameters cannot be re-
liably estimated: deserts, dense vegetation for SMC and
SD, and snow cover for SMC. This process is performed
by using PIX for dense vegetation (PIX < 0.05), with the
map of snow cover extent being generated by the algo-
rithm itself.

After this joint initial process, the algorithm is split into
two main parts, which generate the output products of
SMC and SD.

Along with the maps of SMC and SD, a reliability index
of each output product is computed. This index accounts for
the percentage of bad input data (including those affected by
RFI) and the estimate of output parameters outside the es-
tablished range. When inputs outside the range considered
for training are presented to the ANN, the latter is unable to
predict the right output and answers with an “outlier”, i.e. an
estimate that falls outside the range of values considered in
the training phase. An evaluation of the consistency of the
output product can therefore be done by accounting for the
percentage of outliers. This reliability index is listed in the
header file associated with each output.

3.1 Estimate of soil moisture content (SMC)

The estimate of SMC is based on an Artificial Neural Net-
work (ANN) algorithm trained with both experimental and
simulated data. The basic microwave measurement is theTb
at C band, i.e. the lowest AMSR-E frequency, in order to
minimize the vegetation attenuation. The use of vertical po-
larization at the nominal incidence angle of AMSR-E (53◦,
close to Brewster angle) guarantees a relative independence
to the soil surface roughness (e.g. Schwank et al., 2010).
Moreover, a closer look at the experimental data reveals that
Tb in H polarization appears to be less related to SMC than
V polarization, probably due to the greater influence of the
surface features. Figure 3 represents theTb measurements in
both H and V polarizations for the entire available dataset.
The computed regression equations are

TbV = −76.5SMC+ 290.31K(R2
= 0.56) (3a)

TbH = −20.96SMC+ 259.11K(R2
= 0.03). (3b)

Additional parameters include:

– The AMSR-ETb at X-band (H and V polarizations) for
computing PIX and correcting for the effect of low veg-
etation on soil emission.

– The Tb at Ka-band, V polarization, used to normalize
for the daily and seasonal variation of the surface tem-
perature, due to its strong relationship with the latter pa-
rameter (Owe and Van De Griend, 2001; Paloscia et al.,
2006).

The ANN used has a feed-forward multilayer perceptron
(MLP) configuration, with a certain number of hidden lay-
ers of neurons between the input and the output. In MLPs,
successive layers of neurons are fully interconnected, with
trainable connection weights that control the strength of the
connections. MLP ANNs can be trained to represent arbi-
trary input-output relations (Hornik, 1989; Linden and Kin-
derman, 1989). The trained ANN can be considered to be
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Fig. 1. Flowchart of the HydroAlgo algorithm for estimating both
snow depth (SD) and soil moisture (SMC).

a type of nonlinear, least-mean-square-interpolation formula
for the discrete set of data points in the training set. The algo-
rithm chosen for the training phase was the back-propagation
learning rule, which is an iterative gradient descent algorithm
that is designed to minimize the mean square error between
the desired target vectors and the actual output vectors. It
should be noted that the gradient-descent method sometimes
suffers from slow convergence, due to the presence of one or
more local minima, which may also affect the final result of
the training. In order to overcome this problem, the training
was repeated several times, with a resetting of the initial con-
ditions and a verification that each training process led to the
same convergence results in terms ofR2 and RMSE, by in-
creasing it until negligible improvements were obtained. This
was done in order to define the minimal ANN architecture ca-
pable of providing an adequate fit for the training data, so as
to prevent overfitting problems. Overfitting is related to the
oversizing of the ANN, and may cause considerable errors
when testing ANN with input data that is not included in the
training set. In order to define the optimal ANN architecture,
after the training phase, the ANN was tested using data not
included in the training set, and the training and testing re-
sults were then compared. The ANN configuration was then
increased, until the ANN architecture was found to have a
negligible improvement in the training and a worsening in
the test results. A configuration with two hidden layers of ten
perceptrons each was finally chosen as the optimal one.

ANN training and test

The training of the ANN was carried out by using the exten-
sive experimental dataset available on the Mongolia and Aus-
tralia sites, integrated by model simulations. PIX was able to

Fig. 2. The Plant Water Content (PWC, in kg m−2) estimated from
the X-band Polarization index, compared to the PWC estimated
from NDVI, for a large area in Africa (0–20◦ N/16◦–17◦ E). The
line represents the regression equation.

