
Shi et al. EURASIP Journal on Audio, Speech, andMusic Processing 2014, 2014:19
http://asmp.eurasipjournals.com/content/2014/1/19

RESEARCH Open Access

Empirically combining unnormalized NNLM
and back-off N-gram for fast N-best rescoring
in speech recognition
Yongzhe Shi*, Wei-Qiang Zhang, Meng Cai and Jia Liu

Abstract

Neural network language models (NNLM) have been proved to be quite powerful for sequence modeling, including
feed-forward NNLM (FNNLM), recurrent NNLM (RNNLM), etc. One main issue concerned for NNLM is the heavy
computational burden of the output layer, where the output needs to be probabilistically normalized and the
normalizing factors require lots of computation. How to fast rescore the N-best list or lattice with NNLM attracts much
attention for large-scale applications. In this paper, the statistic characteristics of normalizing factors are investigated
on the N-best list. Based on the statistic observations, we propose to approximate the normalizing factors for each
hypothesis as a constant proportional to the number of words in the hypothesis. Then, the unnormalized NNLM is
investigated and combined with back-off N-gram for fast rescoring, which can be computed very fast without the
normalization in the output layer, with the complexity reduced significantly. We apply our proposed method to a
well-tuned context-dependent deep neural network hidden Markov model (CD-DNN-HMM) speech recognition
system on the English-Switchboard phone-call speech-to-text task, where both FNNLM and RNNLM are trained to
demonstrate our method. Experimental results show that unnormalized probability of NNLM is quite complementary
to that of back-off N-gram, and combining the unnormalized NNLM and back-off N-gram can further reduce the word
error rate with little computational consideration.

Keywords: Neural network language model; N-best rescoring; Speech recognition

1 Introduction
The output of the speech-to-text (STT) system is usu-
ally a multi-candidate form encoded as lattice or N-best
list. Rescoring via more accurate models, as a second
pass of the STT system, has been widely used to fur-
ther improve the performance. Fast rescoring with neural
network language models is investigated in the paper.
Neural network language models (NNLMs), includ-

ing feed-forward NNLM (FNNLM) [1,2] and recurrent
NNLM (RNNLM) [3-5], have achieved very good results
on many tasks [6-8], especially for RNNLM. Distributed
word representations and the associated probability esti-
mates are jointly computed in a feed-forward or recur-
rent neural network architecture. This approach provides

*Correspondence: shiyz09@gmail.com
Tsinghua National Laboratory for Information Science and Technology,
Department of Electronic Engineering, Tsinghua University, Beijing 100084,
China

automatic smoothing and leads to better generalization
for unseen N-grams. The main drawback of NNLM is
the great computational burden of the output layer that
contains tens of thousands of nodes corresponding to
the words in the vocabulary, where the output needs to
be probabilistically normalized for each word with the
softmax function and this softmax-normalization requires
lots of computations. Thus, N-best list for its simplicity is
usually rescored and reranked by NNLM, and the evalu-
ation speed of NNLM needs to be improved further for
large-scale applications.
Most of the previous work focuses on the speedup of

the training of NNLM via word clustering to structure the
output layer [4,9,10]. One typical method, the class-based
output layer method, was proposed, recently, for speeding
up RNNLM training [4], based on word frequency. This
method divides the cumulative probability into C par-
titions to form C frequency binnings which correspond

© 2014 Shi et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/193549106?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:shiyz09@gmail.com
http://creativecommons.org/licenses/by/2.0

Shi et al. EURASIP Journal on Audio, Speech, andMusic Processing 2014, 2014:19 Page 2 of 10
http://asmp.eurasipjournals.com/content/2014/1/19

to C clusters. The words are assigned to classes propor-
tionally. Based on the frequency clustering method, the
closed-form solution of the output layer complexity can
be written as O((C + |V|/C)H), where |V| and H denote
the number of nodes in the output layer and the hidden
layer, respectively. Another method [9,11,12] is to factor-
ize the output layer with a tree structure that needs to
be carefully constructed based on expert knowledge [13]
or other clustering method [14]. Although the structure-
based methods can speed up the evaluation of NNLM,
the complexities of these methods are still quite high in
real-time systems.
In this paper, the statistic characteristics of normalizing

factors are investigated for the N-best hypotheses. Based
on the statistic observations, we proposed to approximate
the normalizing factors for each hypothesis as a constant
proportional to the number of words in the hypothe-
sis, and the normalizing factors can be easily absorbed
into the word penalty. Then, the unnormalized NNLM
is investigated and combined with back-off N-gram for
fast rescoring, which can be computed very fast without
the normalization in the output layer, with the complexity
reduced significantly.
We apply our proposed method to a well-tuned

context-dependent deep neural network hidden Markov
model (CD-DNN-HMM) speech recognition system on
the English-Switchboard speech-to-text task. Both feed-
forward NNLM and recurrent NNLM are well-trained
to verify the effectiveness of our method. Experimen-
tal results show that unnormalized probability of NNLM
is quite complementary to that of back-off N-gram, and
combining the unnormalized NNLM and back-off N-
gram can further improve the performance of speech
recognition with little computational resource.
As our method is theoretically founded on the statis-

tic observations, we first introduce the experimental
setup, including the speech recognizer, N-best hypothe-
ses, NNLM structure, and NNLM training, in Section 2
for convenience. The remainder of this paper is organized
as follows: The statistics of the normalizing factors on the
hypotheses are investigated and the constant normaliz-
ing factor approximation is proposed in Section 3. How to
combine the unnormalized NNLM and back-off N-gram
is presented in Section 4, followed by complexity analysis
and speed comparisons in Section 5. Detailed experi-
mental evaluations for N-best rescoring are presented in
Section 6. Discussions on the related work are given in
Section 7, followed by the conclusions in Section 8.

