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Abstract
The related properties of derivations in lattices are investigated. We show that the set
of all isotone derivations in a distributive lattice can form a distributive lattice.
Moreover, we introduce the fixed set of derivations in lattices and prove that the fixed
set of a derivation is an ideal in lattices. Using the fixed sets of isotone derivations, we
establish characterizations of a chain, a distributive lattice, a modular lattice and a
relatively pseudo-complemented lattice, respectively. Furthermore, we discuss the
relations among derivations, ideals and fixed sets in lattices.
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1 Introduction
The system of lattice algebra plays a significant role in information theory [], information
retrieval [], information access controls [] and cryptanalysis []. In [], Bell described
the co-information lattice, used it to show how to express the probability density under a
general hypergraphical model, and then used this to derive the lattice of dependent com-
ponent analysis algorithms. In [], Carpineto and Romano applied lattices to information
retrieval. They introduced the bound facility and the integration of this and several other
useful features, such as automatic indexing, fisheye view browser for lattice, and the use of
thesaurus into a basic lattice framework. In [], Sandhu showed that lattice-based manda-
tory access controls can be enforced by appropriate configuration of RBAC components.
His constructions demonstrated that role hierarchies and constraints were required to ef-
fectively achieve this result. In [], Durfee applied tools from the geometry of numbers to
solve several problems in cryptanalysis. They used algebraic techniques to cryptanalyze
several public key cryptosystems. They focused on RSA and RSA-like schemes and used
tools from the theory of integer lattices to get some results.
The notion of derivation, introduced from the analytic theory, is helpful for the research

of structure and property in an algebraic system. Recently, analytic and algebraic proper-
ties of lattices have been widely researched [–]. Several authors [–] studied deriva-
tions in rings and near-rings. Jun and Xin [] applied the notion of derivation in ring and
near-ring theory to BCI-algebras.
In [], Xin et al. introduced the concept of derivation in a lattice and investigated some

properties. They gave some equivalent conditions, under which a derivation is isotone
for lattices with a greatest element, modular lattices and distributive lattices, respectively.
They characterized modular lattices and distributive lattices by isotone derivations. But
the relations among derivations, ideals and fixed sets were not investigated in that paper.
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We will discuss when an ideal can appear as this ‘fixed set’ for a derivation in this paper.
This paper is a continuation to the paper [].
The remainder of this paper is organized as follows. In Section , we recall some defi-

nitions and some properties of lattice theory. In Section , we investigate further related
properties of derivations in lattices and show a structural theorem of all isotone deriva-
tions in distributive lattices. In Section , we introduce the fixed set of derivations and
get some interesting properties of them. Especially, using the fixed set of isotone deriva-
tions, we establish characterizations for some kinds of lattices. Furthermore, we discuss
the relations among derivations, ideals and fixed sets in lattices. Finally, some concluding
remarks are made in Section .

2 Preliminaries
Definition . [] Let L be a nonempty set endowed with operations ‘∧’ and ‘∨’. If
(L,∧,∨) satisfies the following conditions: for all x, y, z ∈ L,
(A) x∧ x = x, x∨ x = x;
(B) x∧ y = y∧ x, x∨ y = y∨ x;
(C) (x∧ y)∧ z = x∧ (y∧ z), (x∨ y)∨ z = x∨ (y∨ z);
(D) (x∧ y)∨ x = x, (x∨ y)∧ x = x,

then L is called a lattice.

Definition . [] A lattice L is distributive if the identity (E) or (F) holds.
(E) x∧ (y∨ z) = (x∧ y)∨ (x∧ z),
(F) x∨ (y∧ z) = (x∨ y)∧ (x∨ z).

In any lattice, the conditions (E) and (F) are equivalent.

Definition . [] A lattice L is modular if the identity (M) holds.
(M) If x ≤ z, then x∨ (y∧ z) = (x∨ y)∧ z.

Definition . [] A relatively pseudo-complemented lattice (or Brouwerian lattice) is a
lattice L in which, for any given elements a,b ∈ L, the set of all x ∈ L such that a ∧ x ≤ b
contains a greatest element b : a, the relative pseudo-complement of a in b.

Lemma . [] Any relatively pseudo-complemented lattice is distributive.

