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1 Introduction
Blundon’s inequality states that, for any triangle with the circumradius R, the inradius r,
and the semiperimeter s, it is true that (see [1])

2R* + 10Rr — r* = 2(R — 2r)y/R(R - 2r)
<s? <2R* +10Rr — r? + 2(R — 2r)\/R(R - 2r). 1)

The equality occurs in the left-side inequality if and only if the triangle is either equi-
lateral or isosceles, having the vertex angle greater than 7/3; the equality occurs in the
right-side inequality if and only if the triangle is either equilateral or isosceles, having the
vertex angle less than 77 /3.

Blundon’s inequality expresses the necessary and sufficient conditions for the existence
of a triangle with elements s, R, and r. In many references this inequality is called the
fundamental triangle inequality.

Another fundamental inequality, related to non-obtuse triangle (or non-acute triangle),
is known in the literature as Ciamberlini’s inequality (see [2]). This inequality claims that,
for any non-obtuse triangle, the inequality

$>2R+r (2)

holds true; inequality (2) is reverse for any non-acute triangle. The equality occurs in (2)
if and only if the triangle is a right triangle.

Blundon’s inequality and Ciamberlini’s inequality have many applications in Euclidean
geometry, particularly in the field of geometric inequalities. For more details we refer the
reader to [3—8] and the references cited therein.
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The main purpose of this paper is to present a geometric interpretation of Blundon’s in-
equality and Ciamberlini’s inequality. Also, we show some interesting applications of our
results. This paper is organized as follows. Section 2 describes a geometric interpretation
of Blundon’s inequality and Ciamberlini’s inequality. Section 3 gives some remarks on the
geometric interpretation of Blundon’s inequality and Ciamberlini’s inequality, we display
how to use the geometric interpretation of these inequalities to prove some geometric in-
equalities. Finally, Section 4 illustrates the applications of the results given in Section 2,
some classical geometric inequalities such as Leuenberger’s inequality, Walker’s inequal-
ity, and Finsler-Hadwiger’s inequality are improved. Moreover, an open problem proposed
by Huang in [9] is also solved.

2 Geometric interpretation of Blundon'’s inequality and Ciamberlini’s
inequality
Theorem 1 Let AABC be a triangle with circumcircle ©O and incircle ©I, and let R, r,
and s be the circumradius, inradius, and semiperimeter of the triangle, respectively. Then
(i) there exists an isosceles AA1ByCy with vertex angle A; =2 arcsin(% + %, /11— %) which
inscribes the circumcircle ©O, and which satisfies

R =R, n=r, 51<s, (3)

where Ry, 1, and s, are the circumradius, inradius, and the semiperimeter of
AA1BCy, respectively;

(ii) there exists an isosceles AAyB,Cy with vertex angle Ay = 2 arcsin(% - % 1- %)
which inscribes the circumcircle ©O and satisfies
RZZR, r,=r, $ =S, (4)

where Ry, ry, and s, are the circumradius, inradius, and the semiperimeter of
AA, B, Cy, respectively.

Proof (i) As shown in the diagram (see Figure 1), we construct an isosceles AA;B,C, in-
scribing the circumcircle ©O, such that the vertex angle satisfies

(1 1 2r
A;=2arcsin| = + =,/1—-—|.
2 2 R

Figure 1 Proof of Theorem 1, part (i). A
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Since AA1B;C; and AABC have common circumcircle ©®O, we conclude that
R =R.

Next, we prove that the inradius of isosceles AA;B;C; is equal to the inradius of AABC.
By the law of sines we find that the congruent side lengths of AAB;C is

1
BlDl = EBI C1 = RSiIlAl.
Thus, we obtain

Bl . Bl
rn= BlDl tan 7 =R SlIlA1 tan E

i T —-A
= RsinA; tan
A A\ 1—sin4dl
=2R(sinLeos )2
2 2/ cos4

. A1( . A1)
=2Rsin —|(1-sin— |.
2 2

Substituting A; = 2 arcsin(5 + 5,/1 - %) into the above expression, it follows that

1.1
272

11 2r\ (1 1 2r
n=2R[=+>1-=)(=-=/1-=)=r.
22 RJ\2 2 R

Finally, we shall verify that the semiperimeter of isosceles AA;B;C; satisfies s; <s.