2 Experimental setup
The experimental setup for the speech recognizer, N-best
hypotheses, the NNLM structure, and the NNLM train-
ing in our work was introduced here, since our method is
theoretically founded on statistical observations.

2.1 Speech recognizer and N-best hypotheses
The effectiveness of our proposed method is evaluated on
the STT task with the 309-hour Switchboard-I training
set [15]. The 13-dimensional perceptual linear prediction
features (PLP) with rolling-window mean-variance nor-
malization and up to third-order derivatives are reduced
to 39 dimensions by heteroscedastic linear discriminant
analysis (HLDA). The speaker-independent three-state
cross-word triphones share 9,308 tied states. The GMM-
HMM baseline system has 40-Gaussian mixtures per
state, trained with maximum likelihood (ML), and refined
discriminatively (DT) with the minimum phone error
(MPE) criterion. The well-tuned CD-DNN-HMM system
replaces the Gaussian mixtures with scaled likelihoods
derived fromDNN posteriors. The input to the DNN con-
tains 11 (5-1-5) frames of 39-dimensional features, where
the DNN uses the architecture of 429-2048×7-9308. The
data for system development is the 1831-segment Switch-
board part of the NIST 2000 Hub5 eval set (Hub5’00-
SWB). The Fisher half of the 6.3h Spring 2003 NIST rich
transcription set (RT03S-FSH) acts as the evaluation set.
The 2000h Fisher transcripts, containing about 23 mil-

lion words, are taken as our training corpus for language
modeling. Based on Kneser-Ney smoothing, a back-off tri-
gram language model (KN3) was trained on the 2000h
Fisher transcripts for decoding, where the vocabulary is
limited to 53K words and unknown words are mapped
into a special token <unk>. Note that no additional text is
used to train LMs for interpolations to ensure the repeata-
bility. The out-of-vocabulary rate is 0.80% for the training
corpus, 0.53% for the development corpus, and 0.017%
for the evaluation corpus. The pronouncing dictionary
comes from CMU [16]. The HDecodea command is used
to decode the utterance with KN3 to output the lattice,
and then the N-best hypotheses are extracted from the
lattice using the lattice-toolb command. In the setup, top
100-best hypotheses are rescored and reranked by other
language models, such as back-off 5-gram, FNNLM, and
RNNLM, to improve the performance.

2.2 Structure and training of NNLM
The typical structures of NNLMs are shown in Figures 1
and 2, corresponding to FNNLM and RNNLM, respec-
tively. We also define V, H and N as the vocabulary, the
size of hidden layer and the order of FNNLM, respectively.
The projection matrix E ∈ �|V|×H maps each word to the
feature vector as the distributional representation and fed
into the hidden layer.
Based on the structures of NNLM, the hidden

state ht of FNNLM can be computed as ht =
tanh

(∑N−1
o=1 W ihovt−o

)
, while that of RNNLM can be

computed as ht = sigmoid(W hhht−1+vt), where tanh and
sigmoid are the activation functions. The probability of
the next word is computed via the softmax function in the

Shi et al. EURASIP Journal on Audio, Speech, andMusic Processing 2014, 2014:19 Page 3 of 10
http://asmp.eurasipjournals.com/content/2014/1/19

Figure 1 Structure of feed-forward neural network language
model.

output layer, where W ho ∈ �|V|×H = [θ1, θ2, . . . , θ |V|]T is
the predictingmatrix and θ∀i ∈ �H×1 corresponds to each
output node.
The transcripts of the Hub5’00-SWB set and the RT03S-

FSH set act the development set and the evaluation set,
respectively, for NNLM training. One FNNLM and one
RNNLM are well-trained on the training corpus with
the open source toolkits, CSLM [17] and RNNLM [18],
respectively, where both of the hidden layers contain 300
nodes.
To speed up the training of the RNNLM, a frequency-

based partition method [4] is used to factorize the output
layer with 400 classes. The truncated backpropagation
through time algorithm (BPTT) [19] is used to train
the RNNLM with 10 time steps, with the initial learn-
ing rate set to 0.1. The learning rate is halved, when the
perplexity decreases very slowly or increases. On the con-
trary, the training of FNNLM can be speeded up with

Figure 2 Structure of recurrent neural network language model.

128 context-word pairs as a mini-batch based on GPU
implementation, so that no class layer was used, as the
class layer usually sacrifices the performance of NNLM
for speedup. The learning rate is empirically set as lr =
lr0/(1+count×wdecay), where the initial learning rate lr0
is set to 1.0, the weight decay ‘wdecay’ is set to 2 × 10−8,
and the parameter ‘count’ denotes the number of sam-
ples processed, so that the learning rate will decay with
the training of model. The basic back-off 5-gram language
model (KN5) is also trained with themodified Kneser-Ney
smoothing algorithm.