Fig. 3. The brightness temperatures (Tb) measured at C-band (in V
and H pol.) in Australian and Mongolian test sites as a function of
volumetric SMC (m3 m−3).

indicate the vegetation seasonal cycle of the Australian site,
as is shown for example for one of the ground stations in
the site (ADELONGROCHEDALE station, Lat. 35.37◦ S,
Lon. 148.06◦ E) (Fig. 4), whereas the semi-arid region of
Mongolia did not show any significant periodic variation.

On both these sites, theTb at C-band, in V polarization
and at incidence angle> 50◦, showed a noticeable sensitiv-
ity to SMC (see Fig. 3). The data spread indicates that the
effect of other factors was important, and that it undoubtedly
plays a major role among those types of vegetation. On the
other hand, the PIX , used as input of the ANN, performs the
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Fig. 4. The X-band Polarization Index (PIX) computed for the
ADELONG ROCHEDALE station (Australia, Lat. 35.373◦ S, Lon.
148.066◦ E) as a function of time.

Fig. 5. PIX , derived from the AMSR-E measurements, as a func-
tion of the optical depth estimated by using the Nelder–Mead inver-
sion method. The obtained regression is: PIX = 11.18 exp (−3.12τ)

(R2
= 0.99).

correction for vegetation effects through its correlation to the
optical depth.

In order to increase the amount of data for the training
and testing processes, the experimental dataset described
above was enlarged with simulated data by using the Ra-
diative Transfer Theory in the formulation of the tau-omega
model. Model simulations performed at all the frequen-
cies and polarizations considered were iterated by randomly
varying the input values of SMC and surface temperature,
Ts, in a reasonable range of expected values (i.e. SMC from
0.05 m3 m−3 to 0.5 m3 m−3, andTs from 275 K to 320 K).
The lower threshold of 275 K was selected in order to elim-
inate frozen soils. The effect due to surface roughness was
taken into account by including in the ANN training setTb
data corresponding to different surface roughness conditions.
In the end, a dataset of 10 000 simulated values ofTb was
generated. The dielectric constant was derived from the input
of SMC by means of the model from Dobson et al. (1985),

Fig. 6. Experimental (red) and simulated (blue)Tb data (V pol.) of
the whole dataset (Australia and Mongolia) as a function of SMC,
in m3 m−3 (top: C-band; bottom: Ka band).

Table 1. Comparison between measured and estimated averaged
values of SMC (in m3 m−3) for the Scrivia test area at different
dates.

SMC measured SMC estimated
Dates (m3 m−3) (m3 m−3)

07 November 2003 0.293 0.295
04 June 2004 0.204 0.175
31 March 2008 0.236 0.231
24 April 2008 0.298 0.244
01 July 2008 0.244 0.198
30 September 2008 0.143 0.135
29 May 2009 0.237 0.199
18 June 2009 0.228 0.182

and the range of the other two inputs required by the model,
namely the optical depth (τ) and the equivalent single scat-
tering albedo (ω), was set so as to assure consistency between
the model simulations and the experimental data.

Since no direct measurements of vegetation were included
in the dataset, the values ofτ and ω were estimated from
the experimental data by using a direct minimization method.
This was done by searching for a couple ofτ andω values
that would minimize the RMS error between theTb simu-
lated for each measured SMC value and the corresponding
AMSR-E acquisition.
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Fig. 7.SMC estimated by using the ANN algorithm as a function of
SMC measured on ground for the part of Australian and Mongolian
dataset not used for training.

The minimization was implemented through the Nelder–
Mead simplex algorithm (Nelder and Mead, 1965), which is
a popular search method for multidimensional unconstrained
minimization.

In this case, the Cost Function (CF) to be minimized by
varyingτ andω was

CF(τ,ω) = sqrt
[
(TbVm(f )) − TbVs(f )2

+(TbHm(f ) − TbHs(f ))2
]

(4)

where:

– TbVm(f ) andTbHm(f ) are theTb measured at thef fre-
quency (from C- to Ka-band).

– TbVs(f ) andTbHs(f ) are the outputs of the tau-omega
model for each measured value of SMC and surface
temperature, which were obtained by varying theτ and
ω values until the minimum of the above function was
reached.

