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Abstract
The purpose of this paper is to investigate some strong convergence as well as
stability results of some iterative procedures for a special class of mappings. First, this
class of mappings called weak Jungck (ϕ ,ψ )-contractive mappings, which is a
generalization of some known classes of Jungck-type contractive mappings, is
introduced. Then, using an iterative procedure, we prove the existence of coincidence
points for such mappings. Finally, we investigate the strong convergence of some
iterative Jungck-type procedures and study stability and almost stability of these
procedures. Our results improve and extend many known results in other spaces.
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1 Introduction
Czerwik [] initiated the study of multivalued contractions in b-metric spaces.

Definition . Let X be a set and let s ≥  be a given real number. A function d : X ×X →
R

+ is said to be a b-metric if and only if for all x, y, z ∈ X the following conditions are
satisfied:
() d(x, y) =  if and only if x = y;
() d(x, y) = d(y,x);
() d(x, z)≤ s[d(x, y) + d(y, z)].

Then the pair (X,d) is called a b-metric space.

It is clear that normed linear spaces, lp (or Lp) spaces (p > ), l∞ (or L∞) spaces, Hilbert
spaces, Banach spaces, hyperbolic spaces, R-trees and CAT() spaces are examples of b-
metric spaces.
Throughout this paper, R+ is the set of nonnegative real numbers and Y is a nonempty

arbitrary subset of a b-metric space (X,d). Moreover, F(T) = {x ∈ Y : Tx = x} will be de-
noted as the set of fixed points of T : Y → X. Approximately, all the concepts and results
in metric spaces are extended to the setting of b-metric spaces (for more details, see []).
The first result on stability of T-stable mappings was introduced by Ostrowski [] for

the Banach contraction principle. Harder and Hicks [] proved that the sequence {xn}
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generated by the Picard iterative process in a complete metric space converges strongly
to the fixed point of T and is stable with respect to T , provided that T is a Zamfirescu
mapping. Rhoades [] extended the stability results of [] to more general classes of con-
tractive mappings. Ding [] constructed the Ishikawa-type iterative process in a convex
metric space. He showed that this process converges to the fixed point of T , provided that
T belongs in the class which is defined by Rhoades.
A mapping T is said to be a ϕ-quasinonexpansive if F(T) �= ∅ and there exists a function

ϕ :R+ →R
+ such that

d(Tx,p) ≤ ϕ
(
d(x,p)

)

for all x ∈ X and p ∈ F(T).
Osilike [] considered a mapping T from a metric space X into itself satisfying the con-

dition d(Tx,Ty) ≤ δd(x, y) + Ld(x,Tx) for some δ ∈ [, ) and L ≥  for all x, y ∈ X. Fur-
thermore, he extended some of the stability results in []. Indeed, he proved T-stability
for such a mapping with respect to Picard, Kirk, Mann, and Ishikawa iterations. There-
after, Olatinwo [] improved this concept to the context of multivalued weak contrac-
tion for the Jungck iteration in a complete b-metric space. In [] this contractive con-
dition was generalized by replacing this condition with d(Tx,Ty) ≤ δd(x, y) + ϕ(d(x,Tx)),
where  ≤ δ <  and ϕ : R+ → R

+ is monotone increasing with ϕ() = , and some sta-
bility results were proved. Recently, Olatinwo [] extended this condition to d(Tx,Ty) ≤
ϕ(d(x, y)) + ψ(d(x,Tx)), where ϕ : R+ → R

+ is a subadditive comparison function and
ψ : R+ → R

+ is monotone increasing with ψ() = . He studied this contractive condi-
tion as a particular case of the class of ϕ-quasinonexpansive mappings (see []). Also, he
proved some stability results as well as strong convergence results for the pair of nonself
mappings in a complete metric space.
In , Goebel [] generalized the well-known Banach contraction principle by taking

a continuous mapping S in place of the identity mapping, where S commuted with T and
T(X) ⊂ S(X). In fact, he used two mappings S,T : Y → X for introducing the contractive
condition as follows.
A mapping T is called a Jungck contraction if there exists a real number  ≤ α <  such

that

(JC) d(Tx,Ty) ≤ αd(Sx,Sy)

for all x, y ∈ Y . In addition, Jungck [], using a constructive method, proved the existence
of a unique common fixed point of S and T , where Y = X.
A mapping T is said to be a Jungck-Zamfirescu contraction (JZ) if there exist real num-

bers α, β , and γ satisfying  ≤ α < ,  ≤ β ,γ < 
 such that for each x, y ∈ Y , one has at

least one of the following:

(z) d(Tx,Ty)≤ αd(Sx,Sy);
(z) d(Tx,Ty)≤ β[d(Sx,Tx) + d(Sy,Ty)];
(z) d(Tx,Ty) ≤ γ [d(Sx,Ty) + d(Sy,Tx)].
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A mapping T is said to be a contractive mapping satisfying (JS), (JR) or (JQC) if there
exists a constant q ∈ [, ) such that for any x, y ∈ Y ,

(JS) d(Tx,Ty)≤ qmax

{
d(Sx,Sy),



[
d(Sx,Ty) + d(Sy,Tx)

]
,d(Sx,Tx),d(Sy,Ty)

}
,

(JR) d(Tx,Ty) ≤ qmax

{
d(Sx,Sy),



[
d(Sx,Tx) + d(Sy,Ty)

]
,d(Sx,Ty),d(Sy,Tx)

}
,

(JQC) d(Tx,Ty) ≤ qmax
{
d(Sx,Sy),d(Sx,Tx),d(Sy,Ty),d(Sx,Ty),d(Sy,Tx)

}
.