3 Statistics of normalizing factors on N-best
hypotheses

3.1 Review of N-best rescoring
The output from the first decoding pass is usually a multi-
candidate form encoded as lattice orN-best list. Each path
in lattice or N-best list is a candidate time-aligned tran-
script W = w1,w2, . . . ,wn of the speech utterance X.
N-best list for its simplicity is widely used, and N-best
rescoring in LVCSR is reviewed here.
Given the acoustic model �, the language model L,

and a speech utterance Xi, N-best hypotheses from ASR’s
decoding are denoted as Hi = Wi1,Wi2, . . . ,WiN , where
the score of each hypothesisWij is computed as

g(Xi,Wij|�, L) = logP(Xi|Wij,�) + α · logP(Wij|L)

+ nij · wdpenalt,
(1)

where the first two items correspond to acoustic scores
and language scores, respectively, and the last one denotes
the word penalty that balances insertions and deletions.
Also, α denotes a scaling factor for language scores and
nij denotes the number of words in the hypothesis Wij.
The global score for each hypothesis in Hi is computed
and reranked. The top hypothesis is selected as the output
for evaluation. Generally, better performance is expected
with more accurate models.

3.2 Normalizing factor for one word
Given a word sequence s̄, denote the t-th word as wt . The
identity of word wt is denoted as q(wt) = yi ∈ V, where
the subscript i of yi is the word index in the vocabulary
V. The structures of FNNLM and RNNLM are shown in
Figures 1 and 2, respectively, where W ho ∈ �| V|×H =[
θ1, θ2, . . . , θ |V|

]T is the prediction matrix and θ∀i ∈ �H×1

corresponds to each output node.
The predicted probability of NNLM is computed as

P(q(wt) = yj|ht) = exp(st)
zt

with st = θTj ht and zt =
|V |∑
i=1

exp
(
θTi ht

)
,

(2)

Shi et al. EURASIP Journal on Audio, Speech, andMusic Processing 2014, 2014:19 Page 4 of 10
http://asmp.eurasipjournals.com/content/2014/1/19

where exp(st) and zt respectively correspond to the
unnormalized probability and the softmax-normalizing
factor. Computing this factor zt results in heavy computa-
tional burden for normalization.
We evaluated our well-trained FNNLM and RNNLM

on the 100-best hypotheses generated from the Hub5’00-
SWB set (1,812 utterances), containing 147,454 hypothe-
ses and 2,125,315 words. The log(zt) for each word is
computed and the probability density functions (PDFs)
of the log(zt) for FNNLM and RNNLM are plotted and
shown in Figure 3. It shows that the log normalizing factor
is widely distributed, ranging from 13 to 20 for FNNLM
and from 7 to 20 for RNNLM, respectively. It seems that
the variance of log(zt) is so large that the normalizing
factor log(zt) can’t be simply approximated as a constant
for N-best rescoring. However, several findings from our
firsthand experience have been noticed to help us approx-
imate the normalizing factor, and we also conclude that
some discriminative information of NNLM exists in the
unnormalized probability for N-best rescoring in the next
two sub-sections.

3.3 Normalizing factor for one hypothesis
The output of speech recognizer is usually encoded as N-
best hypotheses, and the better hypothesis can be selected
via rescoring with more accurate models. The language
score for the hypothesis Wij = wij1,wij2, . . . ,wijnij is com-
puted as

logP(Wij|L) =
nij∑
t=1

log(P(wijt|hijt))

=
nij∑
t=1

sijt −
nij∑
t=1

log(zijt),

(3)

where nij denotes the number of words in hypothesis
Wij, sijt can be efficiently computed with the dot prod-
uct of two vectors, while zijt requires a lot of computing
consideration.
We randomly selected one utterance from Hub5’00-

SWB set and decoded it with HDecode for recognition.
Top ten hypotheses are shown in Table 1. We notice that
there are lots of similar contexts in N-best hypotheses,
especially for the hypotheses with a low word error rate
(WER), and differences usually exist in local. As a matter
of fact, the normalizing factor zijt is completely deter-
mined by the context via a smooth function in Equation 2,
and similar contexts will result in similar normalizing fac-
tors close to each other in value. Thus, lots of normalizing
factors in the N-best hypotheses are the same or simi-
lar as for lots of the same or similar contexts, so that we
roughly approximate

∑nij
t=1 log(zijt) for hypothesis Wij as

a constant proportional to nij in this case, shown as

μij = 1
nij

nij∑
t=1

log(zijt) ≈ μi, (4)

where μi is the constant corresponding to utterance Xi
and μi can be estimated as μi ≈ μij = 1

N
∑N

j=1 μij.
This approximation for utterance Xi can be evaluated

with the variance of μij as Var(μij) = 1
N

∑N
j=1 (μij − μij)2,

and μij denotes the mean of μij in Hi. As a matter
of fact, many utterances need to be approximated with
Equation 4, and these approximations can be evaluated
as mean of Var(μij) and variance of Var(μij) for all utter-
ances. The statistically smaller the Var(μij), the more
accurate the approximations.
We evaluated the well-trained FNNLM and RNNLM

on the 100-best hypotheses generated fromHub5’00-SWB

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log()

pr
ob
ab
il
ity

FNNLM-H300
RNNLM-H300-C400

Figure 3 PDF curves of log(zt) for each word on Hub5’00-SWB set.