Definition . [] A Boolean algebra is an algebra (B;∨,∧,′ , , ) with two binary opera-
tions ∨, ∧, one unary operation ′, and two nullary operations , , such that the following
conditions are satisfied:
() (B;∨,∧) is a distributive lattice;
() for all a ∈ B, ∨ a = a, a∧  = a;
() for all a ∈ B, there is a′ ∈ B such that a∨ a′ = , a∧ a′ = .

Definition . [] Let (L,∧,∨) be a lattice. A binary relation ‘≤’ is defined by x≤ y if and
only if x∧ y = x and x∨ y = y.

Lemma. [] Let (L,∧,∨) be a lattice.Define the binary relation ‘≤’ as in Definition ..
Then (L,≤) is a poset and for any x, y ∈ L, x∧ y is the g.l.b. of {x, y}, and x∨ y is the l.u.b. of
{x, y}.

http://www.fixedpointtheoryandapplications.com/content/2012/1/218
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From Lemma ., we can see that a lattice is not only an algebraic system, but also an
order structure.

Definition . [] Let θ : L → M be a function from a lattice L to a lattice M. Then θ is
a lattice-homomorphism (or homomorphism) when

θ (x∧ y) = θ (x)∧ θ (y)

and

θ (x∨ y) = θ (x)∨ θ (y)

for all x, y ∈ L.

As always, a homomorphism is called an isomorphism if it is a bijection, an epimorphism
if onto, a monomorphism if one-to-one.

Definition . [] An ideal is a non-void subset I of a lattice L with the properties
() x ≤ y, y ∈ I ⇒ x ∈ I ,
() x, y ∈ I ⇒ x∨ y ∈ I , for all x, y ∈ L. Moreover, an ideal I of a lattice L is called a prime

ideal if I satisfies the following condition:
() x∧ y ∈ L implies x ∈ L or y ∈ L for all x, y ∈ L.

Note that if I and I are ideals of a lattice L, so is I ∩ I.

3 The derivations in lattices
In this section, we recall some definitions and results of the paper [].
The following definition introduces the notion of derivation for a lattice, which comes

in analogy with Leibniz’s formula for derivations in a ring.

Definition . [] Let L be a lattice and d : L → L be a function. We call d a derivation
on L if it satisfies the condition d(x∧ y) = (dx∧ y)∨ (x∧ dy).

We often abbreviate d(x) to dx.
Now we give some examples and present some properties for the derivations in lattices.

Example . Let L be the lattice of Figure , and define functions d and d on L by

dx =

⎧⎪⎪⎨
⎪⎪⎩

x, x =  or ,

b, x = a,

a, x = b,

dx =

⎧⎪⎪⎨
⎪⎪⎩

a, x = a or ,

, x = b,

, x = .

Then we can see that d is not a derivation but d is a derivation on L.

Proposition . [] Let L be a lattice and d be a derivation on L. Then the following
hold:
() dx ≤ x;

http://www.fixedpointtheoryandapplications.com/content/2012/1/218
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Figure 1 Diagram of Example 3.2.

() dx∧ dy≤ d(x∧ y) ≤ dx∨ dy;
() If I is an ideal of L, then dI ⊆ I , where dI = {dx | x ∈ I};
() If L has a least element , then d = .

Remark . In Proposition ., we get an interesting property of derivation, i.e., dx ≤ x.
This means that any derivation in lattices is a contraction mapping. By the principle of a
contractionmapping, any derivation in lattices must have fixed points.We will discuss the
structures and properties of the fixed point set of a derivation for a lattice later.

Definition . [] Let L be a lattice and d be a derivation on L.
() If x ≤ y implies dx ≤ dy, we call d an isotone derivation.
() If d is one-to-one, we call d amonomorphic derivation.
() If d is onto, we call d an epic derivation.

By analogy with principal ideals, we introduce a principal derivation in lattices as fol-
lows.

Definition . Let L be a lattice and a ∈ L. Define a function da on L by da(x) = x∧ a for
all x ∈ L. Then we can see that da is a derivation on L. In the following, we refer to such
derivations as principal.

Proposition . Every principal derivation of a lattice L is an isotone derivation of L.

Proof Let da be a principal derivation of a lattice L. Since for any x, y ∈ L and x ≤ y, we
have da(x) = x∧ a ≤ y∧ a = da(y) and hence da is isotone. �

Proposition . [] Let L be a lattice and d be a derivation on L. If y≤ x and dx = x, then
dy = y.

