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ABSTRACT

Recent research has shown that neural network techniques can be used successfully for ground rainfall
estimation from radar measurements. The neural network is a nonparametric method for representing the rela-
tionship between radar measurements and rainfall rate. The relationship is derived directly from a dataset
consisting of radar measurements and rain gauge measurements. The effectiveness of the rainfall estimation by
using neural networks can be influenced by many factors such as the representativeness and sufficiency of the
training dataset, the generalization capability of the network to new data, season change, location change, and
so on. In this paper, a novel scheme of adaptively updating the structure and parameters of the neural network
for rainfall estimation is presented. This adaptive neural network scheme enables the network to account for
any variability in the relationship between radar measurements and precipitation estimation and also to incorporate
new information to the network without retraining the complete network from the beginning. This precipitation
estimation scheme is a good compromise between the competing demands of accuracy and generalization. Data
collected by a Weather Surveillance Radar—1988 Doppler (WSR-88D) and a rain gauge network were used to
evaluate the performance of the adaptive network for rainfall estimation. It is shown that the adaptive network
can estimate rainfall fairly accurately. The implementation of the adaptive network is very efficient and convenient
for real-time rainfall estimation to be used with WSR-88D.

1. Introduction

Radar is a useful remote sensing tool for precipitation
estimation on the ground. The development of algo-
rithms for the remote estimation of precipitation based
on radar measurements has been an active research topic
for many years. The problem of rainfall estimation on
the ground based on radar measurements is complicated
because of the space–time variability of the rainfall field.
The rainfall rate R obtained on the ground can be po-
tentially dependent on the four-dimensional structure of
precipitation aloft (three spatial dimensions and time).
In principle, one can obtain a functional approximation
between the rainfall on the ground and the 4D radar
reflectivity observations Z aloft. This function will be
more complicated than a simple Z–R algorithm or a
multiparameter radar rainfall algorithm. Therefore the
ground rainfall estimation can be viewed as a complex
function approximation problem.

Neural networks are well suited for this problem, and
the theoretical basis is provided by the universal func-
tion approximation theorem (Funahashi 1989). Recent
research has shown that neural network techniques can
be used successfully for ground rainfall estimation from
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radars (Xiao and Chandrasekar 1995, 1997) and other
such applications (Krasnopolsky et al. 1995). This tech-
nique includes two stages, namely, 1) the training and
validation stage and 2) the application stage. In the train-
ing stage, the neural network learns the potential rela-
tionship between the rainfall rate and the radar mea-
surements from a training dataset. When a radar mea-
surement set is applied to the neural network, the net-
work yields a rainfall-rate estimate as output. This
output is compared with the rain gauge measurement,
and their difference or the error is propagated back to
adjust the parameters of the network. This learning pro-
cess is continued until the network converges. Once the
training process is complete, a relationship between the
rainfall rate and the radar measurements is established
and the network is ready for operation. When a radar
measurement vector subsequently is applied to the net-
work, it yields a rainfall-rate estimate.

Neural networks have many advantages in the context
of rainfall estimation from radar measurements. The re-
lationship between radar measurements and rainfall rate
on the ground is derived directly from a training dataset,
and therefore it is not influenced by systematic varia-
tions in the radar system characteristics. The neural net-
work can be tuned very well for one specific kind of
storm or for several storms. Once the neural network is
trained, it represents a relation between radar measure-
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FIG. 1. Structure of the adaptive neural network for rainfall estimation. The radar data block
indicates input, and gauge data are used as the target output for the neural network. Once trained,
the neural network estimates rainfall based on radar data. When new data are available, the network
switches to an updating mode.

ments and rainfall rate. If the training dataset is large
enough and representative enough, the neural network
can perform very well.

There is a common limitation with respect to the
trade-off between generalization and accuracy of neural
network–based rainfall estimation. Therefore, devel-
oping a flexible network instead of a fixed network for
rainfall estimation may be better. A neural network can
learn its structure and parameters automatically from
the training dataset. One way to solve the problem is
to collect new data and retrain the neural network all
over again from the beginning. However, this training
process is very tedious and time consuming, and to re-
start the training every time new data are available is
not a practical solution. The goal of this paper is to
develop an adaptive neural network that is easy to train
and can continuously update the structure by incorpo-
rating the latest information into an existing neural net-
work without having to retrain from the beginning.
Therefore, the network has the ‘‘dynamic’’ character-
istic, and it can fine-tune the functional mapping over
time.

