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Abstract

Nowadays, the pervasive wireless networks enable ubiquitous high-rate wireless access from everywhere. There
have been extensive studies on interworking of complementary wireless technologies in an indoor (residential or
business) environment such as offices, hotels, and airport terminals. Nonetheless, there are ever-increasing
demands for systematic deployment of moving networks in a vehicular environment such as public transits (e.g., a
bus, train, or airplane). Due to the high mobility, it is very challenging to deliver smooth and high-quality video
services for such a vehicular network. In this article, we focus on a two-hop moving network integrating both the
cellular network and wireless local area network. By means of proper bandwidth reservation, we can satisfy the
quality of service constraints of video applications with respect to data loss rate and packet delay. Analytical
approaches are introduced to effectively estimate the achievable performance and derive the required bandwidth.
To characterize video traffic, a sigmoid function is proposed to model video flows as a Markov-modulated process
and fluid-flow analysis is feasible to evaluate data loss rate. At a finer packet level, the batch structure of packet
arrivals is captured in the queueing analysis and packet delay is evaluated. On the other hand, for aggregate traffic
multiplexed at a local gateway for the vehicular network, we use a fractional Brownian motion process to model
the self-similar traffic and estimate data loss rate and packet delay. According to the performance evaluation, we
can derive the required channel bandwidth for such a mobile hotspot. Numerical results are presented to
demonstrate the application for bandwidth reservation, which is especially useful in case of handover.

Keywords: vehicular networks, vehicular interworking, video transmission, handoff management, resource reserva-
tion, cellular/WLAN integration, quality of service

1 Introduction
Nowadays, mobile communications and wireless net-
works are ushering in a new era. The pervasive wireless
networks enable ubiquitous high-rate wireless access
from everywhere, such as the third-generation (3G) cel-
lular networks, IEEE 802.16 wireless metropolitan area
networks/WiMAX (worldwide interoperability for
microwave access), IEEE 802.20 broadband wireless
access/MobileFi, IEEE 802.11 wireless local area net-
works (WLAN)/Wi-Fi, and IEEE 802.15 wireless perso-
nal area networks (WPAN). With well-entrenched
infrastructure, the cellular networks provide ubiquitous
coverage but relatively low data rates, whereas WLANs

support high data rates with cost-effective deployment
over smaller geographic areas. To enable ubiquitous ser-
vices, there have been intensive studies on the inter-
working between the complementary 3G cellular
networks and WLANs by means of vertical handoff,
access selection, and load balancing [1,2]. Most of the
previous studies on cellular/WLAN interworking focus
on a simple scenario with static WLAN deployment in
an indoor environment such as offices, hotels, and air-
port terminals. In addition to such slow-moving or static
scenarios in an indoor (residential or business) environ-
ment, there are ever-increasing demands for systematic
deployment of moving networks in a vehicular environ-
ment such as public transits (e.g., a bus, train, or air-
plane). For mobile hotspots in a vehicular environment,
it is usually not feasible to take advantage of the overlay
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structure of the cellular/WLAN integrated network in
an indoor environment. The high speed of vehicles
poses more stringent constraints for fast, smooth, and
reliable handoff. Gogo In-flight Internet by Aircell
(http://www.aircell.com) is one successful story under an
extremely high mobility condition, where in-flight
broadband access is provided for planes flying at an alti-
tude above 10,000 ft and at a speed of 500 miles per
hour. Gogo is a ground-to-air system using the 3G cel-
lular technology evolution-data optimized (EV-DO) inte-
grated with 802.11 WLAN for last-hop access. However,
at a high moving velocity, when the plane is crossing
over ground radio towers, data rates degrade due to
handoff between neighboring cells. As a result, slow
playback and even halting of video streaming has been
observed in previous Gogo tests [3].
It is known that mobile video will generate most of