Since

S1 = AlBl + BlDl

Ay A A
=2Rcos — + 2Rcos — sin —
2 2 2
LA Ay
=2R|1+sin— ) cos —
2 2
and
DA 11 2r
sin— =—+ —,/1- —,
2 2 2 R
we get

=2R%* + 10Rr — r* = 2(R - 2r)/R(R - 2r).
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Figure 2 Proof of Theorem 1, part (ii).

Applying the left-side Blundon’s inequality (1) yields
81 <s.
This proves the first part of Theorem 1.

(ii) By using the same method as in part (i) above, we construct an isosceles AA;B,C;,
inscribing the circumcircle ©O (see Figure 2), such that the vertex angle satisfies

(1 1 2r
Ay =2arcsin| — — —,/1-— ).
2 2 R
Then we have
Ry=R

and

B, . T —Ay . A . Ay
ry = ByDy tan — = Rsin A, tan =2Rsin— | 1-sin— |.
2 4 2 2

Substituting A, = 2 arcsin(% - %, /11— %) into the above expression, it follows that

1 1 2r 1 1 2r
r=2R(=->/1-Z)(2+=/1-Z)=r
2 2 R 2 2 R

Next, we need to verify that the semiperimeter of isosceles AA;B,C, satisfies sp > s.

From

Sy = Ang + BzDz

Ay Ay Ay
=2Rcos — + 2Rcos — sin —
2 2 2

. Ay Ay
=2R|1+sin— ) cos —
2 2
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and

we deduce that
, 53 1 2r\? 11
S=4r(Z - 1-=) [1-(z-=
2 2 R 2 2
1, 2r 2r\ 2
=SR(1+ 1-=)(3-,/1-2=
4 R R

=2R* + 10Rr — r* + 2(R — 2r)\/R(R - 27).
Using the right-side Blundon’s inequality (1) leads to
$9>8.
The second part of Theorem 1 is proved. O

Theorem 2 Let AABC be a non-obtuse triangle with circumcircle ©0 and incircle ©I, and

let R, r, and s be the circumradius, inradius, and semiperimeter of the triangle, respectively.
(i) If2r <R < (N2 + 1)r, then there exists an isosceles AA,B,Cy with vertex angle

1,1

5+ 5y 1- %) which inscribes the circumcircle ©O and satisfies

Ay =2arcsin(; + 3

R1:Rr rn=r, 1S, (5)
where Ry, r1, and s, are the circumradius, inradius, and the semiperimeter of

AA1BCy, respectively.
(ii) IfR > (N2 + 1)r, then there exists a right triangle AA,ByCy with an acute angle

A, = 2 arctan( 2=y E=2Rr—r2 R;R_frw) which inscribes the circumcircle ©O and satisfies
Ry =R, ry=r, 55 <, (6)

where Ry, ry, and s, are the circumradius, inradius, and the semiperimeter of
AA,B,C,, respectively.

Proof The assertion in part (i) of Theorem 2 can be proved by using the same method as
in the proof of Theorem 1, part (i), above.

We will now prove part (ii) of Theorem 2.

According to the assumption R > (+/2 + 1)r, we can construct a right triangle AA,B,C,
inscribing the circumcircle ©O (see Figure 3), such that an acute angle satisfies

R—~R?-2Rr -2
2R+r ’

Ay =2 arctan(

Since AA,B,C, and AABC have common circumcircle ©®O, we conclude that

Ry =R.

Page 5 of 18
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Figure 3 Proof of Theorem 2, part (ii).