The above procedure was repeated for eachTb couple (V and
H pol.) of the experimental dataset, thus enabling us to as-
sociate the estimated values ofτ andω with each AMSR-E
acquisition and to establish empirical relationships between
these two quantities and the frequency.

For the dataset considered, theτ values obtained at C-band
ranged between 0.16 and 1.1, while the correspondingω val-
ues were between 0.03 and 0.08. The variation ofτ andω

with the frequency was also investigated, in order to estab-
lish empirical relationships for deriving their values at fre-
quencies higher than C band. For example, the relationships

Table 2. Statistical parameters of the relationships between mea-
sured and estimated averaged values of SMC (in m3 m−3) for each
ARS test area and for both ascending (top) and descending (bottom)
orbits.

Ascending Orbits R2 RMSE BIAS

Little Washita 0.37 0.046 −0.006
Walnut Gulch 0.30 0.019 −0.0003
Little River 0.28 0.043 0.017
River Creek 0.52 0.039 0.011

Descending Orbits R2 RMSE BIAS

Little Washita 0.33 0.048 −0.008
Walnut Gulch 0.26 0.020 0.0011
Little River 0.36 0.039 0.0021
River Creek 0.29 0.065 0.022

between the average values ofτ(f ) andω(f ) of the entire
dataset and the frequency are shown in the following equa-
tions

τ(f ) = 0.0388f + 0.08(R2
= 0.98) (5)

ω(f ) = 0.0011f + 0.0417(R2
= 0.35) (6)

wheref is the frequency in GHz.
The reliability of this inversion method in estimatingτ val-

ues was verified by representing the polarization index at X-
band (PIX) derived from the AMSR-E as a function ofτ (at
the same frequency) estimated as above by using the Nelder–
Mead inversion.

The relationship obtained is shown in Fig. 5 and in the
following Eq. (7)

PIX = 11.18exp(−3.12τ)(R2
= 0.99) (7)

which is in agreement with the results found in Paloscia and
Pampaloni (1988).

Once the relationships (4–7) were assessed, the tau-omega
model was iterated 10 000 times with the following random
inputs:

– SMC between 0.05 m3 m−3 and 0.5 m3 m−3
→ dielec-

tric constant→ surface reflectivity.

– Surface temperature between 275 K and 320 K.

– τ (C-band) between 0.16 and 1.1,τ at higher frequen-
cies computed from Eq. (5).

– ω(C-band) between 0.03 and 0.08,ω at higher frequen-
cies computed from the one at C-band.

The results of these iterations, combined with the experi-
mental data, are shown in Fig. 6, whereTb at C- (top) and
Ka- (bottom) bands (V pol.) are represented as a function
of SMC, within the variability of the surface parameters,
as assumed above.
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Fig. 8.Temporal trends ofTb at X-, Ku- and Ka- bands and the corresponding snow depth (SD, in cm) measurements obtained for the Siberia
dataset from 2002 to 2009.

Fig. 9.Estimated vs. ground measured SD for the Siberian test area.

The training of the ANN was carried out by using half
(6500) of all these experimental and simulated data. The test
performed on the second half of the experimental data pro-
duced the diagram of Fig. 7, in which the soil moisture esti-
mated by the algorithm (SMCest) is compared with the soil
moisture measured on the ground (SMCmeas). The regression
equation is

SMCest= 0.76SMCmeas+ 4.98 (8)

with a R2
= 0.8, RMSE= 0.035 m3 m−3, and

BIAS = 0.02 m3 m−3.
This result can be considered to be the main test of the

algorithm’s performances in estimating SMC.

Fig. 10.Estimated vs. ground measured SD for the test area in Scan-
dinavia (Kautokeino, Sodankyla, Muonio and Pajala stations).

3.2 Estimate of Snow Depth

The estimate of SD was likewise carried out by means of a
second ANN, trained with an extensive set of experimental
data (Siberian dataset) and kindly provided by JAXA. The
ANN used had the same basic characteristics (e.g. type and
training procedures) as the ones used for SMC retrieval. The
key frequency channels in detecting the presence of snow on
ground and its depth or water equivalent were at Ku- and Ka-
band (V and H polarizations) (Chang et al., 1982; Kelly et
al., 2003). Moreover, X-band data were also considered, due
to a certain sensitivity to SD demonstrated by this frequency.
Thus, all three of these frequencies were used for implement-
ing the ANN algorithm.
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Fig. 11. SMC maps generated by using HydroAlgo in North-
ern Italy. Maps were carried out on 27 November 2003 and on
4 June 2004. Black circles indicate the ground truth data area.