the mobile traffic growth through 2015 as predicted by
Cisco [4]. The statistics collected from leading mobile
operators worldwide in 2010 [5] also show video stream-
ing accounts for 37% of mobile data usage, which is the
largest part next to file sharing (30%) and Web browsing
(26%). There are two major types of video services, i.e.,
conversational video (e.g., videoconference) and video
streaming [6]. Conversational video is characterized by
very stringent end-to-end latency constraint and two-
way traffic with a bursty pattern due to the use of live
video encoder. In contrast, video streaming usually only
involves with one-way downlink traffic. Video streams
can be pre-stored at application servers and allow for a
pre-rolling delay of a few seconds before the start of
video playback. As such, video streaming applications
are more concerned with playback smoothness and the
delay constraint is relaxed in a sense.
Due to high vehicular mobility, it becomes very

challenging to deliver good-quality video applications
for a mobile hotspot. Usually, a multi-mode wireless
gateway can be deployed to connect end users in the
vehicle with the backbone network. In case that a
handoff is required between neighboring cells, the
ongoing traffic can be multiplexed at a local gateway
and handed over as a whole [7], since all end users
are moving together. The multiplexing gain is thus
exploited to reduce bandwidth demands. Considering
the high vehicular mobility and intensive bandwidth
demands of video traffic, it is essentially important to
reserve bandwidth in advance for handoff traffic so as
to minimize service interruptions. In order to estimate
bandwidth requirement of video flows, we need to
appropriately evaluate the achievable quality of service
(QoS) with a given bandwidth from the two-hop vehi-
cular network. User perceived video quality is subject
to stringent QoS constraints in terms of data loss rate
and packet delay.

In the literature, there has been extensive work mod-
eling the varying data rate and frame size of video traffic
[8,9]. Traditionally, video traffic can be viewed as a fluid
flow and characterized with a Markov-modulated pro-
cess by neglecting traffic discreteness. To capture both
frame size variation and auto-correlation, we extend the
Markov-modulated Gamma-based model (MMG) pro-
posed in [8] for performance evaluation. As discussed
above, because of the group mobility feature, the
ongoing traffic within a vehicular network can be multi-
plexed at a local gateway and handed over together. Due
to the long-range dependency of video traffic, the result-
ing aggregate traffic exhibits self-similarity and high
variability over a wide range of time scales [10]. The
fractional Brownian motion (FBM) process is a powerful
tool to analyze self-similar data flows [11]. Based on
such traffic models, we analytically evaluate data loss
rate of video traffic at the fluid-flow level and average
transfer delay at the packet level for a two-hop vehicular
network. Accordingly, the bandwidth requirement for a
backhaul connection can be estimated to satisfy the QoS
constraints of video traffic.
The rest of the article is organized as follows. Section

2 gives the two-hop relay network structure and video
traffic models considered in this study. In Section 3, we
introduce the approaches to analyze video performance
over a two-hop wireless channel. Numerical results are
presented in Section 4, followed by conclusions and
future study in Section 5.

2 System model
2.1 Two-hop network structure
As shown in Figure 1, we focus on a vehicular network
with a two-hop relay structure, which is supported by
the cellular/WLAN interworking. In a vehicular environ-
ment within mobile ambulances or public transits, user

Figure 1 Two-hop relay structure for vehicular moving
networks.
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traffic can be first delivered and multiplexed at a local
multi-mode WLAN router, which further relays the
aggregate traffic through a cellular backhaul connection.
As such, an end user in the vehicular network is served
by a two-hop wireless relay channel via heterogeneous
technologies. The wide-area coverage of cellular net-
works provides continuous access via seamless handoff.
During a handoff between neighboring cells, the ongoing
traffic from the moving network can be buffered at the
WLAN router and handed over as a whole. It is known
that the knowledge of moving patterns can assist hand-
off process. In the scenario of Figure 1, it is worth not-
ing that the routes of public transits are usually pre-
defined and known a priori. Taking advantage of this
feature, we can reserve resources in advance for the
group handoff traffic within the vehicular network.