AmappingT is said to be aweak Jungck contraction if there exist two constants a ∈ [, )
and L ≥  such that for all x, y ∈ Y ,

(WJC) d(Tx,Ty)≤ ad(Sx,Sy) + Ld(Sx,Tx).

It is worth mentioning that a Jungck-Zamfirescu mapping is a (JR) mapping. In [,
Proposition .], a comparison of the above contractive conditions is established as fol-
lows.

Proposition .
(i) (JC) ⇒ (JS) ⇒ (JQC);
(ii) (JC) ⇒ (JR) ⇒ (JQC);
(iii) (JS) and (JR) are independent;
(iv) (JR) ⇒ (WJC);
(v) (JS) and (WJC) are independent;
(vi) (JQC) and (WJC) are independent;
(vii) reverse implications of (i), (ii), and (iv) are not true.

In this paper, a special class of mappings called a weak Jungck (ϕ,ψ)-contraction is in-
troduced, and it is shown that it contains other known classes of Jungck-type contractive
mappings. Then, using a Jungck-Picard iterative procedure, we investigate the existence
of coincidence points and the uniqueness of the coincidence value of weak Jungck (ϕ,ψ)-
contractive mappings. Also, some strong convergence as well as stability results of some
Jungck-type iterative procedures (such as Jungck-Ishikawa etc.) are studied. These results
play a crucial role in numerical computations for approximation of coincidence values of
two nonlinear mappings.

2 Preliminary
In [], Berinde introduced the concepts of comparison function and (c)-comparison func-
tion with respect to the function ϕ : R+ → R

+. A function ϕ is called a comparison func-
tion if it satisfies the following:

(iϕ) ϕ is monotone increasing, i.e., t < t ⇒ ϕ(t) ≤ ϕ(t);
(iiϕ) The sequence {ϕn(t)} →  for all t ∈R

+, where ϕn stands for the nth iterate of ϕ.

If ϕ satisfies (iϕ) and

(iiiϕ )
∑∞

n=ϕ
n(t) converges for all t ∈R

+,

then ϕ is said to be a (c)-comparison function.

http://www.fixedpointtheoryandapplications.com/content/2013/1/331
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Several results regarding comparison functions can be found in [] and []. Referring
to [] and [], we have:
. Any (c)-comparison function is a comparison function;
. Any comparison function satisfies ϕ() =  and ϕ(t) < t for all t > ;
. Any subadditive comparison function is continuous;
. Condition (iiiϕ ) is equivalent to the following one:

There exist k ∈N, α ∈ (, ) and a convergent series of nonnegative terms
∑

vn
such that

ϕk+(t) ≤ αϕk(t) + vk

holds for all k ≥ k and any t ∈R
+.

Berinde [] expanded the concept of (c)-comparison functions in b-metric spaces to
s-comparison functions as follows.

Definition . Let s ≥  be a real number. A mapping ϕ : R+ → R
+ is called an s-

comparison function if it satisfies (iϕ) and

(ivϕ) There exist k ∈ N, α ∈ (, ), and a convergent series of nonnegative terms
∑

vn such
that

sk+ϕk+(t) ≤ αskϕk(t) + vk

holds for all k ≥ k and any t ∈R
+.

Applying results  and  regarding comparison functions, it is easy to conclude that
every s-comparison function is a comparison function.
In the sequel, some lemmas which are useful to obtain our main results are stated.

Lemma . ([]) Let ϕ : R+ → R
+ be a comparison function, and let εn be a sequence of

positive numbers such that limn→∞ εn = . Then

lim
n→∞

n∑
k=

ϕn–k(εk) = .

Lemma . ([]) Let {un}, {αn}, and {εn} be sequences of nonnegative real numbers satis-
fying the inequality

un+ ≤ αnun + εn, n ∈N.

If αn ≥ ,
∑∞

n=(αn – ) <∞ and
∑∞

n= εn < ∞, then limn→∞ un exists.

Lemma . Suppose that {un} and {εn} are two sequences of nonnegative numbers such
that

un+ ≤ ϕ(un) + εn, n = , , , . . . , (.)

where ϕ is a subadditive comparison function. If limn→∞ εn = , then limn→∞ un = .

http://www.fixedpointtheoryandapplications.com/content/2013/1/331
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Proof The monotone increasing and the subadditivity of ϕ together with inequality (.)
imply that

un+ ≤ ϕ(un) + εn

≤ ϕ
(
ϕ(un–) + εn–

)
+ εn

≤ ϕ(un–) + ϕ(εn–) + εn

...

≤ ϕn+(u) +
n∑
i=

ϕn–i(εi), (.)

where ϕ = I (identity mapping). Moreover, since any comparison function satisfies (iiϕ),
hence limn→∞ ϕn+(u) = . Also, we have limn→∞

∑n
i= ϕn–i(εi) =  from Lemma ..