Since the ANN is not able to separate snow cover from
snow-free areas, we used a Frequency Index (FI) as a thresh-
old indicator of snow presence, expressed as follows

FI = [(TbKuV − TbKaV) + (TbKuH − TbKaH)]/2 (9)

where V and H are the polarizations, and Ku and Ka are the
frequencies considered.

The analysis of the experimental data collected in the
Siberian site and in other regions of the world with SSM/I
and AMSR-E (Macelloni et al., 2003) showed that FI is a
good indicator of the presence of snow. The threshold for
having snow on ground was established in

FI ≥ 4K (10)

Thus, the retrieval of SD was planned in two phases. The first
step was the identification of the snow-covered area, by using
FI: ANN was then used to retrieve SD.

ANN training and test

In this case, the training of the ANN was carried out by using
the extensive experimental dataset available on the Siberian
sites. The temporal trends ofTb at X-, Ku- and Ka-band at
V polarization collected from 2002 to 2009 on these sites
showed good agreement with the corresponding SD mea-
surements for the whole dataset, as can be observed in Fig. 8.

A direct correlation betweenTb at Ka-, X-, and Ku-band and
SD resulted in the following relationships

TbXV = −0.50SD+ 149.34 (R2
= 0.07) (11)

TbKuV = −0.44SD+ 256.55 (R2
= 0.35) (12)

TbKaV = −1.44SD+ 255.86 (R2
= 0.69) (13)

where V is the polarization and Ku (or Ka or X) is the fre-
quency band considered.

No model simulations were added to the training of the
ANN, due to the very large extent of the database. The
training of the ANN was carried out by using half of all these
experimental data. The test performed on the second half of
the dataset produced the diagram in Fig. 9, in which the SD
estimated by the algorithm (SDest) is compared with the SD
measured on the ground (SDmeas). The regression equation
is

SDest= 0.78SDmeas+ 5.97 (14)

with a R2
= 0.79, RMSE= 5.54 cm, and BIAS= 0.059 cm.

Also in this case, the result can be considered to be the main
test for the performances of the algorithm in estimating SD.

4 Validation

Validation of the algorithm was carried out on some test ar-
eas in Europe and the US, where ground measurements were
available. One area was located in Northern Italy (approx-
imately 100× 100 km2) and four others of smaller dimen-
sions in the US, for SMC. Moreover, a further area in Scan-
dinavia (200× 100 200 km2) was chosen for SD validation.
This validation procedure was also useful in evaluating the
performance of HydroAlgo at different spatial scales.

4.1 Soil moisture

The validation of HydroAlgo for the retrieval of SMC was
performed on the Scrivia watershed in Italy, where a long-
term experimental study devoted to SMC and vegetation
was carried out in the hopes of fine-tuning operational
procedures for flood forecasting and alert. The validation
was repeated for all the dates for which ground measure-
ments were available. The results are shown in Table 1. The
statistical parameters of the regression between estimated
and measured SMC are:R2

= 0.82, RMSE= 0.035 m3 m−3,
BIAS = 0.09 m3 m−3.

A further and more performing test was carried out by
comparing AMSR-E data to the ground SMC data collected
in four experimental watersheds of the Agricultural Research
Service (ARS) in the US, kindly provided by Dr. Tom Jack-
son (Jackson et al., 2010).

These watersheds have been already described in Sect. 2.1.
In Table 2, values ofR2, RMSE and BIAS of the relationship
between estimated and measured on ground SMC are shown.
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Fig. 12. (a)SMC maps (in m3 m−3) of the entire world obtained in December 2009, February and April 2010, by using HydroAlgo. Some
AMSR-E scans are missing, as we can see in Africa and North America in February 2010.(b) SMC maps (in m3 m−3) of the entire world
obtained in June, August, and October 2010, by using HydroAlgo. Some AMSR-E scans are missing, as we can see in Africa and South
America (black lines).