2.2 Video traffic model
It is known that video traffic is inherently long-range
dependent and highly correlated due to compression
coding. In the 3G cellular networks, H.264 Advanced
Video Coding (AVC) is recommended for high-quality
video [12]. To remove temporal redundancy, intracoded
(I) frames are interleaved with predicted (P) frames and
bidirectionally coded (B) frames. I frames are compressed
versions of raw frames independent of other frames,
whereas P frames only refer preceding I/P frames and B
frames can refer both preceding and succeeding frames.
A sequence of video frames from a given I frame up to
the next I frame comprise a group of pictures (GoP).
Because P and B frames are encoded with reference to
preceding and/or succeeding I/P frames, the transmission
traffic follows the batch arrivals shown in Figure 2. Here,
3 B frames are coded between two key I/P frames and
the GoP follows a structure of size 16 such as
“I0P4B1B2B3P8B5B6B7P12B9B10B11I16B13B14B15 ...“ In

contrast, video frames are decoded and displayed at the
receiver in a reorganized order.
In the literature, there has been extensive work mod-

eling the varying rate and frame size of video traffic
[8,9]. The Markov chain-based models enable tractable
queue analysis with the well-established fluid-flow analy-
tical framework [13]. A MMG framework is proposed in
[8] to model highly correlated video frame size. For a
video flow consisting of frame bursts, video clips are
grouped into a small number of shot classes depending
on the burst size. As shown in Figure 3, state transitions
between video shot classes are characterized by a Mar-
kov process. The size of I, P, and B frames for each shot
class is modeled by an axis-shifted Gamma distribution,
whose probability density function is given by

fG(x) =
xσk−1 e−x/θk

�(σk)θ
σk
k

, σk > 0, θk > 0, k = 1, 2, . . . ,K (1)

where K is the number of video classes, Γ(·) is the
Gamma function, and sk and θk are the shape parameter
and scale parameter, respectively, for shot class k.
In the original MMG model, the GOP size boundaries

for classification are geometrically separated. As
observed in [14], the size of video frames based on
H.264 exhibits heavy-tailed property. That is, extremely
large frames exist with a non-negligible probability. The
experimental results in [15] show that the boundaries
between shot classes should be set appropriately so that
the video statistics are captured accurately and video
frames are balanced among the classes. To discern dif-
ferences of large-size video clips in classification, we
propose to use the following sigmoid function to deter-
mine the class boundaries:

sk =
1

1 + e−α(k−β)
, k = 1, 2, . . . ,K + 1. (2)

As this sigmoid function takes values within (0,1), we
map the total size of video frames in a burst to the
range [Smin, Smax] such that

s1 =
Smin

δ · Smax
, sK+1 =

1
δ

(3)

where δ (0 <δ < 1) is a scale factor.
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As an example, we take a video sequence Tokyo Olym-
pics coded with single layer H.264/AVC from the video
trace library of Arizona State University [16]. The video
trace has a common intermediate format (CIF) resolu-
tion (352 × 288), a fixed frame rate at 30 frames/s, a
GoP size of 16 with 3 B frames between I/P key pic-
tures, and a quantization step size indexed at 24. Figure
4 shows the size boundaries to classify video clips fol-
lowing a geometric function or a sigmoid function,
respectively. As seen, the S-shaped size boundaries can
also differentiate differences when the GOP size is very
large.
According to the size boundaries, video clips are clas-

sified into shot classes. The transition probability pij
from class i to class j can be estimated from the normal-
ized relative frequency of transitions:

pij = fij/fi (4)

where fij is the total number of transitions from state i
to j and fi is the total number of transitions out of state
i. The resulting K × K matrix of transition probabilities,
denoted by P, can be translated into a corresponding
infinitesimal generating matrix in a continuous-time
domain, denoted by M, as follows

M = g(P − I) (5)

where g is the arrival rate of video bursts and I is the
identity matrix. Let J denote the number of B frames
between two key I/P pictures and f the constant frame
rate. Then, the video burst rate g = f/(J + 1).

2.3 FBM model for aggregate traffic
As shown in Figure 1, traffic flows from a vehicular net-
work can be first multiplexed at a local gateway and
then relayed to a remote cellular base station. Due to
the long-range dependency of video flows, the aggregate
traffic exhibits self-similarity and high variability over a

wide range of time scales [10]. In this study, we use the
well-known FBM model [11] to characterize the self-
similar data traffic. In particular, the cumulative arrival
process of an aggregate traffic flow, denoted by Λ(t), can
be approximated by an FBM process as follows

�(t) = mt +
√
amZ(t) (6)

where m is the mean data arrival rate (the average
number of data units arrived in a time interval), a is the
variance coefficient (the ratio of variance to mean of
data arrivals), and Z(t) is a normalized FBM process
with Hurst parameter H Î [0.5, 1). The normalized
FBM process Z(t) processes the following properties
[17]: (1) Z(t) is a Gaussian process with stationary and
ergodic increments; (2) Z(0) = 0 and E[Z(t)] = 0 for all
t; (3) Z(t) has continuous paths; and (4) Var[Z(t)] = t2H.