The main feature of the adaptive neural network is
that the network can adjust itself whenever new rain
gauge data are available (as shown in Fig. 1). To start
with, the network can be built by initial training using
all the available data. The network is in the application
mode after the initial training. Once new rain gauge data
are collected, the network switches into an updating
mode. By using an adaptive updating algorithm, the
network adjusts some of its parameters, adding or re-
moving some neurons so as to fine-tune its structure

with the new information. The scheme not only provides
a fast and efficient way to build a new neural network
rainfall estimation model but also can provide a way to
maintain an existing neural network rainfall estimation
model and make it evolve gradually.

In this paper, we have developed an adaptive neural
network scheme that can be modified continuously. For
this purpose, a radial basis function (RBF) neural net-
work is chosen because its architecture is suited well
for adaptive modification. In the next section, the de-
velopment of the adaptive neural network for rainfall
estimation is presented. The performance of the adaptive
neural network is evaluated in section 3. The important
conclusions are summarized in section 4.

2. Adaptive neural network algorithm

Multilayer feedforward neural networks (MLFNN)
can be used successfully for radar rainfall estimation
from remotely sensed data (Xiao and Chandrasekar
1995; Tsintikidis et al. 1996). Xiao and Chandrasekar
(1997) showed that a back-propagation neural network
(BPN), which is a class of the MLFNN, can be used
for radar rainfall estimation. Some of the disadvantages
of BPN are that the training process is computationally
demanding and the learning process is very tedious.
However, once trained, BPN can be used successfully
for radar rainfall estimation. The structure and learning
algorithm of a BPN make it difficult for implementing
adaptive rainfall estimation algorithms. One of the al-
ternatives suited for rainfall estimation is an RBF neural
network. The RBF network has a unique structure that
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FIG. 2. Architecture of a typical RBF neural network.

FIG. 3. The location of inputs to the RBF network. ZH1, . . . , ZH9 are the
nine reflectivity inputs to the neural network. The gauge location is at the
center of the grid.

will make it conducive for adaptive radar rainfall esti-
mation. The following section describes the structure of
an RBF network for radar rainfall estimation.

a. RBF network architecture and parameters

An RBF network has three layers: 1) an input layer
consisting of input variables x1, x2, . . . , xn; 2) a hidden
layer, consisting of neurons with RBF as transfer func-

tion hj(x); and 3) an output layer, which consists of
linear combinations of the hidden-layer output. The
block diagram of the RBF neural network is shown in
Fig. 2.

The Gaussian RBF is used in this study, which can
be expressed as

n 2(x 2 c )i ij
h (x) 5 exp 2 , (1)Oj 2[ ]ri51 ij

and the output f (x) for an input vector x is given by

m

f (x) 5 w h (x), (2)O j j
j51

where x 5 [x1 x2 · · · xn] is the input vector, c j 5 [c1j

c2j · · · cnj] is the center vector of neuron j, r j 5 [r1j

r2j · · · rnj] is the size vector of neuron j, m is the
number of neurons in the hidden layer, and wj is the
weight from neuron j to the output.

For the problem of rainfall estimation at a point on
the ground, the input to the network can be chosen from
available radar measurements over the three-dimen-
sional space aloft. For Weather Surveillance Radar—
1988 Doppler (WSR-88D) data, reflectivity factor ZH is
used for developing rainfall products. The reflectivity
at 1-km height (ZH1, . . . , ZH9) is used as inputs, where
the spatial locations of these reflectivities are shown in
Fig. 3. The input vector size depends on the input data
used (nine for the structure shown in Fig. 3). The rainfall
rate is chosen as the output of the network. The hidden
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FIG. 4. A new center subset {C2} is obtained by using ordinary
least squares forward selection from the new available data. From
C2 and center set {C1} from the existing network, a new center vector
set {C} is selected.

FIG. 5. Scheme of adaptive RBF neural network for rainfall estimation.

layer is an important part of the network, which deter-
mines the accuracy of the network. From Eq. (2) it can
be seen that the RBF network performs a linear super-
position of the localized basis function [h1(x), . . . ,
hm(x)], where the accuracy of the output depends on the
number of the basis functions and the centers and the
widths of the basis functions.