Thus, inequality (.) implies that limn→∞ un = . �

Lemma . Let {αn} be a real sequence in [, ], let {εn} be a sequence of positive numbers
such that

∑∞
n= εn converges, and let {un} be a sequence of nonnegative numbers such that

un+ ≤ ( – αn)un + αnϕ(un) + εn, n = , , , . . . , (.)

where ϕ is a convex subadditive comparison function. If
∑∞

n= αn =∞, then limn→∞ un = .

Proof Since ϕ(t) ≤ t for all t ≥ , using a straightforward induction and (.), one can
obtain

un+p+ ≤ ( – αn+p)un+p + αn+pϕ(un+p) + εn+p

≤ ( – αn+p)
[
( – αn+p–)un+p– + αn+p–ϕ(un+p–) + εn+p–

]
+ αn+p

[
( – αn+p–)ϕ(un+p–) + αn+p–ϕ

(un+p–) + ϕ(εn+p–)
]
+ εn+p

≤ ( – αn+p)( – αn+p–)un+p– +
[
 – ( – αn+p)( – αn+p–)

]
ϕ(un+p–)

+ εn+p– + εn+p

...

≤
(n+p∏

i=n

( – αi)

)
un +

(
 –

n+p∏
i=n

( – αi)

)
ϕ(un) +

n+p∑
i=n

εi

≤
(n+p∏

i=n

( – αi)

)
un + ϕ(un) +

n+p∑
i=n

εi

≤ exp

(
–

n+p∑
i=n

αi

)
un + ϕ(un) +

n+p∑
i=n

εi

for all n,p ∈N. Now,
∑∞

n= αn =∞ yields that limp→∞ exp(–
∑n+p

i=n αi) = . Then

lim sup
p→∞

up = lim sup
p→∞

un+p+ ≤ ϕ(un) +
∞∑
i=n

εi, n = , , , . . . , (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/331
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which implies that

lim sup
p→∞

up ≤ lim inf
n→∞ ϕ(un) ≤ lim inf

n→∞ un.

Therefore, there exists u ∈ R
+ such that limn→∞ un = u. Assume that u > . Since ϕ is

continuous and
∑∞

n= εn converges, letting n→ ∞ in (.), we get that u≤ ϕ(u) < u, which
is a contradiction. Hence u =  and the desired conclusion follows. �

3 Weak Jungck (ϕ,ψ )-contractivemappings
In this section, the class of weak Jungck (ϕ,ψ)-contractive mappings which contains the
class of Jungck ϕ-quasinonexpansive mappings is studied. Furthermore, it is showed that
this class includes the various classes of contractive mappings which is introduced in Sec-
tion .

Definition . Let Y be an arbitrary subset of a b-metric space (X,d), and let S,T : Y → X
be such that z is a coincidence point of S and T , i.e., Sz = Tz = p. We say that T is a Jungck
ϕ-quasinonexpansive mapping with respect to S if there exists a function ϕ : R+ → R

+

such that

d(Tx,p) ≤ ϕ
(
d(Sx,p)

)
for all x ∈ Y .

The above definition was used in [] when S is the identity mapping on Y = X.

Definition . Let Y be an arbitrary subset of a b-metric space (X,d) and S,T : Y → X.
A mapping T is said to be a weak Jungck (ϕ,ψ)-contractive mapping with respect to S
if there exist an s-comparison function ϕ :R+ → R

+ and a monotone increasing function
ψ :R+ →R

+ with upper semicontinuity from the right atψ() =  such that for all x, y ∈ Y ,

d(Tx,Ty) ≤ ϕ
(
d(Sx,Sy)

)
+ψ

(
min

{
d(Sx,Tx),d(Sx,Ty)

})
. (.)

It is obvious that any weak Jungck (ϕ,ψ)-contraction is also Jungck ϕ-quasinonexpan-
sive, but the reverse is not true. The next example illustrates this matter.

Example . Let S,T : [, ] → [, ] be given by Sx = x and

Tx =

{
,  ≤ x ≤ 

 ,

 ,


 < x ≤ ,

where [, ] is endowed with the usual metric. It is easy to see that T satisfies the following
property:

d(Tx,p) ≤ ϕ
(
d(x,p)

)
for all x ∈ [, ], p ∈ F(T) = {}, and ϕ(x) = x. But T is not a weak Jungck (ϕ,ψ)-contractive
mapping. Indeed, if there exist a -comparison function ϕ and a monotone increasing

http://www.fixedpointtheoryandapplications.com/content/2013/1/331
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function ψ with upper semicontinuity from the right at ψ() =  such that for all x, y ∈
[, ],

d(Tx,Ty) ≤ ϕ
(
d(x, y)

)
+ψ

(
min

{
d(x,Tx),d(x,Ty)

})
,

then, taking x = 
 , y = , we have 

 ≤ ϕ(  ) + ψ(). This shows that the class of ϕ-
quasinonexpansivemappings properly includes the class ofweak Jungck (ϕ,ψ)-contractive
mappings.