3 Resource reservation for aggregate handoff
traffic
3.1 Video quality indicators
As specified in [18], video quality is indicated by two
components, namely, the loss rate and delay factor.
Video distortion is a most direct QoS metric from the
end user’s perspective. It depends on data loss rate
resulting from channel errors and encoding parameters
that provide error resilience features. According to the
R-D model proposed in [19], video distortion due to
channel errors is defined as

D =
(

a
1 − b + ψb

)(
PL

1 − PL

)
E[F(k, k − 1)] (7)

where PL is the data loss rate, b is a parameter that
describes the motion randomness of the video scene, a
is the energy loss ration of the encoder filter, ψ is the
percentage of intra-coded frames, and E[F(k, k − 1)] is
the average value of the successive frame difference
F(k, k − 1). As seen from (7), data loss rate is an impor-
tant factor determining perceived video quality.
In Figure 1, a two-hop wireless relay via heteroge-

neous technologies is applied for a vehicular network to
facilitate ubiquitous access, alleviate power constraint,
and enhance transmission rate. An end user within a
vehicle is served by both a local wireless router con-
nected with a remote cellular radio tower. In contrast to
wired networks, wireless channel is highly time-varying
and supports a relatively low data rate. Hence, the per-
formance over the two-hop wireless channel contributes
significantly to the end-to-end QoS. Hence, video distor-
tion perceived at the receiver is closely related to the
data loss rate over the last-hop WLAN, denoted by PLw,
and that of the cellular relay channel, denoted by PLc.
Moreover, because video frames are captured and

coded in constant intervals, there is a deadline to play
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back a designated video frame at the receiver end. If a
frame to play has not been completely delivered to the
buffer at fetch time, the playback is interrupted. Hence,
the transfer delay is an important factor to ensure play-
back smoothness and continuity. The mean wireless
access delay (denoted by T) should be upper-bounded
by Δ, i.e.,

T = Tw + Tc ≤ 
 (8)

where Tw is the mean transfer delay over the last-hop
WLAN and Tc is that between the WLAN router and
the cellular base station. For 802.11 WLAN, the wireless
channel is shared in a contention-based access manner.
It is quite limited in QoS provisioning. On the other
hand, in the cellular network, reservation-based resource
allocation is enabled with a centralized infrastructure.
As such, the aggregate traffic of a mobile hotspot can be
delivered with dedicated cellular channels. The mean
transfer delay is thus dependent on the reserved band-
width of the cellular channel.

3.2 Fluid-flow data loss rate
As shown in Figure 3, an individual video flow within
the mobile hotspot is modelled by a continuous-time
Markov-modulated process, whose infinitesimal generat-
ing matrix M can be obtained from video traces accord-
ing to a sigmoid classification function. The data rate
for each shot class k is denoted by Rk (bps), which
equals the average of total frame sizes of video bursts in
the state over the burst duration (1/g). Without loss of
generality, the shot classes (states) are arranged in an
ascending order with respect to date rates Rk. Viewing
the video stream as a fluid flow, we can derive the equi-
librium queue length distribution at the local wireless
router. Let Fk(x) denote the stationary probability that
the buffer occupancy is less than or equal to x, given
that the video source is in state k.
It is known that channel access in a WLAN follows a

contention-based random access protocol, i.e., the car-
rier sensing multiple access with collision avoidance
(CSMA/CA) algorithm and binary exponential backoff.
As shown in [20], there exists an optimal operating
point for the WLAN in the unsaturated case, beyond
which the packet delay increases dramatically and the
throughput drops quickly. When a WLAN operates in
the unsaturated range, packet collision probability is
quite small and each packet sees an approximately
constant service rate. Assuming a constant channel
service rate CL (bps) for the last-hop WLAN and a
Markov-modulated fluid process for the video flow, we
can derive the equilibrium queue length distribution
following the fluid-flow analytical approach [13]. That
is,