Shi et al. EURASIP Journal on Audio, Speech, andMusic Processing 2014, 2014:19 Page 5 of 10
http://asmp.eurasipjournals.com/content/2014/1/19

Table 1 Ten hypotheses decoded from one utterance in
Hub5’00-SWB set

Hypotheses

1 No no it doesn’t work on every issue

2 No no it doesn’t work in every issue

3 No no it doesn’t work and every issue

4 No no it doesn’t work out every issue

5 Oh no no it doesn’t work on every issue

6 No no it doesn’t work then every issue

7 No no he doesn’t work on every issue

8 Oh no no it doesn’t work in every issue

9 On no no it doesn’t work on every issue

10 No no he doesn’t work in every issue

Lots of contexts are similar and differences usually exist in local.

set (1,812 utterances). The μij for each hypothesis and
the Var(μij) for each 100-best list are computed, and the
PDFs of Var(μij) for FNNLM and RNNLM are shown in
Figure 4. It shows that the PDFs are quite sharp and close
to zero, just like an impulse function, and the constant
approximation in Equation 4 for each utterance is accurate
and reasonable to some extent.

3.4 Number of words in hypothesis
We also notice that the number of words for one hypothe-
sis is similar with each other in theN-best list. As a matter
of fact, N-best hypotheses are rescored and reranked
according to the relative scores. If all the hypotheses for
utterance Xi contain the same number of words, then
the second item in Equation 3 for one hypothesis will be

the same as that of others in the N-best list, based on
Equation 4, shown as

nijμij ≈ nikμik , ∀i, j, k
s.t. nij ≈ nik and μij ≈ μi ≈ μik ∀i, j, k, (5)

That is to say, the normalizing factors for one hypothesis
will not affect the ranking in the N-best rescoring, and μi
for utterance Xi can be arbitrary. We further approximate
the constant μi to a global constant, irrelevant with the
utterance, shown as

μij ≈ μi ≈ μ, (6)

where μ is the global constant and can be estimated as
μ = 1

MN
∑M

i=1
∑N

j=1 μij on the validation set. M and
N denote the number of utterances and the number of
hypotheses for each utterance, respectively.
Please note that the approximations in Equation 5

depend on the assumption that the hypotheses for each
utterance are equal in length. We count the number of
words nij for each hypothesis Wij and compute the vari-
ance of nij for each utterance Xi as

Var(nij) = 1
N

N∑
j=1

(nij − nij)2) with nij = 1
N

N∑
j=1

nij

(7)

The statistically smaller the Var(nij), the more accu-
rate the approximation in Equations 5 and 6. The PDF
of Var(nij) on the 100-best hypotheses generated from
Hub5’00-SWB set is shown in Figure 5. It shows that
the PDF of Var(nij) is sharp and most of the Var(nij)

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

14

16

pr
ob
ab
il
ity

Var()

FNNLM-H300
RNNLM-H300-C400

Figure 4 PDF curves of Var(μij) for each N-best list on Hub5’00-SWB set.

Shi et al. EURASIP Journal on Audio, Speech, andMusic Processing 2014, 2014:19 Page 6 of 10
http://asmp.eurasipjournals.com/content/2014/1/19

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Var()

pr
ob
ab
il
ity

Figure 5 PDF curve of Var(nij) for each N-best list on Hub5’00-SWB set.

are smaller than 1.0. The difference of N-best hypothe-
ses in length is small, and the approximation for N-best
hypotheses in Equation 5 is reasonable to some extent.

3.5 Normalizing factor approximation
Based on the approximation in Equations 4, 5, and 6, the
LM scores in Equation 3 can be simplified as

logP(Wij|L) ≈
nij∑
t=1

sijt − nij · μ, (8)

where only the first item needs to be estimated, while
the second item can be estimated on validation set for
rescoring. The complexity of the output layer is signifi-
cantly reduced form O(|V|H) to O(H) with the constant
approximation of the normalizing factor.
We also notice that the discriminative information of

NNLM for N-best rescoring exists in the unnormalized
probability in Equation 8 and the LM scores from back-off
N-gram, especially for the KN3 in decoding, usually are
available for rescoring. We will investigate the discrimi-
native information in unnormalized NNLM (UP-NNLM),
combined with back-off N-gram, to further improve the
performance of speech recognizer in the next section.

4 Combining unnormalized NNLM and back-off
N-gram

The UP-NNLM combined with back-off N-gram in the
logarithmic domain is presented in detail. Generally, the
performance of STT systems can be further improved
with interpolation of NNLM and back-off N-gram. Since
exact probability of NNLM is unavailable in Equation 8,
the linear interpolation is performed in logarithmic
domain for the entire hypothesis, shown as

logP̃(Wij|L)

= λ · logP(Wij|L) + (1 − λ) · logPNgram(Wij|L)

= λ ·
nij∑
t=1

(sijt − μ) + (1 − λ) · logPNgram(Wij|L),
(9)

where PNgram(Wij|L) is the language score of back-off
N-gram for hypothesis Wij. By substituting Equation 9
into Equation 1, the global score for each hypothesis is
computed as

g(Xi,Wij|�, L)

= α · λ ·
nij∑
t=1

sijt + α · (1 − λ) · logPNgram(Wij|L)

+ logP(Xi|Wij,�) + nij · wdpenalty′

with wdpenalty′ = wdpenalty − α · λ · μ,

(10)

where the normalizing factor is absorbed into the word
penalty. The unnormalized probability only needs to be
computed. The computational complexity of the output
layer is reduced significantly without explicit normalization.