In what follows, we prove that all the mappings introduced in Section  are in the class
of weak Jungck (ϕ,ψ)-contractive mappings. It is clear that every Jungck contractive map-
ping is a weak Jungck (ϕ,ψ)-contractive mapping with ϕ(t) = αt and ψ(t) = , where
 ≤ α < 

s .

Proposition . Let (X,d) be a b-metric space with parameter s, let Y be an arbitrary
subset of X, and let S,T : Y → X. If T is a Jungck-Zamfirescu contraction (JZ), then T is
a weak Jungck (ϕ,ψ)-contractive mapping if α < 

s and β ,γ < 
s(+s) .Moreover, it is a weak

Jungck (ϕ,ψ)-contraction with ϕ(t) = max{α, βs
–βs ,

γ s
–γ s }t and ψ(t) = max{ β(+s)

–βs , γ (+s)
–γ s }t

for all t ∈R
+.

Proof If min{d(Sx,Tx),d(Sx,Ty)} = d(Sx,Tx), then for all x, y ∈ Y ,

d(Tx,Ty) ≤ β
[
d(Sx,Tx) + d(Sy,Ty)

]
≤ βd(Sx,Tx) + βs

[
d(Sy,Tx) + d(Tx,Ty)

]
≤ βd(Sx,Tx) + βs

[
d(Sy,Sx) + d(Sx,Tx)

]
+ βsd(Tx,Ty),

which implies that

d(Tx,Ty) ≤ βs

 – βs
d(Sx,Sy) +

β( + s)
 – βs

d(Sx,Tx).

Also

d(Tx,Ty) ≤ γ
[
d(Sx,Ty) + d(Sy,Tx)

]
≤ γ s

[
d(Sx,Tx) + d(Tx,Ty)

]
+ γ s

[
d(Sy,Sx) + d(Sx,Tx)

]

yields that

d(Tx,Ty) ≤ γ s
 – γ s

d(Sx,Sy) +
γ s
 – γ s

d(Sx,Tx).

Similarly, if min{d(Sx,Tx),d(Sx,Ty)} = d(Sx,Ty), then for all x, y ∈ Y ,

d(Tx,Ty) ≤ β
[
d(Sx,Tx) + d(Sy,Ty)

]
≤ βs

[
d(Sx,Ty) + d(Ty,Tx)

]
+ βs

[
d(Sy,Sx) + d(Sx,Ty)

]
,

http://www.fixedpointtheoryandapplications.com/content/2013/1/331
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thus

d(Tx,Ty) ≤ βs
 – βs

d(Sx,Sy) +
βs
 – βs

d(Sx,Ty).

In addition,

d(Tx,Ty) ≤ γ
[
d(Sx,Ty) + d(Sy,Tx)

]
≤ γd(Sx,Ty) + γ s

[
d(Sy,Ty) + d(Ty,Tx)

]
≤ γd(Sx,Ty) + γ s

[
d(Sy,Sx) + d(Sx,Ty)

]
+ γ sd(Tx,Ty)

implies that

d(Tx,Ty) ≤ γ s

 – γ s
d(Sx,Sy) +

γ ( + s)
 – γ s

d(Sx,Ty).

Now, let

ϕ(t) :=max

{
α,

βs
 – βs

,
βs

 – βs
,

γ s
 – γ s

,
γ s

 – γ s

}
t =max

{
α,

βs

 – βs
,

γ s

 – γ s

}
t

and

ψ(t) :=max

{
,

βs
 – βs

,
β( + s)
 – βs

,
γ s
 – γ s

,
γ ( + s)
 – γ s

}
t

=max

{
β( + s)
 – βs

,
γ ( + s)
 – γ s

}
t

for all t ∈ R
+. It is clear that ϕ is an s-comparison function, where α < 

s and β ,γ < 
s(+s)

and ψ is a monotone increasing function which is continuous from the right at ψ() = .
�

The following result shows that this fact is still true for amore general class ofmappings.

Proposition . Let X, Y and S,T : Y → X be as in the above proposition. If T satisfies
(JS), then T is a weak Jungck (ϕ,ψ)-contractive mapping, provided that q < 

s(+s) . Fur-

thermore, it is a weak Jungck (ϕ,ψ)-contraction with ϕ(t) = qs
–qs t and ψ(t) = qs

–qs t for all
t ∈R

+.

Proof If min{d(Sx,Tx),d(Sx,Ty)} = d(Sx,Tx), then according to the inequality

d(Tx,Ty) ≤ qd(Sy,Ty) ≤ qs
[
d(Sy,Tx) + d(Tx,Ty)

]
= qs

[
d(Sy,Sx) + d(Sx,Tx)

]
+ qsd(Tx,Ty),

we have

d(Tx,Ty) ≤ qs

 – qs
d(Sx,Sy) +

qs

 – qs
d(Sx,Tx)

http://www.fixedpointtheoryandapplications.com/content/2013/1/331


Razani and Bagherboum Fixed Point Theory and Applications 2013, 2013:331 Page 9 of 17
http://www.fixedpointtheoryandapplications.com/content/2013/1/331

for all x, y ∈ Y . Moreover,

d(Tx,Ty) ≤ q

[
d(Sx,Ty) + d(Tx,Sy)

]
≤ qs


[
d(Sx,Tx) + d(Tx,Ty)

]
+
qs


[
d(Tx,Sx) + d(Sx,Sy)

]
implies that

d(Tx,Ty) ≤ qs
 – qs

d(Sx,Sy) +
qs
 – qs

d(Sx,Tx).