Proposition . [] Let L be a lattice and d be a derivation on L. Define dx = d(dx) for
all x ∈ L. Then we have d = d.

Theorem . Let L be a lattice and d : L → L be a derivation. Then the following are
equivalent:
() d is an isotone derivation;
() d(x∧ y) = dx∧ y.

http://www.fixedpointtheoryandapplications.com/content/2012/1/218
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Proof () ⇒ (). Assume d is isotone. Then d(x ∧ y) = (dx ∧ y) ∨ (x ∧ dy) ≥ dx ∧ y. Con-
versely, since x ∧ y ≤ x and x ∧ y ≤ y, we can get d(x ∧ y) ≤ dx and d(x ∧ y) ≤ dy. Then
d(x∧ y) ≤ dx∧ dy≤ dx∧ y. Therefore, d(x∧ y) = dx∧ y.
()⇒ (). Assume d(x∧y) = dx∧y for all x, y in L. Then d(x∧y) = d(y∧x) = dy∧x. Then

(x∧dy)∨ (dx∧ y) = x∧dy = d(x∧ y). Furthermore, if x ≤ y, since d(x∧ y) = dx∧ y = x∧dy,
then dx = x∧ dy. Therefore, dx∨ dy = (x∧ dy)∨ dy = dy. We can get dx ≤ dy. �

Theorem . Let L be a lattice and d : L → L be a derivation. Then the following are
equivalent:
() d(x∧ y) = dx∧ y;
() d(x∧ y) = dx∧ dy.

Proof ()⇒ (). Obversely, we have (dx∧dy)≤ (dx∧y). By (), dx∧y = d(x∧y) = d(y∧x) =
dy∧ x. Since dx∧ y ≤ dx and dy∧ x ≤ dy, we can get dx∧ y = dy∧ x ≤ dx∧ dy.
()⇒ (). Assume d(x∧ y) = dx∧dy for all x, y in L. If x ≤ y, then dx = d(x∧ y) = dx∧dy.

We can get dx ≤ dy. This shows that d is an isotone derivation. From Theorem ., we
know () holds. �

From the Theorem . and Theorem ., we have the following theorem.

Theorem . Let L be a lattice and d : L → L be a derivation. Then the following are
equivalent:
() d is an isotone derivation;
() d(x∧ y) = dx∧ y;
() d(x∧ y) = dx∧ dy.

However, derivations of distributive lattices have stronger properties.

Theorem . [] Let L be a distributive lattice and d be a derivation on L. Then the
following are equivalent:
() d is isotone;
() d(x∧ y) = dx∧ dy;
() d(x∨ y) = dx∨ dy.

Theorem. Let L be a distributive lattice and d and d be two isotone derivations on L.
Define

(d ∧ d)(x) = dx∧ dx,

(d ∨ d)(x) = dx∨ dx.

Then d ∧ d and d ∨ d are also isotone derivations on L.

Proof We first prove d ∨ d is an isotone derivation on L.
By Theorem ., we have

(d ∨ d)(x∧ y)

= d(x∧ y)∨ d(x∧ y)

http://www.fixedpointtheoryandapplications.com/content/2012/1/218
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= (dx∧ y)∨ (dx∧ y)

= (dx∨ dx)∧ y

= (d ∨ d)(x)∧ y.

Similarly, we can get (d ∨ d)(x∧ y) = (d ∨ d)(y)∧ x.
Combining the above arguments, we have

(d ∨ d)(x∧ y) =
(
(d ∨ d)(x)∧ y

) ∨ (
(d ∨ d)(y)∧ x

)
.

So, d ∨ d is a derivation on L by Definition ..
Moveover, (d ∨ d)(x ∨ y) = d(x ∨ y) ∨ d(x ∨ y) = (d(x) ∨ d(y)) ∨ (d(x) ∨ d(y)) =

(d(x)∨ d(x))∨ (d(y)∨ d(y)) = (d ∨ d)(x)∨ (d ∨ d)(y), so d ∨ d is isotone by Theo-
rem ..
Similar to the above process, we can prove d ∧ d is an isotone derivation on L and we

omit it. �

Theorem . Let L be a distributive lattice and D(L) be a set of all isotone derivations
on L. Then 〈D(L),∨,∧〉 is a distributive lattice.