For this RBF neural network, the following three pa-
rameters need to be determined (Mark 1996): 1) center
vector of all the neurons in the hidden layer c j; 2) size
vector of all the neurons in the hidden layer r j, and 3)
weights from the hidden layer to the output (w1, . . . ,
wm). Once all these parameters are determined, the net-
work can be used for applications. If an input vector x
is applied to the RBF network, the distance of the vector
to every center vector of the neurons in the hidden layer
is calculated. The output of the neuron is a function of

the distance [as shown in Eq. (1)]: it is 1 (maximum)
when the input vector x is equal to the center vector
and then, as the distance increases, the output decreases.
A linear combination of the outputs from all the hidden
units is the final output.

b. Development of an RBF network

It was shown in the previous section that three sets
of parameters need to be determined when constructing
an RBF neural network. The orthogonal least squares
method is used to determine the center vectors for the
hidden neurons. Once the parameters in the hidden layer
are determined, the weight vector from the hidden layer
to the output layer can be obtained by the linear least
squares method. This combined learning algorithm is
fast, because no back propagation is involved in the
process.

The size vectors r j must be determined in conjunction
with the center vectors c j. The generalization capability
of the RBF neural network is sensitive to the size vector.
If the size vector is small, the network will function
very well with the training set but will have poor gen-
eralization capability. On the other hand, if it is too
large, then the network will be overgeneralized. There-
fore, an appropriate size vector should be determined
by several trials.

A subset (i 5 1, p) of training input (x) to the network
is chosen as the center of the RBFs. Then the training
starts with an empty subset and adds one basis function
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FIG. 6. The locations of the rain gauges on a radar plan position indicator (PPI) overlay. The
circles are range rings of 40-km intervals, and the radials indicate azimuth angle in degrees. The
symbols C, 1, and * indicate Kennedy Space Center (KSC), South Florida Water Management
District (SFL), and St. Johns Water Management District (STJ) gauges, respectively.

at a time. The sum of squared error S is used to deter-
mine convergence according to the least squares algo-
rithm,

p

2S 5 [ ŷ 2 f (x )] , (3)O i i
i51

where ŷ is the target output or rainfall estimate. Lowest
prediction error is the convergence criterion that is used
to determined if any additional RBFs are needed. The
network has the lowest prediction error when the op-
timum subset of RBFs is chosen. Standard measures,
such as final prediction error, can be used to compute
prediction error. When one of these measures stops de-
creasing, then no more RBFs should be added to the
hidden layer.

If the centers and sizes of the RBFs are fixed, then
the determination of weights wj is straightforward. The
wjs are determined by minimizing the sum of squared
error S given by

2p m

S 5 ŷ 2 w h (x) . (4)O Oi j j[ ]i51 j51

The optimum wj is given by the generalized inverse
equation,

T 21T Tŵ 5 [ŵ ŵ · · · ŵ ] 5 (H H) H Y,1 2 m (5)

where H is the matrix of basis functions given by

 h (x ) h (x ) · · · h (x )1 1 2 1 m 1 h (x ) h (x ) · · · h (x )1 2 2 2 m 2H 5 , (6) 
_ _ · · · _ 

h (x ) h (x ) · · · h (x )1 p 2 p m p 

and Y is the output vector (of rainfall observations).

c. Dynamic updating scheme for the RBF network

We can use the procedure introduced above to de-
velop an RBF neural network for rainfall estimation. As
days go by, more data become available. Some of the
data are completely new to the network, and some are
similar to what the network has seen before but with
slightly different output. To incorporate the information
from the new data, it is necessary to refine the network
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FIG. 7. The locations of the rain gauges on a radar PPI overlay. The circles are range rings
of 40-km intervals, and the radials indicate azimuth angle in degrees. The symbols C and *
indicate training gauges and testing gauges, respectively.

FIG. 8. The comparison scheme between a fixed network and an adaptive neural network for
rainfall estimation for a 10-day period (21–30 Aug 1995).
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FIG. 9. Mean hourly rainfall accumulation results from (a) a fixed neural network and (b) an
adaptive neural network (for 21–30 Aug 1995).

by adding or removing some neurons in the hidden layer.
For data similar to what the network has seen but with
different desired output as compared with what the net-
work saw before, it is necessary to adjust the weights
from the hidden layer to the output layer with the latest
input–output pairs, maintaining the structure of the net-
work.