These statistical parameters were obtained for each test area
and for both ascending and descending orbits.R2 is gener-
ally not very high, whereas RMSE and BIAS are rather low
and≤ 0.05 m3 m3 and≤ 0.02 m3 m−3, respectively. Results
demonstrated that the algorithm performs within a specified
accuracy of≤ 0.06 m3 m−3 (Paloscia et al., 2012).

4.2 Snow Depth

The SD retrieval was validated over a test area in Scandi-
navia, by comparing the algorithm outputs with the averaged
SD measurements of four meteorological stations located in
Kautokeino, Sodankyla, Muonio, and Pajala. Once the snow-
covered areas had been identified by means of the FI≥ 4 K
threshold, the relationship obtained by comparing the mea-
sured on ground SD (SDmeas) and the corresponding outputs
of ANN (SDest) was the following:

SDest= 0.81SDmeas+ 7.54 (15)

with aR2
= 0.79, RMSE= 9.13 cm, and BIAS= −0.95 cm.

The results obtained are shown in Fig. 10.

5 Algorithm applications

Once the algorithm was validated on relatively small areas,
an attempt to test its validity further on a larger scale was car-
ried out. Although it cannot be considered a real validation,
due to the absence of corresponding and adequate ground
data, this study can be useful for understanding the capability
of the algorithm to reasonably estimate SMC, SD and PWC
in other regions with respect to those where it has been tested
and therefore to also verify its flexibility. This is particularly
important for evaluating the capabilities of ANN to general-
ize the training phase that was based on data derived from
small areas. Although it is difficult to obtain ground data of
SMC, SD and PWC in order to validate the algorithm at a so
large scale, we have observed that the range of these parame-
ters is generally compatible with the climatic regions and the
meteorological conditions related to latitude and seasons.

In order to do this, the algorithm was assessed on the Po
Valley in Northern Italy and over the entire terrestrial globe
for the SMC, on a portion of Europe and over the entire ter-
restrial globe for the SD, and over Africa for PWC. In all
these cases, only modest information on ground truth was
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Fig. 13.SD maps (in cm) retrieved on Europe before and after heavy snowfall events in December 2009 and 2010. On 15 December 2009
and 9 December 2010 the snow cover is sparse and almost limited to Scandinavia and Alps, whereas, after the events, the snow cover appears
to be much more spread and evident even in Central Italy, where the snow depth measured on 20 December 2009 in the area close to Florence
(white circle) was about 10 cm on the ground, which is the value estimated by the algorithm.

available, and an evaluation of the resulting maps was thus
performed on the basis of climatic and meteorological char-
acteristics of the regions of the globe investigated.

5.1 Soil moisture

SMC maps produced with the algorithm over all of Northern
Italy are shown in Fig. 11. The maps refer to 27 Novem-
ber 2003, and 4 June 2004. In spite of the coarse ground res-
olution, a marked difference in SMC between the two dates is

recognizable and is in agreement with the seasonal and me-
teorological conditions. In November, the weather was wet
with frequent rainfalls, whereas in June a severe drought oc-
curred. The black circles represent the test area of Alessan-
dria, where ground measurements were collected on the same
dates and the algorithm was validated. It is interesting to note
that a region of rice fields close to Vercelli, in the north-
western area of the images, is clearly recognizable as it is
generally wetter than the other agricultural fields, especially
in June when the rice fields were flooded.
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Fig. 14.SD map (in cm) of the entire world obtained by HydroAlgo
in December 2009 and February 2010. The greater snow cover in
Europe in February is evident. Some AMSR-E scans are missing,
as we can see in Africa and North America in February 2010.

SMC maps of the entire world obtained at different dates
(December 2009, February, April, August and October 2010)
are shown in Fig. 12a, b. Snow cover and forests are masked
in the images. At least 4 levels of SMC can easily be iden-
tified. Although no ancillary information is available, the re-
sults are in reasonable agreement with the climatic and sea-
sonal meteorological conditions of the various zones. The
slightly higher SMC values for the Arabian and Australian
coasts correspond to the presence of sparse vegetation, as
these regions are more humid than the desert zones. The
seasonal variation in SMC shows an opposite trend in the
two hemispheres: e.g. Australia is wetter in August than
in February.