Proof FromTheorem .,∨ and∧ are binary operators onD(L). Define a binary relation
‘≤’ on D(L) by d ≤ d iff d ∧ d = d. Then ‘≤’ is a partial order relation on D(L) and
g.l.b.{d,d} = d ∧ d, l.u.b.{d,d} = d ∨ d. Therefore, 〈D(L),∨,∧〉 is a lattice.
In addition, for any d,d,d ∈ D(L) and any x ∈ L,

(
d ∧ (d ∨ d)

)
(x)

= dx∧ (dx∨ dx)

= (dx∧ dx)∨ (dx∧ dx)

=
(
(d ∧ d)x

) ∨ (
(d ∧ d)x

)

=
(
(d ∧ d)∨ (d ∧ d)

)
(x).

Therefore, d ∧ (d ∨ d) = (d ∧ d) ∨ (d ∧ d). This shows that 〈D(L),∨,∧〉 is a dis-
tributive lattice. �

4 The fixed set of a derivation in lattices
Theorem . Let L be a lattice and d be an isotone derivation on L.Denote Fixd(L) = {x ∈
L : dx = x}. Then Fixd(L) is an ideal of L.

Proof By Proposition . we can see that x ∈ Fixd(L) and y ≤ x imply y ∈ Fixd(L). This
means that Fixd(L) satisfies the condition () of Definition .. For the condition () of
Definition ., we consider x, y ∈ Fixd(L). By the isotoneness of d, we have x ∨ y = dx ∨
dy ≤ d(x ∨ y) and so x ∨ y = d(x ∨ y). This means that Fixd(L) satisfies Definition .. It
follows that Fixd(L) is an ideal of L. �

http://www.fixedpointtheoryandapplications.com/content/2012/1/218
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In the following proposition, we can see that an isotone derivation d is determined by
the ideal Fixd(L).

Proposition . Let L be a lattice and d and d be two isotone derivations on L. Then
d = d if and only if Fixd (L) = Fixd (L).

Proof It is obvious that d = d implies Fixd (L) = Fixd (L). Inversely, let Fixd (L) = Fixd (L)
and x ∈ L. By Proposition ., dx ∈ Fixd (L) = Fixd (L) and so d(dx) = dx. Similarly, we
can get d(dx) = dx. Since d and d are isotone, we have d(dx) ≤ dx = d(dx) and
so d(dx) ≤ d(dx). Symmetrically, we can also get d(dx) ≤ d(dx), this shows that
d(dx) = d(dx). It follows that dx = d(dx) = d(dx) = dx, that is, d = d. �

Theorem . Let L be a lattice. Then the following are equivalent:
() L is a chain;
() For every isotone derivation d, Fixd(L) is a prime ideal.

Proof () ⇒ (). Let L be a chain and d be an isotone derivation on L. Then Fixd(L) is an
ideal of L by Theorem .. Moreover, let x ∧ y ∈ Fixd(L). Since L is a chain, then x ≤ y or
y≤ x. Assume x≤ y, then dx ≤ dy and so dx = dx∧dy = d(x∧ y) = x∧ y = x. It follows that
x ∈ Fixd(L). This shows that Fixd(L) is a prime ideal.
() ⇒ (). Let, for every isotone derivation d, Fixd(L) be a prime ideal. For x, y ∈ L, con-

sider the principal derivation dx∧y, which is induced by x ∧ y. Then Fixdx∧y (L) is a prime
ideal by hypothesis. Note that x ∧ y ∈ Fixdx∧y (L). Hence, x ∈ Fixdx∧y (L) or y ∈ Fixdx∧y (L).
Assume x ∈ Fixdx∧y (L), then x = dx∧yx = x∧ (x∧ y) = x∧ y. So, x ≤ y. This means that L is
a chain. �

To get a characterization of distributive lattices using the fixed set of a derivation, we
introduce the following concept.
Let L be a lattice and I be an ideal of L. Define a relation ‘≡’ in L by x ≡ y(mod I) if and

only if x∨a = y∨a and x∧a′ = y∧a′ for some a,a′ ∈ I . We can easily see that this relation
is an equivalent relation.

Definition . [] Let L be a lattice and I be an ideal of L. We call I a standard ideal
if it satisfies the following condition: x ≡ y(mod I) implies (x ∨ z) ≡ (y ∨ z)(mod I) and
(x∧z)≡ (y∧z)(mod I) for all z ∈ L or, equivalently, the relation ‘≡’ is a congruence relation.