On the other hand, if min{d(Sx,Tx),d(Sx,Ty)} = d(Sx,Ty), then

d(Tx,Ty) ≤ qd(Sx,Tx)≤ qs
[
d(Sx,Ty) + d(Ty,Tx)

]
yields that

d(Tx,Ty) ≤ qs
 – qs

d(Sx,Ty)

for all x, y ∈ Y . Also

d(Tx,Ty) ≤ qd(Sy,Ty) ≤ qs
[
d(Sy,Sx) + d(Sx,Ty)

]
.

Moreover,

d(Tx,Ty) ≤ q

[
d(Sx,Ty) + d(Tx,Sy)

]
≤ q


d(Sx,Ty) +

qs


[
d(Tx,Ty) + d(Ty,Sy)

]
≤ q


d(Sx,Ty) +

qs

d(Tx,Ty) +

qs


[
d(Ty,Sx) + d(Sx,Sy)

]
yields that

d(Tx,Ty) ≤ qs

 – qs
d(Sx,Sy) +

q( + s)
 – qs

d(Sx,Ty).

Now, we take

ϕ(t) :=max

{
,q,qs,

qs
 – qs

,
qs

 – qs
,

qs

 – qs

}
t =

qs

 – qs
t

and

ψ(t) :=max

{
,q,qs,

qs
 – qs

,
qs
 – qs

,
qs

 – qs
,
q( + s)
 – qs

}
t =

qs

 – qs
t

for all t ∈ R
+. It shows that ϕ is an s-comparison function provided that q < 

s(+s) and ψ

is a monotone increasing function which is continuous at ψ() = . �

http://www.fixedpointtheoryandapplications.com/content/2013/1/331
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Similar arguments illustrate that every (JR) mapping is a weak Jungck (ϕ,ψ)-contractive
mapping, provided that q < 

s(+s) . In fact, it is a weak Jungck (ϕ,ψ)-contractionwith ϕ(t) =

ψ(t) = qs
–qs t for all t ∈ R

+. Also, every (JQC) mapping is a weak Jungck (ϕ,ψ)-contractive

mapping with ϕ(t) = ψ(t) = qs
–qs t for all t ∈R

+, provided that q < 
s(+s) .

4 Convergence results
In , Takahashi [] defined a convex structure on metric spaces. In this section a
version of the convexity notion in b-metric spaces is stated. Then, using some Jungck-type
iterative procedures, we prove the existence of coincidence points as well as the strong
convergence theorems for the weak Jungck (ϕ,ψ)-contractive mappings.

Definition . Let (X,d) be a b-metric space. A mapping W : X × X × [, ] → X is said
to be a convex structure on X if for each (x, y,λ) ∈ X ×X × [, ] and z ∈ X,

d
(
z,W (x, y,λ)

) ≤ λd(z,x) + ( – λ)d(z, y). (.)

A b-metric space X equipped with the convex structure W is called a convex b-metric
space, which is denoted by (X,d,W ).

Example . The space lp (p > ) consisting of all the sequences {xn} of real numbers for
which

∑∞
n= |xn|p converges, with the function d : lp × lp →R given by

d(x, y) =
∞∑
n=

|xn – yn|p,

for all x, y ∈ lp, is a b-metric space with s = p– > . Also, regarding the convexity of f (t) =
tp, we obtain that d(z,λx + ( – λ)y) ≤ λd(z,x) + ( – λ)d(z, y) for all z ∈ lp, that is, lp (p > )
is a convex b-metric space with W (x, y,λ) = λx + ( – λ)y. (In a similar way, the space Lp

(p > ) is a convex b-metric space.)

Now, the iterative procedures in a convex b-metric space are ready to be illustrated. From
now on, it is assumed that (X,d) is a b-metric space (resp. (X,d,W ) is a convex b-metric
space) with parameter s and that S,T : Y → X are two nonself mappings on a subset Y of
X such that T(Y )⊂ S(Y ), where S(Y ) is a complete subspace of X.
Let {xn} be the sequence generated by an iterative procedure involving the mapping T

and S, that is,

Sxn+ = f (T ,xn), n = , , , . . . , (.)

where x ∈ Y is the initial approximation and f is a function.
In the sequel, we discuss several special cases of (.):
. The Jungck iteration (or Jungck-Picard iteration) is given from (.) for

f (T ,xn) = Txn. This process was essentially introduced by Jungck [] and it reduces
to the Picard iterative process, when S is the identity mapping on Y = X ;
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. The Jungck-Krasnoselskij iteration is defined by (.) with

f (T ,xn) =W (Sxn,Txn,λ), (.)

where  ≤ λ ≤ ;
. The Jungck-Mann iteration is stated by (.) with

f (T ,xn) =W (Sxn,Txn,αn), (.)

where {αn} is a sequence of real numbers such that ≤ αn ≤ ;
. The Jungck-Ishikawa iteration is introduced by (.) with

f (T ,xn) =W (Sxn,Tyn,αn),

Syn =W (Sxn,Txn,βn),
(.)

where {αn} and {βn} are two sequences of real numbers such that ≤ αn,βn ≤ .
It is worth noting that Olatinwo and Postolache [] used the above iterative procedures

in the setting of convex metric spaces.