d
−→
F (x)
dx

B =
−→
F (x)M (9)

where −→
F (x) = [F1(x), F2(x), . . . , FK(x)], B is a diagonal

matrix defined by B = R - CLI, R = diag[R1, R2, ..., Rk],
and M is the infinitesimal generating matrix of the
underlying Markov process.
Alternatively,

d
−→
F (x)
dx

=
−→
F (x)M’, M’ = MB−1. (10)

Based on the above set of first-order linear differential

equations, we can obtain the solution to −→
F (x):

−→
F (x) = −→π +

∑
k:Re[zk]<0

ak
−→
� ke

zkx
(11)

where −→π is the steady-state distribution of the con-
tinues-time Markov chain and satisfies −→π M =

−→
0 , zk and−→

�k are the kth negative eigenvalue and the correspond-
ing eigenvector of MB-1, that is

zk
−→
�k =

−→
�kMB−1. (12)

It is worth mentioning that −→
�k are the row eigenvectors

of M’, which are equivalent to the transpose of the col-
umn eigenvectors of (M’)T, i.e., the transpose of M’. The
coefficients ak can be obtained from the boundary con-
ditions, i.e., Fk(0) = 0 for Rk >CL.

The cumulative distribution function (CDF) of the
queue length is then

F(x) =
K∑
k=1

Fk(x). (13)

Given certain delay constraint, the queue occupancy is
required to be less than a threshold Ψw, beyond which
newly arrived data are very likely to be dropped at the
receiver due to expiration for playback. Such data loss
due to an intolerable long delay directly affects video
distortion perceived by end users. Based on (13), we can
estimate data loss rate PLw for the last-hop WLAN
caused by backlogging:

PLw ≈ 1 − F(�w). (14)

When a large number of data flows are multiplexed at
the local gateway and forwarded toward their final desti-
nations, the aggregate flow presents self-similar proper-
ties. The cumulative arrival process of aggregate traffic
can be captured by a FBM process given in (6). Based
on the analytical method in [21], we can evaluate the
tail distribution of the queue length (QA) over the sec-
ond-hop relay channel, given by
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G(x) � P[QA > x] =
[
2π(1 +

√
Hx1−H)

2]−1
4 exp

(
−1
2
Hx2−2H

)
(15)

where

H =

[
(CA − m)(1 − H)

]2H
am(1 − H)2H2H

(16)

and CA (bps) is the transmission rate of cellular relay
channel for aggregate traffic and m is the mean arrival
rate of the aggregate traffic flow per second. Similar to
(14), data loss rate PLc for the second-hop relay channel
can be estimated from (15) as

PLc ≈ G(�c). (17)

3.3 Packet delay performance
As shown in the R-D model in (7) for video distortion,
data loss rate directly affects user perceived video qual-
ity. Packet delay is another important factor, which not
only determines playback smoothness but also implicitly
influences video distortion as expired packets violating
delay constraints might be dropped. Assume that video
frames are segmented into packets of fixed-size L for
transmission. In (6), the self-similar aggregate traffic
flow is modelled by an FBM process. Letting the data
unit changed from bits to packets, we have the channel
transmission rate (in packets per second) given by

C̃A = CA/L. The mean and variance coefficient of data
arrivals become m̃ = m/L and ã = a/L, respectively. As
empirically observed in [21], packet size has a relatively
slight effect on the self-similarity of traffic flows. At the
packet level, the traffic flow is still self-similar and the
same Hurst parameter is preserved. Hence, similar to
the derivation in (15), we can evaluate the mean packet
delay over the second-hop relay channel as follows:

Tc =
L
CA

+
1
m̃

∫ ∞

0
P[Q̃A > x]dx. (18)

On the other hand, it is more complicated to evaluate
the packet transfer delay (Tw) over the hop between end
users and the local gateway. As shown in Figure 2, video
frames actually arrive in bursts due to forward, back-
ward, or bidirectional prediction in video coding and
compression. If video frames are fragmented and encap-
sulated into fixed-size transmission packets, a random
number of packets are actually generated as a batch for
each video burst. Although video traffic correlation can
be modelled by a Markov process described in Figure 3,
it is observed in [14] that the use of a theoretical and
independent distribution for frame sizes approximates
the trace behavior fairly well and gives close perfor-
mance statistics. The key is to preserve the batch

structure of packet arrivals and fixed inter-arrival time.
As the sizes of video frame bursts for different shot
classes are modelled by axis-shifted Gamma distribu-
tions, we approximate the number of packets in a
“packet train” with a negative binomial distribution NB
(r, p), which is a discrete analog of Gamma distribution.
The probability mass function (PMF) of the number of
packets in a batch (denoted by A) is given by

P[A = k] � fA(k) =
(
k + r − 1

r−1

)
(1 − p)rpk, r > 0, 0 < p < 1, k = 0, 1, . . . (19)

where the binomial coefficient
(
k + r − 1

r−1

)
=
(k + r − 1)(k + r − 2) . . . (r)

k!
. (20)

The parameters r and p can be obtained by fitting the
mean and variance of the batch size:

A =
rp

1 − p
, σ 2

A =
rp

(1 − p)2
. (21)

To analyze the packet delay over the last-hop
WLAN, we use a small time unit τ to discretize the
time scale. The inter-arrival time of video bursts is
then N = 1/(g · τ) time units, where g is the video
burst rate. Given fixed packet size L, the packet trans-
mission time over the WLAN channel is assumed to
be h time units, where h = L/(CL · τ). With the afore-
mentioned batch structure and fixed burst inter-arrival
time, the average delay experienced by a tagged packet
in a video batch (Tw) consists of three independent
components: (1) the waiting time of the first packet of
that batch to be served, denoted by WG; (2) the waiting
time due to the transmission of the packets of that
batch queued before the tagged packet, denoted by
WR; and (3) the transmission time of the tagged
packet, which is assumed to be deterministic and equal
to h time units.
To evaluate the component WG with a queueing sys-

tem model, a batch can be viewed as a single customer
whose service time is the total transmission time of all
packets in a batch. An analytical approach is introduced
in [22] for the waiting time of a D/G/1 queue, whose
inter-arrival time is deterministic and service time fol-
lows a general distribution. Let G denote the batch ser-
vice time and G(z) the corresponding probability
generating function (PGF). The average waiting time for
WG is derived by

WG = −N(N − 1) − G′′(1−)
2[N − G′(1−)]

+
N−1∑
k=1

1
1 − zk

(22)

where N is the inter-arrival time of video batches, z1,
..., zN-1 are the unique roots of zN - G(z) = 0 within the
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unit circle | z | < 1, and G’(1-) and G”(1-) are the first-
order and second-order derivatives of G(z) at z = 1-.
The component WR is the average waiting time due to

the transmission of other packets prior to the tagged one
in a batch. Obviously, it depends on the statistics of the
number of packets queued before a tagged packet.
According to the analysis in [23], the PGF of the prob-
abilities that n packets in the current batch of a tagged
packet are to be served prior to the tagged one is given by

Y(z) =
∞∑
n=1

zn
∞∑

k=n+1

k · P[A = k]

A
· 1
k
=
1 − A(z)

A(1 − z)
(23)

where A(z) is the PGF of the number of packets in
each non-zero sized video batch according to (19), given
by

A(z) =

[
p

1 − (1 − p)z

]r

− (1 − p)r

1 − (1 − p)r
.

(24)

Since the packet transmission time is assumed to be
deterministic with h time units, the PGF of the waiting
time WR due to the transmission of the packets in a
batch before a tagged one is then

WR(z) = Y(zh). (25)

Therefore, the average waiting time WR are obtained
as

WR = lim
z→1−

dWR(z)
dz

. (26)

The overall packet delay is then given by

Tw = h +WR +WG. (27)

Based on the evaluation of data loss rate in Section 3.2
and the delay analysis this section, we can see that the
achievable video quality depends on the available band-
width within the last-hop WLAN and that of the cellu-
lar relay channel. To satisfy the QoS constraints for
video transmission, we can derive the required band-
width to be reserved for video flows within the vehicular
network.