Theorem . Let L be a lattice. Then the following are equivalent:
() L is distributive;
() For every isotone derivation d, Fixd(L) is a standard ideal of L.

Proof ()⇒ (). Let L be a distributive lattice and d be an isotone derivation.Nowwe claim
that this relation is a congruence relation. In fact, let c ∈ L. If x≡ y(mod I), then x∨a = y∨a
and x ∧ a′ = y ∧ a′ for some a,a′ ∈ I , and so (x ∨ c) ∨ a = (y ∨ c) ∨ a and (x ∧ c) ∨ a =
(x∨a)∧ (c∨a) = (y∨a)∧ (c∨a) = (y∧ c)∨a. Similarly, we can get (x∨ c)∧a′ = (y∨ c)∧a′

and (x∧ c)∧ a′ = (y∧ c)∧ a′. This shows that x∨ c≡ y∨ c(mod I) and x∧ c≡ y∧ c(mod I).
It follows that the relation is a congruence relation. Thus, Fixd(L) is a standard ideal of L.
() ⇒ (). Assume that () holds. For any a,b, c ∈ L, consider the derivation da, which is

induced by a, that is, dax = x∧ a for all x ∈ L. Note that I = Fixda (L) is a standard ideal of

http://www.fixedpointtheoryandapplications.com/content/2012/1/218


Xin Fixed Point Theory and Applications 2012, 2012:218 Page 8 of 12
http://www.fixedpointtheoryandapplications.com/content/2012/1/218

L and a ∈ I . Hence, the relation ‘≡’, which is defined by x ≡ y(mod I) if and only if x∨ u =
y ∨ u and x ∧ u′ = y ∧ u′ for some u,u′ ∈ I , is a congruence relation on L by hypothesis.
Notice that a,a ∧ b ∈ I and (b ∨ a) ∨ a = b ∨ a, (b ∨ a) ∧ (b ∧ a) = b ∧ (b ∧ a), we have
b ∨ a ≡ b(mod I). Similarly, we can get c ∨ a ≡ c(mod I). Moreover, (b ∨ a) ∧ (c ∨ a) ≡
b∧ c(mod I). It follows that ((b∨a)∧ (c∨a))∨a′ = (b∧ c)∨a′ for some a′ ∈ I . From a′ ∈ I ,
we have a′ = da(a′) = a′ ∧a≤ a, and then we get ((b∨a)∧ (c∨a))∨a = (b∧ c)∨a. Hence,
(b∨ a)∧ (c∨ a) = (b∧ c)∨ a. It follows that L is distributive. �

In order to discuss the structural properties of the fixed set of isotone derivations in
modular lattices, we introduce a semi-standard ideal in a lattice.
Let L be a lattice and I be a principal ideal of L generated by a ∈ L, that is, I = 〈a〉. Define

a relation ‘∼’ in L by x ∼ y if and only if x∧ a = y∧ a for all x, y ∈ L. Then we can see that
the relation ∼ is an equivalent relation on L.

Definition . Let L be a lattice and I = 〈a〉 be a principal ideal of L. We call I a semi-
standard ideal if it satisfies the following condition: x ∼ y implies (x ∨ b) ∼ (y ∨ b) for all
b ∈ I .

In the following, we give a property of principal ideals in a modular lattice.

Proposition . In a modular lattice, every principal ideal is a semi-standard ideal.

Proof Let L be a modular lattice and I = 〈a〉 be a principal ideal of L. Assume x, y ∈ L and
x ∼ y. Then x∧ a = y∧ a. Taking b ∈ I , then b ≤ a. Notice that

(x∨ b)∧ a = b∨ (x∧ a) = y∧ a = (y∨ b)∧ a

since L is modular. It follows that (x∨ b)∼ (y∨ b) and so I is a semi-standard ideal. �

Now, using fixed sets of derivations, we give a condition by which a lattice becomes a
modular lattice.

Proposition . Let L be a lattice. If d is a principal derivation of L, then Fixd(L) = Id is a
principal ideal.