It is easily observed that

Ay B, Ay T
AyBy =1y cot — +cot— | =ry| cot — + cot
2 2 2

So, we have

AyBy
fa=—7 A
cot 3 +cot(F — 32)
2R
= Ay T Ay
cot 3 +cot(g — )
Ay 2 Ay
_ 2R(tan Z* —tan” 32)
1 + tan2 %
Now, from
Ay R—~/R?>-2Rr—r?
tan — =
2 2R +r
it follows that
2R(tan ATZ — tan? ATZ)
ry =
1 + tan? ATZ
2R( R-vR2-2Rr—r? _ (R—«/ R2—2Rr—r? )2)
_ 2R+r 2R+r
VR 2R
1 (R

Next, we verify that s, <s.
In AA,B5C,, we have

_ A232 + BZCZ + C2A2
- 2
_ Asz +A232 +1ry+7ry
- 2

$2

Ay

2

)
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:2R2+7‘2

=2R+r.
Using Ciamberlini’s inequality (2) for non-obtuse triangles
s>2R +r,
we obtain
Sy =2R+r<s.
The proof of Theorem 2 is completed. d

Theorem 3 Let AABC be a non-acute triangle with circumcircle ©O and incircle ©I, and

let R, r, and s be the circumradius, inradius, and semiperimeter of the triangle, respectively.
R—v/R2_2Rr—r?

Then there exists a right triangle AA1B,C, with an acute angle A, =2 arctan(T)
which inscribes the circumcircle ©O and satisfies
R, =R, r=r, 51>, (7)

where Ry, r1, and s, are the circumradius, inradius, and the semiperimeter of AA1B,C;,
respectively.

Proof Note that in any non-acute triangle we have the inequality (see [3])
R> (2 +1)r.

This enables us to construct a right triangle AA;B,C;, inscribing the circumcircle ©O
(see Figure 4), such that an acute angle satisfies

R—~R?>—-2Rr —r?
A; = 2arctan .
2R +r

Figure 4 Proof of Theorem 3.
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By using methods similar to those of Theorem 2, part (ii) together with an application
of Ciamberlini’s inequality for non-acute triangles, we can deduce that

Ry =R, n=r, 5125
which implies the desired results of Theorem 3. d

3 Remarks on geometric interpretation of Blundon'’s inequality, and
Ciamberlini’s inequality

The results of Theorems 1, 2 and 3 provide a useful method to prove the inequalities for

triangles.

Remark 1 The result of Theorem 1 implies that:
(i) In order to prove the validity of the inequality

s> f(R,r) (8)

for any triangle, it is sufficient to prove that inequality (8) is valid for the isosceles
triangles with the vertex angle greater than or equal to 7 /3.
(ii) In order to prove the validity of the inequality

s<f(Rr) )

for any triangle, it is sufficient to prove that inequality (9) is valid for the isosceles
triangles with the vertex angle less than or equal to 7 /3.

Remark 2 The result of Theorem 2 implies that, in order to prove the validity of the in-
equality

s>f(Rr) (10)

for any non-obtuse triangle, it is sufficient to prove that inequality (10) is valid for the
isosceles triangles with the vertex angle greater than or equal to 7/3 in the case when
2r <R < (+/2 + 1)r, and inequality (10) is valid for the right triangles in the case when

R > (\/5 +1r.
Remark 3 The result of Theorem 3 implies that, in order to prove the validity of the in-
equality

s<f(Rr) (11)

for any non-acute triangle, it is sufficient to prove that inequality (11) is valid for the right
triangles.

Remark 4 If the inequality under consideration is homogeneous with respect to R, r, and
s, in order to convenient for computing, we may assume that the side lengths of the isosce-

les triangles in the form of

1+a2 1+x
= c= 2 (12)

61:2, )
1-x2
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where x € (0,+/3/3] for the case of vertex angle of isosceles triangles are greater than or
equalto/3;and x € [«/g/ 3,1) for the case of vertex angle of isosceles triangles is less than

or equal to /3.