5 Complexity analysis and speed comparisons
The complexities of NNLM and UP-NNLM are analyzed,
and the evaluation speeds of NNLM and UP-NNLM are
also measured, shown in Table 2 for detailed comparisons.
The class-based output layer method was based on the

frequency partition [4], and the computational complex-
ity of the output layer is given asO((C+|V|/C)H), shown
in Table 2. This method is usually used to speed up the
training of NNLM while the evaluation of NNLM is also
speeded up. Compared with the class-based method, the
unnormalized probability of NNLM (UP-NNLM) in our

Shi et al. EURASIP Journal on Audio, Speech, andMusic Processing 2014, 2014:19 Page 7 of 10
http://asmp.eurasipjournals.com/content/2014/1/19

Table 2 Complexity and speed comparisons of UP-NNLMs
and NNLMs for word predictions

Model Complexity Speed × 103
(words/second)

RNNLMa O(H2 + |V|H) 0.041

+Class layer O(H2 + (|V|/C + C)H) 4.21

UP-RNNLM O(H2 + H) 11.95

FNNLMa O((N − 1)DH + |V|H) 0.214

+Class layer O((N − 1)DH + (|V|/C + C)H) 9.55

UP-FNNLM O((N − 1)DH + H) 17.77

fast-UP-FNNLM O(H) 240.38

aThe implementations of RNNLM and FNNLM are based on the open source
toolkits, CSLM and RNNLM. The matrix and vector operations in CSLM toolkit are
optimized via MKL Library, so that the evaluation of FNNLM is faster than RNNLM
with the same size of hidden layer.

method is required with the complexity O(H) in the out-
put layer. Especially, the complexity of the hidden layer
in FNNLM can be further reduced by lookup in the
position-dependent projection matrix Êk ∈ �|V|×H , k =
1, 2, · · · ,N − 1, where the Êk = EW ihk can be com-
puted off-line. We denote the fast version of UP-FNNLM
as fast-UP-FNNLM in Table 2.
The evaluation speed is measured by the number of

words processed per second on amachine with an Intel(R)
Xeon(R) 8-core CPU E5520 at 2.27 GHz and 8-G RAM,
shown in Table 2. The implementations are based on the
open source toolkits, CSLM [17] and RNNLM [18], to
ensure the repeatability. To compare clearly, the speed of
NNLM without a class layer is also measured. One mil-
lion words are randomly selected from training data and
evaluated by the FNNLM and NNLM, where the word
is fed into the FNNLM and RNNLM one by one. Exper-
imental results show that UP-FNNLM and UP-RNNLM
are about 2∼3 times faster than ‘FNNLM+ class layer’ and
‘RNNLM + class layer’ for evaluation. Note that the com-

Table 3 Testing speed comparisons of UP-NNLMs and
NNLMs for different hidden layers

Model
Speed× 103 (words/second)

10 50 100 200 300 400

RNNLMa 0.78 0.23 0.11 0.056 0.041 0.029

+Class layer 70.87 28.5 13.94 7.39 4.21 3.10

UP-RNNLM 400.01 197.75 80.30 26.93 11.95 7.20

FNNLMa 2.72 1.63 0.35 0.291 0.214 0.14

+Class layer 124.89 66.83 36.02 16.16 9.55 5.75

UP-FNNLM 678.48 209.16 83.95 25.33 17.77 11.63

fast-UP-FNNLM 746.43 557.18 406.47 291.35 240.38 201.75

aThe implementations of RNNLM and FNNLM are based on the open source
toolkits, CSLM and RNNLM. The matrix and vector operations in CSLM toolkit are
optimized via MKL Library, so that the evaluation of FNNLM is faster than RNNLM
with the same size of hidden layer.

plexity of the hidden layer in UP-FNNLM or UP-RNNLM
is comparable with that of class-based output layer in
FNNLM + class layer or RNNLM + class layer, so that this
speedup factor is reasonable. Also, it is worthy to notice
that the fast-UP-FNNLM ismore than 25 times faster than
FNNLM + class layer and more than 1,100 times faster
than FNNLM. To clearly show the speedup, the evalua-
tion speed is also compared with different hidden layers,
shown in Table 3. The larger the hidden layer, the slower
the evaluation, and the ‘fast-UP-FNNLM’ is the fastest
of all.

6 N-best rescoring evaluation
The NNLM and UP-NNLM are applied to N-best rescor-
ing to demonstrate the performance of our method in this
section. According to our experimental setup described in
Section 2, the perplexities of our trained language models,
including KN3, KN5, FNNLM, and RNNLM-C400, are
presented in Table 4 for comparisons, where KN3 is used
for decoding. It shows that the RNNLM-C400 interpo-
lated with KN5 performs best of all on the Hub5’00-SWB
set and the RT03S-FSH set. Also, RNNLM-C400 performs
slightly better than FNNLM with the same setup in per-
plexity. The Hub5’00-SWB set and the RT03S-FSH set
act the validation set and evaluation set, respectively. The
100-best hypotheses for these two sets are rescored and
reranked by different language models, shown in Table 5,
where 1-best denotes the output of HDecode with KN3.
The results for 1-best hypothesis on these two sets as
our baseline are comparable with other reported results
[20,21].
The UP-FNNLM and UP-RNNLM, combined with

back-off N-gram, are used for fast rescoring in this
section. Note that the output layer of our trained
RNNLM-C400 is divided into many small softmax out-
put layers in order to speed up the training on the large
corpus. Thus, the unnormalized probability comes from
the activations of the class layer and the specific softmax
output layer, while the entire normalizing factor is also
approximated as Equation 6. The UP-NNLM is linearly
interpolated with KN5 in the logarithmic domain. The