Proof Assume that d is a principal derivation of L, that is, dx = x∧ a for some a ∈ L. We
claim that Fixd(L) = 〈a〉. In fact, for any x ∈ Fixd(L), we have x = dx = x ∧ a and hence
x ≤ a. This means that x ∈ 〈a〉. Conversely, let x ∈ 〈a〉, that is, x ≤ a. Then dx = x ∧ a = x
and hence x ∈ Fixd(L). By the above arguments, we have Fixd(L) = 〈a〉, and so Fixd(L) is a
principal ideal. �

Proposition . Let L be a lattice. If for every principal derivation d of L, the ideal Fixd(L)
is semi-standard, then L is modular.

Proof Assume that for every principal derivation d of L, the ideal Fixd(L) is semi-standard.
Let a,b, c ∈ L and b ≤ a. Consider the derivation da induced by a, that is, da(x) = x∧ a for
all x ∈ L. Since da is a principal derivation, then the fixed set I = Fixda (L) is a principal ideal

http://www.fixedpointtheoryandapplications.com/content/2012/1/218
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by Proposition . and hence it is semi-standard by Proposition .. Notice that a,b ∈ I
and (c ∧ a) ∧ a = c ∧ a, we have c ∧ a ∼ c. Moreover, (c ∧ a) ∨ b ∼ c ∨ b since I is semi-
standard. This means that ((c ∧ a) ∨ b) ∧ a = (c ∨ b) ∧ a. Since (c ∧ a) ∨ b ∈ I , we have
((c∧ a)∨ b)∧ a = (c∧ a)∨ b. Hence, (c∧ a)∨ b = (c∨ b)∧ a and so L is modular. �

Combining Proposition . and Proposition ., we can get a characterization of amod-
ular lattice by the fixed set of a derivation.

Theorem . Let L be a lattice. Then the following are equivalent:
() L is modular;
() For every principal derivation d of L, the ideal Fixd(L) is semi-standard.

Now we discuss a characterization of relatively pseudo-complemented lattices by the
fixed set of isotone derivations.

Theorem . Let L be a lattice. Then the following are equivalent:
() L is a relatively pseudo-complemented lattice.
() Every principal derivation d of L satisfies that the set d–(b) = {x|dx≤ b} has a

greatest element for any b ∈ L.
() Every principal derivation d of L satisfies that the set d–(b) = {x|dx≤ b} has a

greatest element for any b ∈ Fixd(L).
() Every principal derivation d of L satisfies that the set d–(b) is a principal ideal of L

for any b ∈ Fixd(L).

Proof () ⇒ (). Let L be a relatively pseudo-complemented lattice and d be a principal
derivation. Then there is a ∈ L such that d(x) = x ∧ a. Assume that b ∈ L and x ∈ d–(b).
Then dx = x ∧ a ≤ b and hence x ≤ b : a since L is a relatively pseudo-complemented
lattice. On the other hand, d(b : a) = (b : a) ∧ a ≤ b. It follows that b : a ∈ d–(b). So, we
have that d–(b) has a greatest element b : a.
() ⇒ (). Straightforward.
() ⇒ (). Let () hold. Let b* be the greatest element of d–(b) for b ∈ Fixd(L). Then

d–(b) = [b*], where [b*] is the ideal generated by b*. In fact, for x ∈ d–(b), we have x ≤ b*

and so x ∈ [b*]. Conversely, let x ∈ [b*], then x ≤ b*. It follows that dx≤ db* ≤ b, this means
x ∈ d–(b). So, d–(b) = [b*].
() ⇒ (). Let () hold and a,b ∈ L. Consider a principal derivation da, induced by a.

By Proposition ., da is isotone. Note that da(a ∧ b) = a ∧ b and so a ∧ b ∈ Fixda (L). By
hypothesis, the set d–

a (a ∧ b) is a principal ideal of L. Let d–
a (a ∧ b) = [a*], where [a*] is

a principal ideal generated by a*. Therefore, for any x ∈ {x | x ∧ a ≤ b}, x ∧ a ≤ b ∧ a. It
follows that da(x) ≤ b ∧ a and hence x ∈ d–

a (b ∧ a). So, x ≤ a*. On the other hand, from
a* ∈ d–

a (a ∧ b), we have da(a*) = a* ∧ a ≤ a ∧ b ≤ b and a* ∈ {x | x ∧ a ≤ b}. This shows
that the set {x | x∧ a ≤ b} has a greatest element a*. It follows that b : a exists. �

In the following, we discuss the relation between principal derivations and principal
ideals in lattices.