One way to incorporate the new information from the
new data into the network is simply by combining the
new data with the old training dataset to form a new
larger training dataset and to retrain from the beginning.
The most important part in the retraining process is
searching for the optimum center set from the new train-
ing dataset, and this process is tedious. This solution is
neither convenient nor practical. Another disadvantage
is that a simple retraining process may not give pref-
erence to the latest data in the training process, which
is required if the most current relation between reflec-
tivity structure and rainfall is to be maintained by the
neural network. Based on these reasons, it may be better

to use an adaptive RBF neural network for rainfall es-
timation.

In the adaptive learning scheme illustrated in Fig. 4,
the new network is based on the existing network; how-
ever, it is modified according to the new data. One of
the simplest ways to modify the network for new data
is to add or replace neurons as well as change the center
vector. The schematic of altering the center vectors is
shown in Fig. 4. The procedure used to modify the RBF
network is as follows. First, the standard orthogonal
least squares method that was used to build the network
from the beginning can be applied to the new dataset
to come up with new center vector C2. The existing
model has a center vector set (called center vector set
1, C1). A new center vector set can be constructed from
these two center vector sets C1 and C2.

For C i ∈ C1 and Cj ∈ C2,

if \C 2 C \ # T, then remove C ,i j i (7)

where \ \ indicates the Euclidean norm and T is thresh-
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FIG. 10. Mean daily rainfall accumulation estimation results from (a) a fixed neural network
algorithm and (b) the adaptive neural network algorithm (for 21–30 Aug 1995).

TABLE 1. Mean rainfall estimation comparisons between two al-
gorithms during a 10-day period (21–30 Aug 1995). CORR is the
correlation coefficient; NE is the normalized error.

Algorithms

Mean hourly rainfall accumulation

Bias (%) CORR NE

Fixed RRN
Adaptive RRN

9.5
6.7

0.95
0.95

0.29
0.27

Algorithms

Mean daily rainfall accumulation

Bias (%) CORR NE

Fixed RRN
Adaptive RRN

9.2
6.8

0.89
0.90

0.16
0.10

old. If the distance from a center vector in C2 to any
of the center vectors in the C1 is greater than a threshold,
then this center vector is added to the RBF, and one
more neuron is added to the hidden layer. The next
parameter to be determined is the set of weights W,
which is determined from Eq. (5). In this process, it is
important to determine how different the new data are

when compared with the old training data. If the new
data are very different, then those data are included in
the set to determine the weights. This procedure ensures
that the new data have higher priority in the determi-
nation of weights of the modified network. Figure 5
shows the schematic diagram of the adaptive updating
scheme for an RBF neural network for rainfall esti-
mation.

3. Performance evaluation of the adaptive neural
network

Radar data used in this study were collected by the
Melbourne WSR-88D in the summers of 1995 and 1998
over central Florida. Two consecutive months (August
and September) of radar data and the corresponding rain
gauge measurement records were used for this study.
The WSR-88D volume scans were done every 6 min.
Data from rain gauges within a 200-km radius of the
radar were used. We construct radar data constant-al-
titude plan position indicators, and, based on the time
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FIG. 11. The comparison scheme between a simply retrained neural network and a dynamic
neural network for rainfall estimation (for 21–25 Aug 1995).

of the radar data, 5 min. of gauge data are averaged
about that time. The locations of the rain gauges are
shown in Figs. 6 and 7. Figure 6 shows the location of
the 19 rain gauges used in the 1995 dataset, and Fig. 7
shows the 81 gauges used in the 1998 dataset.

a. Comparison of a fixed network with an adaptive
network for rainfall estimation

The analysis performed in this section is done using
data collected during 1995. The rainfall estimation cal-
culated using an adaptive neural network is compared
with a fixed neural network for the period between 21
and 30 August 1995. The fixed neural network is set
up based on the radar data and rain gauge measurements
during the period of 1–20 August. The RBF network is
constructed using the algorithm described in section 2.
This fixed neural network is denoted ‘‘RRNF[20]’’,
where RRN stands for radar rainfall neural network, the
subscript F indicates fixed network, and the number 20
indicates that it is based on the first 20 days of data.
The adaptive network is based on the initial model

(RRNF[20]), and is adaptively updated everyday when
new rain gauge data become available. The adaptive
networks are denoted as RRN A [21], RRN A [22],
RRNA[23], . . . , which are used to estimate rainfall for
the following day. The subscript A with RRN indicates
the adaptive network. Figure 8 shows a schematic that
describes the test scheme.