Table 4 Perplexity of Hub5’00-SWB and RT03S-FSH set for
different LMs

Model
Perplexity

Hub5’00-SWB RT03S-FSH

KN3 89.40 66.76

KN5 86.78 63.80

+FNNLM 71.84 53.98

+RNNLM-C400 66.67 51.34

FNNLM 76.17 56.99

RNNLM-C400 70.83 54.39

Shi et al. EURASIP Journal on Audio, Speech, andMusic Processing 2014, 2014:19 Page 8 of 10
http://asmp.eurasipjournals.com/content/2014/1/19

Table 5 Word error rates (WERs) of Hub5’00-SWB and RT03S-FSH for 100-best/1,000-best rescoring with NNLM and
UP-NNLM

Model
100-best WER (%) 1,000-best WER (%)

Hub5’00-SWB RT03S-FSH Hub5’00-SWB RT03S-FSH

1-best (KN3) 17.3 20.2 17.3 20.2

+UP-FNNLM 16.6 (−0.7) 19.0 (−1.2) 16.5 (−0.8) 19.0 (−1.2)

+UP-RNNLM-C400 16.5 (−0.8) 19.0 (−1.2) 16.4 (−0.9) 19.1 (−1.1)

+FNNLM 15.7 (−1.6) 18.4 (−1.8) 15.6 (−1.7) 18.4 (−1.8)

+RNNLM-C400 15.4 (−1.9) 18.2 (−2.0) 15.2 (−2.1) 18.4 (−1.8)

KN5 17.1 (−0.2) 19.5 (−0.7) 16.9 (−0.4) 19.4 (−0.8)

+UP-FNNLM 16.4 (−0.9) 18.6 (−1.6) 16.2 (−1.1) 18.6 (−1.6)

+UP-RNNLM-C400 16.1 (−1.2) 18.5 (−1.7) 16.0 (−1.3) 18.5 (−1.7)

+FNNLM 15.6 (−1.7) 18.3 (−1.9) 15.4 (−1.9) 18.2 (−2.0)

+RNNLM-C400 15.3 (−2.0) 18.1 (−2.1) 15.2 (−2.1) 18.1 (−2.1)

FNNLM 15.9 (−1.4) 18.7 (−1.5) 15.8 (−1.5) 18.7 (−1.5)

RNNLM-C400 15.4 (−1.9) 18.4 (−1.8) 15.5 (−1.8) 18.6 (−1.6)

weight for interpolation, the scale of LM scores, and the
word penalty are all individually tuned on Hub5’00-SWB
set, and then the final performance is evaluated on RT03S-
FSH set, shown in Table 5. Significant reductions in WER
are observed on the validation and evaluation sets. The
language scores of KN3 is usually available in the lattice
or N-best list, so that the UP-RNNLM combined with the
KN3 reducesWER by 0.8% and 1.2% absolute onHub5’00-
SWB and RT03S-FSH sets, respectively. ‘KN5 + UP-
RNNLM-C400’ further reduces the WER by 1.2% and
1.7% absolute on these two sets. Also, we notice that
UP-RNNLM performs slightly better than UP-FNNLM,
while UP-FNNLM can be evaluated much faster than UP-
RNNLM. It can be seen that the ‘UP-NNLM + KN5’ can
obtain about 1/2 to 2/3 gains of ‘NNLM + KN5’ with little
computation. Experimental results show that the unnor-
malized probability of NNLMs, including FNNLM and
RNNLM, is quite complementary to that of back-off N-
gram, and the performance is further improved via the
combination of back-off N-gram and NNLM.

7 Discussions with related work
Fast rescoring with NNLM has attracted much atten-
tion in the field of speech recognition [9,10,22-24]. Many
methods [9,10,22] for factorizing the output layer were
proposed to reduce the complexity of NNLM and to speed
up the training and the evaluation. Other techniques
[22,24] were proposed to avoid redundant computations
existing in N-best or lattice rescoring. Our proposed
method can be easily combinedwith thesemethods to fur-
ther improve the speed of rescoring. Also, a good work on
fast training of NNLM with noise-contrastive estimation
(NCE) [25] was proposed in [26], where the normaliz-
ing factor for each context was treated as a parameter

to learn during the training. The training of NNLM was
speeded up without the explicit normalization. As a mat-
ter of fact, the normalizing factor for each context needs
to be learned separately, and these normalizing factors for
different contexts will be different, so that the evaluation
of NNLM needs to be normalized explicitly. Interestingly,
we noticed that the normalizing factors can be manually
fixed to one instead of learning them during the training of
NNLM, as mentioned in [26]. We believe this findings will
be helpful to further improve our current work, since if the
variance of the normalizing factor could be constrained in
a small range the approximation will be further improved
in Equation 6. In this work, the distribution of normal-
izing factors on the N-best list is investigated, and the
normalizing factor for each hypothesis is approximated
as a constant for fast rescoring without considering the
variance of the normalizing factor. Based on the findings
mentioned in [26], we will investigate how to constrain
the variance of normalizing factors during the training to
further improve our method in the next work.