Theorem . Let L be a lattice.
() If d is a principal derivation of L, then Fixd(L) = Id is a principal ideal.

http://www.fixedpointtheoryandapplications.com/content/2012/1/218
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() If I is a principal ideal of L, then there exists a unique isotone derivation d such that
Fixd(L) = I .

Proof () It follows from Proposition ..
() Let I = [a] be a principal ideal of L. Consider the derivation d induced by a, that is,

dx = x ∧ a for all x ∈ L. Then dx = x if and only if x ≤ a. It follows that Fixd(L) = I . In or-
der to prove the uniqueness, we assume that there exist two derivations d and d, such
that Fixd (L) = I and Fixd (L) = I . So, Fixd (L) = Fixd (L) and hence d = d by Proposi-
tion .. �

Theorem . Let L be a lattice and I be a non-void prime ideal of L. Then there exists a
derivation d such that Fixd(L) = I .

Proof Define a function d as follows:

dx =

⎧⎨
⎩
x, x ∈ I,

x∧ a, x ∈ L \ I,

where a ∈ I .We claim that d is a derivation. In fact, if x, y ∈ I , thenwe can see that d(x∧y) =
x∧ y = (x∧ y)∨ (x∧ y) = (dx∧ y)∨ (x∧dy). If x ∈ I , y ∈ L\ I , then x∧ y≤ x and so x∧ y ∈ I .
Hence, d(x∧ y) = x∧ y, (dx ∧ y) ∨ (x∧ dy) = (x∧ y) ∨ (x∧ y∧ a) = x ∧ y. This shows that
d(x ∧ y) = (dx ∧ y) ∨ (x ∧ dy). If x, y ∈ L \ I , then x ∧ y ∈ L \ I since I is prime. Hence,
d(x∧ y) = x∧ y∧ a, (dx∧ y)∨ (x∧ dy) = (x∧ a∧ y)∨ (x∧ y∧ a) = x∧ y∧ a. By the above
argument, we can get that d is a derivation. Clearly, Fixd(L) = I . �

Example . Let L = (, ] and I = (, ), then (L,≤) is a lattice and I is an ideal of L, where
≤ is the ordinary order. Moreover, we can see that there is not any isotone derivation d
such that Fixd(L) = I .

We now determine some classes of lattices all of whose ideals are principle ideals.

Definition . Aposet P is said to satisfy the ascending chain condition (A.C.C.) if every
non-void subset of P has a maximal element. A poset P is said to satisfy the descending
chain condition (D.C.C.) if every non-void subset of P has a minimal element.

Theorem . Let L be a lattice. If L satisfies A.C.C., then every ideal of L is a principal
ideal.

Proof Let I be an ideal of L. By assumption, I has a maximal element a. Therefore, for
any x ∈ I , x ∨ a ∈ I . Note that a ≤ x ∨ a and a is a maximal element of I , we have
x∨ a = a. Hence, x ≤ a. This shows that I = [a]. �

By Theorem . and Theorem ., we have the following theorem.

Theorem . Let L be a lattice satisfying A.C.C. Then for every ideal of L, there exists a
unique isotone derivation d such that Fixd(L) = I .

http://www.fixedpointtheoryandapplications.com/content/2012/1/218
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Finally, we can see that the set of fixed sets of isotone derivations has the same structure
as the set of isotone derivations in distributive lattices.

Theorem . Let L be a distributive lattice and D(L) be a set of isotone derivations on L.
Denote F = {Fixd(L)|d ∈ D(L)}. Define

Fixd (L)∨ Fixd (L) = Fixd∨d (L),

Fixd (L)∧ Fixd (L) = Fixd∧d (L).

Then 〈F ,∨,∧〉 is a distributive lattice.

Proof By Theorem ., for any d,d ∈ D , we have d ∧ d ∈ D and d ∨ d ∈ D . This
shows that the operations ‘∧’ and ‘∨’ are closed onF . We can easily show that 〈F ,∨,∧〉 is
a lattice. Consider the function f :D(L) –→ F defined by f (d) = Fixd(L). Then we can see
that f is an isomorphism from D(L) to F . It follows from the distributivity of (D(L),∨,∧)
that 〈F ,∨,∧〉 is a distributive lattice. �

From the proof of Theorem ., we can get the following corollary.