Theorem . Suppose that (X,d) is a b-metric space, and let S,T : Y → X be such that
T is a weak Jungck (ϕ,ψ)-contractive mapping. Then S and T have a coincidence point.
Moreover, for any x ∈ Y , the sequence {Sxn} generated by the Jungck-Picard iterative pro-
cess converges strongly to the coincidence value.

Proof First, we prove that S and T have at least one coincidence point in Y . To do this,
let {xn} be the Jungck-Picard iterative process defined by Sxn+ = Txn and x ∈ Y . Taking
x = xn and y = xn– in (.), we obtain

d(Txn,Txn–) ≤ ϕ
(
d(Sxn,Sxn–)

)
+ψ

(
min

{
d(Sxn,Txn),d(Sxn,Txn–)

})
,

which implies that

d(Sxn+,Sxn) ≤ ϕ
(
d(Sxn,Sxn–)

)
,

and, inductively,

d(Sxn+,Sxn) ≤ ϕn(d(Sx,Sx)).
Therefore

d(Sxn+p,Sxn) ≤ sp–d(Sxn+p,Sxn+p–) + sp–d(Sxn+p–,Sxn+p–)

+ · · · + sd(Sxn+,Sxn+) + sd(Sxn+,Sxn)

≤ spϕn+p–(d(Sx,Sx)) + sp–ϕn+p–(d(Sx,Sx))
+ · · · + sϕn+(d(Sx,Sx)) + sϕn(d(Sx,Sx))
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=
p∑
i=

siϕn+i–(d(Sx,Sx))

=


sn–

n+p–∑
i=n

siϕi(d(Sx,Sx)), n,p ∈N,p �= .

Since
∑∞

i= siϕi(t) < ∞ for all t ∈ R
+, {Sxn} is a Cauchy sequence. Also, S(Y ) is complete,

so {Sxn} has a limit in S(Y ), that is, there exists z ∈ S–p such that p = limn→∞ Sxn. Hence,
Sz = p and

d(Sz,Tz) ≤ sd(Sz,Sxn+) + sd(Sxn+,Tz) = sd(Sxn+,Sz) + sd(Tz,Txn)

≤ sd(Sxn+,Sz) + sϕ
(
d(Sz,Sxn)

)
+ sψ

(
min

{
d(Sz,Tz),d(Sz,Txn)

})
≤ sd(Sxn+,p) + sd(Sxn,p) + sψ

(
d(Sxn+,p)

)
.

Taking the upper limit in the above inequality, we obtain d(Sz,Tz) = . Hence, Tz = Sz = p,
i.e., z is a coincidence point.
Now, we show that S and T have a unique coincidence value. Assume that S and T

have two coincidence values p,q ∈ X such that p �= q. Then there exist z, z ∈ Y such that
Sz = Tz = p and Sz = Tz = q. Thus, we conclude that

d(p,q) = d(Tz,Tz) ≤ ϕ
(
d(Sz,Sz)

)
+ψ

(
min

{
d(Sz,Tz),d(Sz,Tz)

})
= ϕ

(
d(p,q)

)
.

From our assumptions on ϕ, it is impossible unless d(p,q) = , that is, p = q, which is a
contradiction. �

Using Proposition ., one can conclude that the above theorem is a significant extension
of [, Theorem .] and [, Theorem .].

Theorem . Let (X,d,W ) be a convex b-metric, and let S,T : Y → X be such that T is
a weak Jungck (ϕ,ψ)-contractive mapping such that ϕ is a convex subadditive function.
Let {αn} be a real sequence in [, ] such that

∑∞
n=( – αn) = ∞. Then, for any x ∈ Y , the

sequence {Sxn} defined by the Jungck-Ishikawa iterative process converges strongly to the
coincidence value of S and T .

Proof Theorem . states the existence of coincidence points in Y and one can obtain the
uniqueness of coincidence value in a similar way. We now show that the Jungck-Ishikawa
iteration given by Sxn+ = W (Sxn,Tyn,αn), where Syn = W (Sxn,Txn,βn) for each x ∈ Y ,
converges to p = Sz = Tz, where z is a coincidence point of S and T . Using (.), we have

d(Sxn+,p) ≤ αnd(Sxn,p) + ( – αn)d(Tyn,p)

≤ αnd(Sxn,p) + ( – αn)

× [
ϕ
(
d(Sz,Syn)

)
+ψ

(
min

{
d(Sz,Tz),d(Sz,Tyn)

})]
= αnd(Sxn,p) + ( – αn)ϕ

(
d(Syn,p)

)
, (.)
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and

d(Syn,p) ≤ βnd(Sxn,p) + ( – βn)d(Txn,p)

≤ βnd(Sxn,p) + ( – βn)

× [
ϕ
(
d(Sz,Sxn)

)
+ψ

(
min

{
d(Sz,Tz),d(Sz,Txn)

})]
≤ βnd(Sxn,p) + ( – βn)ϕ

(
d(Sxn,p)

)
≤ βnd(Sxn,p) + ( – βn)d(Sxn,p)

= d(Sxn,p). (.)