Table 6 Word error rates (WERs) of Hub5’00-SWB and
RT03S-FSH for lattice rescoring with UP-FNNLM

Model
WER

Hub5’00-SWB RT03S-FSH

1-best (KN3) 17.3 20.2

KN5 (100-best) 17.1 19.5

KN5 (1,000-best) 16.9 19.4

KN5 (lattice) 17.0 19.4

UP-FNNLM + KN5 (100-best) 16.4 18.6

UP-FNNLM + KN5 (1,000-best) 16.2 18.6

UP-FNNLM + KN5 (lattice) 16.2 18.5

Shi et al. EURASIP Journal on Audio, Speech, andMusic Processing 2014, 2014:19 Page 9 of 10
http://asmp.eurasipjournals.com/content/2014/1/19

Furthermore, an alternative method to speed up the
rescoring is to use the word lattice instead of N-best list.
The word lattice can compactly represent much more
hypotheses than the N-best list, as the output of STT. We
wonder whether our proposedmethod can be extended to
lattice rescoring. As we all know, the N-best list is close
to the lattice with the size of N-best list increased. Two
experiments are designed to validate our method. On the
one hand, we investigate whether the performance of N-
best rescoring will be degraded with the size of N-best
list increased. 1,000-best list instead of 100-best list is
extracted for each utterance and rescored by our proposed
method, shown in Table 5. Experimental results show
that our proposed method still works well for 1,000-best
list, and similar improvements are obtained for 1,000-
best rescoring. On the other hand, we directly rescore the
lattice with ‘lattice-tool’ [27] command to evaluate our
proposed method. In consideration of the easy implemen-
tation and fast rescoring, the ‘UP-FNNLM + KN5’ is inte-
grated into lattice-tool command, where the computation
of the LM score is replaced with Equation 9 for conve-
nience. The experimental results show that the rescoring
of lattice obtains a slightly lower WER than that of N-best
list in Table 6. All the results also mean that our proposed
approximations based on our firsthand observations are
reasonable and effective for fast N-best rescoring.

8 Conclusions
Based on the observed characteristics of N-best hypothe-
ses, the normalizing factors of NNLM for each hypoth-
esis are approximated as a global constant for fast
evaluation. The unnormalized NNLM combined with
back-off N-gram is empirically investigated and eval-
uated on the English-Switchboard speech-to-text task.
The computation complexity is reduced significantly
without explicit softmax normalization. Experimental
results show that UP-NNLM is about 2∼3 times faster
than ‘NNLM + class layer’ for evaluation. Moreover,
the fast-UP-FNNLM is more than 25 times faster than
FNNLM + class layer and more than 1,100 times faster
than FNNLM. The N-best hypotheses from STT’s output
are approximately rescored and reranked by unnormal-
ized NNLM combined with back-offN-grammodel in the
logarithmic domain. Experimental results show that the
unnormalized probability of NNLM, including FNNLM
and RNNLM, is quite complementary to that of back-
off N-gram, and UP-NNLM is discriminative for N-best
rescoring, even though UP-NNLM is not so accurate. The
performance of STT system is improved significantly by
‘KN5 + UP-NNLM’ with little computational resource.

Endnotes
aHDecode -A -D -T 1 -s 12.0 -p -6.0 -n 32 -t 150.0

150.0 -v 105.0 95.0 -u 10000 -l lat/ -z lat -C CF -H

models/HMM -w models/LM -S xa.scp -i xa.mlf
models/DICT models/LIST (http://htk.eng.cam.ac.uk/
extensions/).

blattice-tool -nbest-decode 100 -read-htk -htk-logbase
2.718 -htk-lmscale 12.0 -htk-wdpenalty -6.0 -in-lattice-
list xa.lst -out-nbest-dir nbest/ (http://www.speech.sri.
com/projects/srilm/manpages/lattice-tool.1.html).

Abbreviations
ASR: automatic speech recognition; DNN: deep neural network; FNNLM:
feed-forward neural network language model; KN: Kneser-Ney smoothing
algorithm; KN3: back-off 3-gram based on KN smoothing; KN5: back-off
5-gram based on KN smoothing; LM: back-off N-gram language model; NNLM:
neural network language model; PDF: probability density function; PPL:
perplexity; RNNLM: recurrent neural network language model; STT:
speech-to-text; WER: word error rate.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
The authors are grateful to the anonymous reviewers for their insightful and
valuable comments. This work was supported by the National Natural Science
Foundation of China under Grant Nos. 61273268, 61005019, and 90920302,
and in part by the Beijing Natural Science Foundation Program under Grant
No. KZ201110005005.

Received: 7 December 2013 Accepted: 4 April 2014
Published: 28 April 2014

References
1. Y Bengio, R Ducharme, P Vincent, C Jauvin, A neural probabilistic

language model. Mach. Learn. Res. (JMLR), 1137–1155 (2003)
2. E Arisoy, TN Sainath, B Kingsbury, B Ramabhadran, Deep neural network

language models, in Proceedings of NAACL-HLTWorkshop (Montreal,
2012), pp. 20–28. http://www.aclweb.org/anthology/W12-2703

3. T Mikolov, M Karafiat, L Burget, JH Cernocky, S Khudanpur, Recurrent
neural network based language model, in Proceedings of InterSpeech
(Makuhari, 2010), pp. 1045–1048

4. T Mikolov, S Kombrink, L Burget, JH Cernocky, S Khudanpur, Extensions of
recurrent neural network language model, in Proceedings of ICASSP
(Prague, 2011)

5. M Sundermeyer, R Schluter, H Ney, LSTM neural networks for language
modeling, in Proceedings of InterSpeech (Portland, 2012)

6. T Mikolov, A Deoras, S Kombrink, L Burget, JH Cernocky, Empirical
evaluation and combination of advanced language modeling
techniques, in Proceedings of InterSpeech (Florence, 2011)

7. S Kombrink, T Mikolov, M Karafiat, L Burget, Recurrent neural network
based language modeling in meeting recognition, in Proceedings of
InterSpeech (Florence, 2011)

8. T Mikolov, Statistical language models based on neural networks. PhD
thesis, Brno University of Technology (BUT), 2012. http://www.fit.vutbr.cz/
imikolov/rnnlm/thesis.pdf.