Corollary . Let L be a distributive lattice. Then the lattice 〈D(L),∨,∧〉 is isomorphic
to the lattice 〈F ,∨,∧〉.

5 Conclusions
In this paper, we investigate further related properties of derivations in lattices. We show
that the set of all isotone derivations in a distributive lattice forms a distributive lattice
under suitable binary operations. Moreover, we introduce the fixed set of a derivation and
prove that the fixed set of a derivation is an ideal in lattices. Using the fixed sets of isotone
derivations, we establish characterizations of a chain, a distributive lattice, a modular lat-
tice and a relatively pseudo-complemented lattice, respectively. Furthermore, we discuss
the relation between ideals and fixed sets of derivations in lattices. We get that for every
principal ideal I and every prime ideal I , there exists a derivation d such that the fixed set
of d is I .
We have seen that in some situations like lattices satisfying A.C.C., for every ideal of L,

there exists an isotone derivation d such that Fixd(L) = I . The question whether or not
this property holds in general lattices remains unsolved. We will discuss this question on
general ideals in further work.

Competing interests
The author declares that they have no competing interests.

Received: 31 May 2012 Accepted: 15 November 2012 Published: 5 December 2012

References
1. Bell, AJ: The co-information lattice. In: 4th Int. Symposium on Independent Component Analysis and Blind Signal

Separation (ICA2003), Nara, pp. 921-926 (2003)
2. Carpineto, C, Romano, G: Information retrieval through hybrid navigation of lattice representations. Int. J.

Human-Comput. Stud. 45, 553-578 (1996)
3. Sandhu, RS: Role hierarchies and constraints for lattice-based access controls. In: Proceedings of the 4th European

Symposium on Research in Computer Security, Rome, pp. 65-79 (1996)
4. Durfee, G: Cryptanalysis of RSA using algebraic and lattice methods. A dissertation submitted to the department of

computer science and the committee on graduate studies of stanford university, pp. 1-114 (2002)

http://www.fixedpointtheoryandapplications.com/content/2012/1/218


Xin Fixed Point Theory and Applications 2012, 2012:218 Page 12 of 12
http://www.fixedpointtheoryandapplications.com/content/2012/1/218

5. Degang, C, Wenxiu, Z, Yeung, D, Tsang, ECC: Rough approximations on a complete distributive lattice with
applications to generalized rough sets. Inf. Sci. 176, 1829-1848 (2006)

6. Honda, A, Grabisch, M: Entropy of capacities on lattices and set systems. Inf. Sci. 176, 3472-3489 (2006)
7. Karacal, F: On the direct decomposability of strong negations and S-implication operators on product lattices. Inf. Sci.

176, 3011-3025 (2006)
8. Bell, HE, Kappe, LC: Rings in which derivations satisfy certain algebraic conditions. Acta Math. Hung. 53(3-4), 339-346

(1989)
9. Bell, HE, Mason, G: On derivations in near-rings and near-fields. North-Holl. Math. Stud. 137, 31-35 (1987)
10. Hvala, B: Generalized derivations in prime rings. Commun. Algebra 26, 1147-1166 (1998)
11. Kaya, K: Prime rings with α derivations. Bull. Mater. Sci. 16-17, 63-71 (1987-1988)
12. Posner, E: Derivations in prime rings. Proc. Am. Math. Soc. 8, 1093-1100 (1957)
13. Jun, YB, Xin, XL: On derivations of BCI-algebras. Inf. Sci. 159, 167-176 (2004)
14. Xin, XL, Li, TY, Lu, JH: On derivations of lattices. Inf. Sci. 178, 307-316 (2008)
15. Birkhoff, G: Lattice Theory. Colloquium Publications. Am. Math. Soc., New York (1940)
16. Balbes, R, Dwinger, P: Distributive Lattices. University of Missouri Press, Columbia (1974)

doi:10.1186/1687-1812-2012-218
Cite this article as: Xin: The fixed set of a derivation in lattices. Fixed Point Theory and Applications 2012 2012:218.

http://www.fixedpointtheoryandapplications.com/content/2012/1/218

	The ﬁxed set of a derivation in lattices
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	The derivations in lattices
	The ﬁxed set of a derivation in lattices
	Conclusions
	Competing interests
	References