Substituting (.) in (.), it follows that

d(Sxn+,p) ≤ αnd(Sxn,p) + ( – αn)ϕ
(
d(Sxn,p)

)
, n = , , , . . . .

Since ϕ is a convex subadditive comparison function, we have the desired result from
Lemma .. �

Remark .
() Based on Theorem ., it is clear that the Jungck-Mann iterative process as well as

the Jungck-Krasnoselskij iterative process converge;
() In normed linear spaces, the generalization of this theorem is stated by Olatinwo [,

];
() In Hilbert spaces, assuming that q < 

s(+s) in (JQC), Theorem . is an extension of
the results in [].

The following example shows that condition (.) in Theorem . is necessary.

Example . Let S,T : [, ]→ [, ] be given by Sx = x and

Tx =

{
,  ≤ x ≤ 

 ,

 ,


 < x ≤ ,

where [, ] is endowed with the usual metric. Let x ∈ (  , ] and xn+ = λxn + ( – λ)Txn
for n = , , , . . . . Then xn+ = λn+x + –λn+

 , which implies that limn→∞ xn = 
 if  ≤ λ < 

and limn→∞ xn = x �=  if λ = . Therefore, the Krasnoselskij iteration associated to T does
not converge strongly to the coincidence value.

5 Stability results
This section is devoted entirely to the stability of some various iterative procedures in b-
metric spaces. This concept was first proposed by Ostrowski [] in metric spaces. Then,
Czerwik et al. [, ] extended Ostrowski’s classical theorem in the setting of b-metric
spaces. In addition, Singh et al. [] introduced the stability and almost stability of Jungck-
type iterative procedures in metric spaces. Below, we state these concepts in convex b-
metric spaces.
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Definition . Let (X,d,W ) be a convex b-metric space, let Y be a subset of X, and let
S,T : Y → Y be such that T(Y ) ⊂ S(Y ). For any x ∈ Y , let the sequence {Sxn}, generated
by iterative procedure (.), converges to p. Also, let {Syn} ⊂ X be an arbitrary sequence
and let εn = d(Syn+, f (T , yn)), n = , , , . . . . Then

(i) Iterative procedure (.) will be called (S,T)-stable if limn→∞ εn =  implies that
limn→∞ Syn = p.

(ii) Iterative procedure (.) will be called almost (S,T)-stable if
∑∞

n= εn < ∞ implies
that limn→∞ Syn = p.

The above definition reduces to the concept of the stability of iterative procedure due to
Harder and Hicks [] when S is the identity mapping on Y = X.

Example . Let S,T : [, ] → [,  ] be given by Sx = x + x
 and

Tx =

{
,  ≤ x ≤ 

 ,

 ,


 < x ≤ ,

where [,  ] is endowed with the usual metric. Let x ∈ [, ] and Sxn+ = Txn for n =
, , , . . . . If  ≤ x ≤ 

 , then Sxn+ = Txn = , and if 
 < x ≤ , we have Sx = Tx = 


and Sxn+ = Txn =  for all n ∈ N. Thus limn→∞ Sxn =  = S() = T(); i.e., the Picard iter-
ation converges strongly to the coincidence value. But the Picard iteration is not (S,T)-
stable. Indeed, take the sequence {yn} given by yn = n+

n , n ∈ N. One can see easily that
the sequence {Syn} does not converge to the coincidence value, while εn = d(Syn+,Tyn) =


(n+) +


(n+) →  as n→ ∞.

Our next theorem is presented for a pair of mappings on a nonempty subset with values
in b-metric spaces under a condition more general than the condition stated by Singh
and Prasad [, Theorem .]. Further, this theorem reduces the condition sq <  to the
condition sq < .

Theorem . Let (X,d) be a b-metric space and T be a weak Jungck (ϕ,ψ)-contractive
mapping such that ϕ is subadditive. For x ∈ Y , let {Sxn} be the Picard iterative process
defined by Sxn+ = Txn. Then the Jungck-Picard iteration is (S,T)-stable.

Proof Note that, by Theorem ., there exists a coincidence point z ∈ Y such that {Sxn}
converges to p = Sz = Tz. Suppose that {Syn} ⊂ X and define εn = d(Syn+, f (T , yn)), where
f (T , yn) = Tyn. Assume that limn→∞ εn = . Then we have

d(Syn+,p) ≤ s
[
d(Syn+,Tyn) + d(Tyn,p)

]
≤ sεn + s

[
ϕ
(
d(Sz,Syn)

)
+ψ

(
min

{
d(Sz,Tz),d(Sz,Tyn)

})]
= sεn + sϕ

(
d(Syn,p)

)
.

Since ϕ is a subadditive s-comparison function, we get that sϕ is a subadditive comparison
function. Therefore, Lemma . yields that limn→∞ d(Syn,p) = , that is, limn→∞ Syn = p.