4 Numerical results and discussion
In this section, we present numerical examples to illus-
trate the use of our analysis for bandwidth reservation.
Table 1 gives the system parameters for numerical
experiments.

4.1 Effective bandwidth for video flows
As discussed in Section 2.2, we extend MMG to charac-
terize video traffic as fluid flows. A sigmoid function is
applied to determine shot class boundaries. In this sec-
tion, we give numerical examples for traffic modelling
based on a Markov-modulated process. Here, we con-
sider H.264/AVC video sequences of Tokyo Olympics
from the video trace library [16]. These video sequences
have a CIF resolution, a fixed frame rate at 30 frames/s,
a GoP size of 16, and 7 B frames between two I/P key
pictures. The quantization level varies with the step size
and a higher quantization index (between 0 and 51)
results in a lower encoding bit rate. Taking the number

Table 1 System parameters for numerical analysis

Symbol Value Definition

a 1.3484 Parameter of sigmoid function for video classification

b 5.2924 Parameter of sigmoid function for video classification

δ 1.1 Scale factor to segment video flows

f 30 Video frame rate (/s)

g 3.75 Video frame burst rate (/s)

J 7 Number of B frames between two key I/P frames

K 6 Number of video classes for traffic modelling

a 175.38 Variance coefficient of aggregate traffic (kbit/s)

ã 29.23 Variance coefficient of aggregate traffic (packets/s)

H 0.7 Hurst parameter

CL ~3.0 One-way channel rate of last-hop WLAN channel (Mbit/s)

τ 0.006 Time unit (s)

L 6000 Transmission packet size (bits)

p 0.4424 Parameter of negative binomial distribution for video batch size A

r 2.5812 Parameter of negative binomial distribution for video batch size A

s 1.4847 Shape parameter of Gamma distribution for video burst size G (kbits)

θ 27.56 Scale parameter of Gamma distribution for video burst size G (kbits)
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of video classes K = 6, we use the classification function
defined in (2) to determine the classes (states) of video
clips. Table 2 gives the approximate matrix of transition
probabilities P for the video sequence at the quantiza-
tion level 34. To bound data loss rate PLw at the flow
level, the effective bandwidth can be derived from the
analysis in Section 3.2. Figure 5 demonstrates the effec-
tive bandwidth requirements of video flows at different
quantization levels when data loss rate is upper bounded
by 0.01. For instance, at the quantization level 34, the
effective bandwidth requirement of the video flow is
634.8 kbit/s.

4.2 Bandwidth reservation to ensure fluid-flow and
packet-level QoS
As introduced in Section 3.1, video distortion is one of
the most direct quality indicators for video applications.
It depends on various factors including encoding para-
meters and transmission performance such as data loss
rate. Packet delay affects not only playout smoothness
but also video distortion level due to dropping of
expired packets. In Sections 3.2 and 3.3, we have pre-
sented the analytical approaches we can leverage to esti-
mate the achievable performance int terms of data loss
rate and packet delay. In this section, we will give some
numerical examples to demonstrate the use of the above
analysis to derive required channel bandwidth. It is
especially useful for the the handover of a mobile hot-
spot between neighboring cells.
Consider an H.264/AVC video sequence of Tokyo

Olympics at the quantization level 34. The average bit
rate of an individual video flow is 153.5 kbit/s. Suppose
the effective one-way channel rate of the WLAN is
around 3 Mbit/s. By changing the number of video
flows in the mobile hotspot, we can obtain a varying
traffic load to the WLAN channel. Figure 6 shows the
data loss rate under different load conditions. As seen,
the data loss rate increases slowly with a light traffic
load but grows much faster when the traffic load
becomes heavy. Based on the Markov-modulated video
traffic model and fluid-flow analysis, we can effectively
evaluate the data loss rate.