The mean hourly rain-rate estimation from the fixed
network and the adaptive network over the gauge are
shown in Fig. 9 during the period of 21–30 August (240
h). Fig. 9a shows the hourly rain accumulation estimated
using the fixed network. Fig. 9b compares the hourly
rain accumulation derived by using the adaptive network
with the corresponding ground observations. For the
convenience of evaluation, the gauge observation is
shown by a solid line in all figures. The mean daily
rainfall accumulation results based on the two rainfall
algorithms are shown in Fig. 10. The statistical analysis
of the rainfall estimation results is listed in table 1. The
statistical parameters used to evaluate the rainfall esti-
mates are 1) bias, 2) normalized error (NE, mean ab-
solute deviation normalized with respect to the mean),
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FIG. 12. Mean hourly rain rate estimation compared with gauge data from (a) a simply
retrained neural network and (b) the adaptive neural network.

and 3) the correlation coefficient. From this table, it can
be seen that the mean bias in hourly rain-rate estimates
from the fixed RRN and the adaptive RRN are 9.5%
and 6.5%, respectively. The corresponding NE are 29%
and 27%, respectively. For the daily rainfall accumu-
lation, the mean biases in the two algorithm are 9.2%
and 6.8%, respectively; the NE are 16% and 10%, re-
spectively. It is obvious that the RRNA (adaptive neural
network) performs slightly better than the RRNF (fixed
neural network) for rainfall estimation, demonstrating
the validity of RRNA.

b. Comparison of the adaptive RRN network with the
completely retrained network

To show that the adaptive updated neural network can
reach nearly the same level of accuracy as the network
that is completely retrained with all the available data,
their performances are compared for the 5 days toward
the end of August (from 21 to 25 August). This exercise
also reveals one of the practical advantages of the adap-

tive scheme over the simple retraining scheme. The
schematic of the experiment is shown in Fig. 11. In
addition, RRNF[21] indicates the fixed RRN obtained
by combining data from the first 21 days to form a
training dataset and then simply training without using
the adaptive updating scheme introduced in section 2.
During the process, the advantage of the adaptive
scheme became obvious, because the complete training
process got computationally very demanding as new
data became available. This complexity is a very im-
portant practical problem. However, by using the adap-
tive updating scheme introduced in this paper, this pro-
cess is simplified. This experiment was done only for
5 days because of the computational complexity of com-
plete retraining. We can compare the performance of
the two schemes. The mean hourly rain-rate estimation
comparison over the gauge locations is shown in Fig.
12. Table 2 shows the statistical evaluation of this anal-
ysis. From the results of Table 2, it can be seen that the
performances of the simply retrained RRN and the adap-
tive updated RRN are very similar. Therefore, we can
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TABLE 2. Mean rainfall estimation comparisons between simply
retrained network and the adaptive neural network during a 5-day
period (21–25 Aug 1995). CORR is the correlation coefficient; NE
is the normalized error.

Algorithms

Mean hourly rainfall accumulation

Bias (%) CORR NE

Simply retrained RRN
Adaptive RRN

10.43
7.33

0.97
0.95

0.22
0.25

Algorithms

Mean daily rainfall accumulation

Bias (%) CORR NE

Simply retrained RRN
Adaptive RRN

10.42
7.66

0.80
0.80

0.13
0.09

FIG. 13. Mean daily rainfall accumulation time series from the gauges and from the adaptive
RBF neural network, the WSR-88D algorithm, and the current day–based best Z–R algorithm:
the results for (top) Aug 1998 and (bottom) Sep 1998.

conclude from this analysis that the adaptive RRN can
perform as well as the completely retrained RRN in all
aspects of estimation accuracy, such as bias and per-
centage error. However, the adaptive RRN is much sim-
pler, faster, and easy to train, and it never computation-
ally grows out of control.