9. HS Le, I Oparin, A Allauzen, JL Gauvain, F Yvon, Structured output layer
neural network language models for speech recognition. IEEE Trans.
Audio Speech Lang. Process. 21, 197–206 (2013)

10. Y Shi, WQ Zhang, J Liu, MT Johnson, RNN language model with word
clustering and class-based output layer. EURASIP J. Audio Speech Music
Process. 22 (2013). doi:10.1186/1687-4722-2013-22

11. F Morin, Y Bengio, Hierarchical probabilistic neural network language
model, in Proceedings of AISTATS (Barbados, 2005), pp. 246–252

12. A Mnih, G Hinton, A scalable hierarchical distributed language model.
Adv. Neural Inf. Process. Syst. 21, 1081–1088 (2008)

13. C Fellbaum,WordNet: an Electronic Lexical Database (MIT, Cambridge,
1998)

14. PF Brown, PV deSouza, RL Mercer, VJD Pietra, JC Lai, Class-based N-gram
models for natural language. Comput. Linguist. 18(4), 467–479 (1992)

15. J Godfrey, E Holliman, Switchboard-1 Release 2 (Linguistic Data
Consortium, Philadelphia, 1997)

http://htk.eng.cam.ac.uk/extensions/
http://htk.eng.cam.ac.uk/extensions/
http://www.speech.sri.com/projects/srilm/manpages/lattice-tool.1.html
http://www.speech.sri.com/projects/srilm/manpages/lattice-tool.1.html
http://www.aclweb.org/anthology/W12-2703
http://www.fit.vutbr.cz/ imikolov/rnnlm/thesis.pdf
http://www.fit.vutbr.cz/ imikolov/rnnlm/thesis.pdf

Shi et al. EURASIP Journal on Audio, Speech, andMusic Processing 2014, 2014:19 Page 10 of 10
http://asmp.eurasipjournals.com/content/2014/1/19

16. The CMU pronouncing dictionary release 0.7a (2007). http://www.speech.
cs.cmu.edu/cgi-bin/cmudict.

17. H Schwenk, CSLM: Continuous space language model toolkit (2010).
http://www-lium.univ-lemans.fr/cslm/

18. T Mikolov, A Deoras, S Kombrink, L Burget, JH Cernocky, RNNLM -
Recurrent Neural Network Language Modeling Toolkit, in Proceedings of
ASRU (Hawaii, 2011). http://www.fit.vutbr.cz/imikolov/rnnlm/

19. DE Rumelhart, GE Hinton, RJ Williams, Learning representations by
back-propagating errors. Nature 323, 533–536 (1986)

20. F Seide, G Li, X Chen, D Yu, Feature engineering in context-dependent
deep neural networks for conversational speech transcription, in
Proceedings of ASRU (Hawaii, 2011)

21. M Cai, Y Shi, J Liu, Deep maxout neural networks for speech recognition,
in Proceedings of ASRU (Olomouc, 2013)

22. H Schwenk, Continuous space language models. Comput. Speech Lang.
21(3), 592–518 (2007)

23. M Auli, M Galley, C Quirk, G Zweig, Joint language and translation
modeling with recurrent neural networks, in Proceedings of EMNLP
(Seattle, 2013), pp. 1044–1054

24. Y Si, Q Zhang, T Li, J Pan, Y Yan, Prefix tree based n-best list re-scoring for
recurrent neural network language model used in speech recognition
system, in Proceedings of InterSpeech (Lyon, 2013), pp. 3419–3423

25. M Gutmann, A Hyvarinen, Noise-contrastive estimation: a new estimation
principle for unnormalized statistical models, in Proc. of AISTATS (Sardinia,
2010), pp. 297–304

26. A Mnih, YW Teh, A fast and simple algorithm for training neural
probabilistic language models, in Proceedings of ICML (Edinburgh, 2012)

27. A Stolcke, SRILM – an extensible language modeling toolkit, in
Proceedings of ICSLP, (2002), pp. 901–904

doi:10.1186/1687-4722-2014-19
Cite this article as: Shi et al.: Empirically combining unnormalized NNLM
and back-off N-gram for fast N-best rescoring in speech recognition.
EURASIP Journal on Audio, Speech, andMusic Processing 2014 2014:19.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://www.speech.cs.cmu.edu/cgi-bin/cmudict
http://www.speech.cs.cmu.edu/cgi-bin/cmudict
http://www-lium.univ-lemans.fr/cslm/
http://www.fit.vutbr.cz/ imikolov/rnnlm/

	Abstract
	Keywords

	1 Introduction
	2 Experimental setup
	2.1 Speech recognizer and N-best hypotheses
	2.2 Structure and training of NNLM

	3 Statistics of normalizing factors on N-best hypotheses
	3.1 Review of N-best rescoring
	3.2 Normalizing factor for one word
	3.3 Normalizing factor for one hypothesis
	3.4 Number of words in hypothesis
	3.5 Normalizing factor approximation

	4 Combining unnormalized NNLM and back-off N-gram
	5 Complexity analysis and speed comparisons
	6 N-best rescoring evaluation
	7 Discussions with related work
	8 Conclusions
	Endnotes
	Abbreviations
	Competing interests
	Acknowledgements
	References