5.2 Snow Depth

The SD maps of all of Europe, generated in December 2009
and 2010 are shown in Fig. 13, in order to include the Alps,
the Apennines, and the Balkan Mountains as well. The snow-
covered areas are clearly visible, and at least 4 ranges of
SD can also be distinguished. The maps were made before
and immediately after heavy snowfall events. On 15 Decem-
ber 2009 and 9 December 2010, the snow cover was sparse
and almost limited to Scandinavia and the Alps, whereas the
snow cover after the events appears to have been much more
spread and evident even in Central Italy, where the SD mea-
sured on the ground in the area close to Florence was about
10 cm, which is the value estimated by the algorithm.

Fig. 15.Vegetation maps of PWC for the entirety of Africa extracted
from PIX (top) and NDVI (bottom), respectively. The relationship
between NDVI and PWC was derived from Jackson et al. (2004).

Lastly, two SD maps of the whole world, obtained in De-
cember 2009 and February 2010 by using HydroAlgo, are
shown in Fig. 14. The presence of snow, especially in the
Northern hemisphere, is clearly pointed out.

5.3 Vegetation biomass

In this context, vegetation maps of PWC (kg m−2) are gener-
ated from PIX mainly to mask dense vegetation in SMC and
SD maps and to correct the SMC estimate for the effects of
low vegetation. However, these maps can represent an addi-
tional output of the algorithm.

For example, a vegetation map of Africa computed from
PIX is shown in Fig. 15a and b, in which the PWC ob-
tained from PIX is compared with the one derived from
(optical) NDVI obtained from Free Vegetation Products
(http://free.vgt.vito.be/home.php). The direct comparison in
the two maps between the PWC values from SPOT4 and
from PIX , carried out pixel by pixel gave the follow-
ing statistical parameters:R2

= 0.87, RMSE= 1 kg m−2,
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and BIAS= 1.89× 10−2 kg m−2. According to these results,
the vegetation maps on a global scale can reasonably be
generated by using PIX as a byproduct of the HydroAlgo,
instead of NDVI, in view of the advantage of using the same
sensor for all applications.

6 Summary and conclusions

A new algorithm (HydroAlgo) for generating simulta-
neous maps of SMC and SD from AMSR-E data has
been implemented within the framework of the GCOM-
W/AMSR-2 project of JAXA and the Italian National Project
ASI/PROSA, for the purpose of developing products useful
for hydrological applications and natural disasters manage-
ment. The algorithm makes exclusive use of AMSR-E-like
data. C-band channel provides basic information for the re-
trieval of SMC, while SD is essentially obtained from X-,
Ku- and Ka-band channels. Additional information on sur-
face temperature and vegetation cover, which was useful for
improving the retrieval accuracy of the algorithm, was ob-
tained from theTb at Ka-band (V polarization) and from the
Polarization Index at X band (PIX), respectively. The latter
quantity made possible the generation of maps of vegetation
biomass (VB, expressed as PWC) as an auxiliary product.
No other ancillary data were required to obtain the results
presented here.

HydroAlgo was able to separate 4–5 levels of SMC and
SD at a nominal ground resolution of 10 km× 10 km, by us-
ing a specific algorithm for improving the spatial resolution.
Both SMC and SD were retrieved by using ANN methods
trained with a large set of experimental data. For the retrieval
of SMC, the dataset was enriched by model simulations. The
global maps of SMC, SD and PWC were reprojected over a
fixed grid, in geographical coordinates with a spatial resolu-
tion of about 10 km× 10 km. This represented an improve-
ment in the spatial resolution of the input C- and X-band
channels involved in SMC and PWC estimates. Processing
an entire day of AMSR-E acquisitions required about 20 min.

In order to compute a reliability index of the output prod-
ucts, the entire process took into account the percentage of
bad input data (including those affected by RFI) and the esti-
mate of output parameters outside the established range. This
index has been listed in the header file associated with each
output.

Furthermore, the algorithm was applied at several spatial
scales over different regions of the Earth. Although this part
of the paper cannot be considered a real validation, due to
the absence of adequate ground data, it is important to note
that the algorithm is able to reasonably follow the variations
of SMC and SD at different latitudes and in various climatic
conditions. In any case, additional tests on different areas and
seasons would be desirable, in order to evaluate more thor-
oughly the operational capabilities of the implemented code.
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