c. Further evaluation of the adaptive neural network

The last two sections demonstrated that the simplified
adaptive neural network is as accurate as a fully re-
trained neural network. In this section data from the
Tropical Rainfall Measuring Mission (TRMM) Texas
and Florida Underflights (TEFLUN) program is used
for independent validation of the adaptive neural net-
work rainfall products. This dataset has a large number
of gauges in the vicinity of the Melbourne, Florida,
radar. Approximately one-half the gauges were chosen
randomly for use in training, and the other set of gauges
was used for testing. Figure 7 shows the location of the
training and testing gauges with respect to the radar.
The adaptive neural network for rainfall estimation was

applied to two months of data, August and September
of 1998, from the Melbourne radar. As described in the
previous sections, the adaptive neural network trains
using the training data up to a certain day. RRNA is
ready for testing the next day, except the testing is done
on gauges that are not used in the training at all. In
addition, the WSR-88D algorithm and a best Z–R al-
gorithm computed from the training data for each day
(adaptively changed for each day) were also used to
evaluate rainfall over the testing gauges. In practice, the
best Z–R algorithm is available only after the day is
over; nevertheless, it serves as one of the best-case sce-
narios as a reference to compare with neural network
rainfall estimates. Figure 13 shows the mean daily ac-
cumulation time series over the testing gauges for the
months of August and September. The three time series
correspond to the three algorithms, namely, the adaptive
neural network, the WSR-88D algorithm, and the cur-
rent day–based best Z–R algorithm. Note that this is the
mean daily accumulation over many gauges distributed
over a 100-km radius. Individual gauges have higher
daily accumulations for some days. Figure 14 shows the
mean hourly and daily accumulations in the form of
scatterplots. The statistics of the results shown in Figs.
13 and 14 are summarized in Tables 3 and 4. It can be
seen that the daily accumulation can be estimated with
greater accuracy than the best Z–R algorithm (adaptively
changed) for each day. In addition, the adaptive neural
network is also much better than the fixed WSR-88D
algorithm.

4. Summary and conclusions

An adaptive neural network scheme for rainfall es-
timation is developed in this paper. The motivation
for this method is to develop a scheme in which a
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FIG. 14. Scatterplots of the mean (a) hourly and (b) daily rainfall accumulations for the dataset
from Sep 1998.

neural network built for radar rainfall estimation can
be gradually modified over time without retraining
the network from the beginning. Such a network is
very practical for real-time implementation on WSR-
88D systems. This goal was achieved by using a radial
basis function neural network in which the neural net-

work was adjusted adaptively. The algorithm also en-
sures priority for new data in the training process.
The performance of the adaptive neural network is
evaluated by using 2 months of WSR-88D data col-
lected for the TRMM TEFLUN field program. The
analysis indicates that the neural network–based tech-
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TABLE 3. Mean rainfall estimation comparisons among three al-
gorithms for the period of 1–30 Aug 1998. CORR is the correlation
coefficient; NE is the normalized error.

Algorithms

Hourly rainfall accumulation

Bias (%) CORR NE

WSR-88D Z–R
Best Z–R
Adaptive RRN

44.68
6.38

28.51

0.90
0.82
0.92

0.47
0.46
0.38

Algorithms

Daily rainfall accumulation

Bias (%) CORR NE

WSR-88D Z–R
Best Z–R
Adaptive RRN

44.24
6.06

28.48

0.84
0.81
0.89

0.44
0.32
0.21

TABLE 4. Same as Table 3 but for the period of 1–26 Sep 1998.

Algorithms

Hourly rainfall accumulation

Bias (%) CORR NE

WSR-88D Z–R
Best Z–R
Adaptive RRN

51.85
1.85

23.70

0.90
0.80
0.93

0.57
0.40
0.32

Algorithms

Daily rainfall accumulation

Bias (%) CORR NE

WSR-88D Z–R
Best Z–R
Adaptive RRN

52.47
2.02

23.59

0.87
0.82
0.90

0.54
0.25
0.15

nique estimates rainfall better than the simple WSR-
88D Z–R algorithm and the best Z–R algorithm es-
timated for each day. In addition, the adaptive net-
work also reaches nearly the same estimation accu-
racy as a completely retrained fixed RRN with all the
available data. When compared with a completely re-
trained neural network, the adaptive neural network
is easier and faster to set up and is very suitable for
real-time implementation on WSR-88D radars.
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