�
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Remark . Theorem . is a generalization of Theorem . of Singh andAlam [], The-
orem . of Singh et al. [], Theorems . and . of Singh and Prasad [], Theorem  of
Osilike [], Theorem  of Berinde [], Theorem . of Bosede and Rhoades [] as well
as Corollary  of Qing and Rhoades [].

The following example shows that the Ishikawa iterative process is not (S,T)-stable.

Example . Let S,T : [, ] → R be given by Sx = x and Tx = –x
 , where R is again en-

dowed with the usual metric. Then T is a weak Jungck ( I , )-contraction. Let {xn} be a
sequence generated by the Ishikawa iterative process with αn = βn = – 

n+ and x ∈ [, ].
Then

{
zn = Szn = βnSxn + ( – βn)Txn = ( – 

n+ )xn +


n+Txn = ( – 
(n+) )xn,

xn+ = Sxn+ = αnSxn + ( – αn)Tzn = ( – 
n+ )xn +


n+Tzn = ( – 

(n+) +


(n+) )xn.

Suppose that tn = 
(n+) –


(n+) . As tn ∈ (, ) and

∑∞
n= tn = ∞, Lemma  of [] implies

that limn→∞ xn =  = S() = T() (the unique coincidence value of S and T ).
To prove the fact that the Ishikawa iteration is not (S,T)-stable, we use the sequence

{yn} given by yn = n+
n+ . Then

εn =
∣∣yn+ – f (T , yn)

∣∣
=

∣∣∣∣yn+ –
(
 –


(n + )

+


(n + )

)
yn

∣∣∣∣
=

∣∣∣∣n + 
n + 

–
(
 –


(n + )

+


(n + )

)
n + 
n + 

∣∣∣∣
=

n + n + 
(n + )(n + )(n + )

.

It is clear that limn→∞ εn =  and
∑∞

n= εn = ∞, while limn→∞ yn = . Therefore, the
Ishikawa iterative procedure is not (S,T)-stable, but it is almost (S,T)-stable. (The almost
(S,T)-stability is shown in the following.)

The following theorem states that Jungck-Mann iterative and Jungck-Ishikawa iterative
process are almost (S,T)-stable provided that

∑∞
n= αn < ∞.

Theorem . Let (X,d,W ) be a convex b-metric space and let T be a weak Jungck (ϕ,ψ)-
contractive mapping such that ϕ is a convex subadditive function. Let {αn} be a real se-
quence in [, ] such that

∑∞
n= αn < ∞. For x ∈ Y , let {Sxn} be the Ishikawa iterative pro-

cess given by (.). Then the Jungck-Ishikawa iteration is almost (S,T)-stable.

Proof In view of Theorem ., there exists a coincidence point z ∈ Y such that {Sxn} con-
verges to p = Sz = Tz. Suppose that {Syn} ⊂ X, εn = d(Syn+,W (Syn,Tun,αn)), n = , , , . . . ,
where Sun =W (Syn,Tyn,βn). Assume that

∑∞
n= εn < ∞. Then

d(Syn+,p) ≤ s
[
d
(
Syn+,W (Syn,Tun,αn)

)
+ d

(
W (Syn,Tun,αn),p

)]
≤ sεn + s

[
αnd(Syn,p) + ( – αn)d(Tun,p)

]
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≤ sεn + sαnd(Syn,p) + s( – αn)

× [
ϕ
(
d(Sz,Sun)

)
+ψ

(
min

{
d(Sz,Tz),d(Sz,Tun)

})]
≤ sεn + sαnd(Syn,p) + s( – αn)ϕ

(
d(Sun,p)

)
, (.)

and

d(Sun,p) ≤ βnd(Syn,p) + ( – βn)d(Tyn,p)

≤ βnd(Syn,p) + ( – βn)

× [
ϕ
(
d(Sz,Syn)

)
+ψ

(
min

{
d(Sz,Tz),d(Sz,Tyn)

})]
≤ βnd(Syn,p) + ( – βn)ϕ

(
d(Syn,p)

)
≤ βnd(Syn,p) + ( – βn)d(Syn,p)

= d(Syn,p). (.)

From (.) and (.), we conclude that

d(Syn+,p) ≤ sεn + sαnd(Syn,p) + s( – αn)ϕ
(
d(Syn,p)

)
. (.)

Since ϕ is an s-comparison function, sϕ is a comparison function. Thus, inequality (.)
implies that

d(Syn+,p) ≤ sεn + sαnd(Syn,p) + ( – αn)d(Syn,p) =
(
 + (s – )αn

)
d(Syn,p) + sεn.

Now, according to Lemma ., limn→∞ d(Syn,p) exists. Therefore, there exists u ∈R
+ such

that limn→∞ d(Syn,p) = u. Assume that u > . Since sϕ is a subadditive comparison func-
tion, ϕ is continuous and sϕ(t) < t for all t > . Then, letting n → ∞ in (.), we get
u≤ sϕ(u) < u, which is a contradiction. Hence, u =  and this completes the proof. �

In a similar way, using Lemma  of [] in place of Lemma . in the previous proof, by
omitting the condition

∑
αn < ∞, one can prove that Theorem . holds in convex met-

ric spaces. This indicates that the Ishikawa iterative process given Example . is almost
(S,T)-stable.
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