As shown in Figure 1, a two-hop wireless channel is
applied for the moving network in a vehicular environ-
ment. In case of a handoff between neighboring cells,
the ongoing traffic within the mobile hotsplot can be
multiplexed at a local gateway and handed over
together. Suppose we have a number of video flows in
progress and the aggregate flow rate is around 767.3
kbit/s. Figure 7 illustrates the relationship between the
bandwidth of cellular relay channel and the correspond-
ing data loss rate over it. Due to self-similarity of the
aggregate traffic flow, we use the FBM model in (6) to
capture the data arrival process. Accordingly, the data
loss rate over the cellular channel can be estimated. As
seen from Figure 7, sufficient bandwidth should be
reserved from the cellular network so as to bound the
data loss rate by 0.01. In this example, the minimum
bandwidth requirement is around 4.06 Mbit/s.
To enable real-time transmission of video packets over

the two-hop scenario in Figure 1, the overall delay
should also be upper bounded. Given the same

Table 2 Matrix of transition probabilities for a video flow

State State

1 2 3 4 5 6

1 0.1866 0.5598 0.2493 0.0044 0 0

2 0.1384 0.2796 0.5345 0.0468 0.0007 0

3 0.0200 0.1811 0.6670 0.1308 0.0011 0

4 0.0007 0.0267 0.2459 0.6945 0.0322 0

5 0 0 0.0227 0.4838 0.4708 0.0227

6 0 0 0 0 0.7778 0.2222
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Figure 5 Effective bandwidth of video flows at different
quantization levels.
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parameters as above, Figures 8 and 9 show the delay
performance at the packet level. For the last-hop
WLAN, because of inter-coded frames, video traffic
actually arrives in bursts and results in a batch of encap-
sulated packets for each video burst. Based on the
queueing analysis in Section 3.3, packet delay can be
evaluated according to a D[A]/G/1 queueing system. The
analysis preserves the essential video traffic features
such as fixed burst inter-arrival time and batch structure
for packet arrivals. The packet delay over the WLAN
hop is approximated fairly well. As an example, we can
see in Figure 8 that the average packet delay is around
75.7 ms when the load factor is 0.26. Because the
WLAN channel is based on random access, it is hard to
support bandwidth allocation. In contrast, sufficient
bandwidth can be reserved for the relay channel from
the cellular network so that the overall QoS constraints
are satisfied. In Figure 9, the dashed red line shows the
delay bound for the cellular relay channel excluding the
WLAN-hop delay. The black dotted curve shows the
variation of packet delay with cellular channel

bandwidth. The packet delay is obtained according to
(18). As seen, when the mean packet delay decreases
with the increase of the cellular channel rate, we can
obtain the channel bandwidth to be reserved by locating
the intersection point with the line of delay bound. In
this case, if a cellular channel with a bandwidth around
4.58 Mbit/s is reserved, the overall wireless access delay
can be bounded by 350 ms on average.

5 Conclusions and future work
In this article, we investigate the resource reservation
issue for moving networks in a vehicular environment.
A two-hop relay structure integrates heterogeneous
technologies of the cellular network and wireless local
area network. Focusing on the ever-increasing video
applications, we have introduced feasible analytical
approaches to effectively evaluate video performance in
terms of data loss rate and packet delay. To satisfy video
QoS constraints, we can derive the bandwidth to be
reserved for handover. Our performance evaluation has
taken into account the two-hop relay structure and the
essential characteristics of video traffic. At the flow
level, we use a sigmoid function to model video flows as
a Markov-modulated process and calculate data loss
rate with fluid-flow analysis. At a finer packet level, due
to inter-coded frames, video traffic arrives in bursts and
results in transmission packets as a batch for each video
burst. Our queueing analysis for packet delay has con-
sidered this feature and provided fairly accurate esti-
mate. On the other hand, video flows from end users
within a vehicular network can be multiplexed at a local
gateway. As the aggregate traffic exhibits self-similarity,
we use a FBM process to characterize the aggregate traf-
fic flow beyond the wireless gateway. The data loss rate
and packet delay for the second hop are approximated
accordingly. As demonstrated in the numerical exam-
ples, the performance evaluation can be applied to
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derive bandwidth requirement during handover. In our
future study, we would examine the impact of varying
channel rates due to radio fading and access contention.
To optimize video delivery quality, we can develop an
efficient handoff algorithm depending on the vehicular
mobility and traffic variation.
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