It is easily observed that the function ¢(x) = %, ¢:(0,1) — (1, 00) is strictly increasing.
So, b,c € (1,00), a = 2, which are the side lengths constituting isosceles triangles.
Furthermore, the semiperimeter s, the inradius 7, and circumradius R of the triangle can

be calculated by the following formulas:

at+b+c 2
S=—""=——,
2 1—x2
_|(b+c-a)lctra-b)la+b-c)
r= d(a+b+c) v

R- abc 1+ a?)?
CJa+brobrc—alcra-bla+b—c) 4x(1-x2)

Remark 5 If the inequality under consideration is homogeneous with respect to R, r, and
s, in order to convenient for computing, we may assume that the side lengths of the right
triangles are in the form of

1-— a2 2%
S v S g (13)
where 0 < x < 1.
It is easy to see that the function ¢(x) = %, ¢:(0,1) — (0,1) is strictly decreasing, thus

b €(0,1). It follows from ¢ = 1 and a? + b* = ¢* that a, b, c are the side lengths constituting
right triangles.
Furthermore, the semiperimeter s, the inradius 7, and circumradius R of the triangle can

be calculated by the expressions below:

1+x x(1—x) 1

s=—3, r=——-, R=-. 14

1+ a2 1+ 2 2 14)
4 Some applications
In this section we illustrate the applications of the results given in Section 2. Based on these
results, we establish some sharp geometric inequalities, which improves some classical
geometric inequalities.

In [10], Blundon asked for the proof of the inequality
s<2R+(3v/3-4)r, (15)

which holds in any triangle ABC. The solution given by the editors was in fact a comment
made by Makowski [11], who refers the reader to [1], where Blundon originally published
this inequality.

We establish a sharpened version of inequality (15), as follows.

Proposition 1 In any AABC we have the inequality

s§2R+(3«/§—4)r—(3x/§—5)(R—2r)%, (16)
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where the constant 3+/3 — 5 is best possible, that is, it cannot be replaced by larger num-

bers.

Proof By using Theorem 1, in order to prove that inequality (16) holds for any triangle, it
is enough to prove that inequality (16) holds for the isosceles triangle. In view of inequality
(16) being homogeneous with respect to R, r, and s, we may assume the side lengths of the
triangle as

where 0 < x < 1. Further, the semiperimeter s, inradius r, and the circumradius R of the

triangle can be formulated as follows:

2 R 1+4%)?
r=x, =— 7.
4o(1 — x2)

Note that inequality (16) is equivalent to

2R+(3x/§—4)r—s—(3«/§—5)<r—%r2)20. 17)

Substituting x for s, r, R in (17) gives

2r?
2R+ (3v/3 —4)r—s— (3«/5—5)(;"— 7)
(1 +%2)? 2 8x3(1 — x2)
it (3v/3 - 4)x — — -(3@-5)(x- ey )

-0~ 5) 2
= (48\/§— Sl)m (x4 + <ﬁ + 2>x3

4 , (22 14\ 16 9
=2 )+ [ SVEBr—= o+ —VB+ =
V3 39 13 39 13

>0.

We conclude that inequality (17) is valid, and thus inequality (16) is valid.
We next prove that the constant 34/3 — 5 is best possible in the strong sense.
Consider inequality (16) in a general form as

S<2R+ (3«/§—4)r—k(R—2r)%. (18)
Putting
2 1+4%)?
s= -2 =x, R= m
and

x—1
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in (18), we get

=3+/3-5.

k <1lim

x—1

1 1 (x+%+1)(x2+1)2
(53)

(e + 1)x2(x + %)2

Therefore, the best possible value for k in (18) is kmax = 34/3 — 5. This completes the
proof of Proposition 1. O

Half a century ago, F Leuenberger proved the following inequality (see [4]):

1 1 43
N o 19
+b+c_2r 19)

Q|-

Huang [9] considered the improved version of (19) and proposed the following.

Open problem Find the largest constant k such that

1 1 1 1 kl+3—k 1 (20)
a+b+c_ﬁ R 2 r

holds for any triangle AABC.

Some results related to the above Open problem were given by Shi [12], Chen [13], and
Chen [14], respectively, as follows:

1 1 1 1 1 1

rrzfﬁ(w;)' 2
1 1 1 1 /51 71

;+z+zfﬁ(1'i+§'?>’ -
1 1 1 1 /97 1 67 1

;*rzfﬁ(ﬁi*ﬁ")' )

The above results show that inequality (20) is valid for k < 97/77. This prompts us to
ask a natural question: What is the largest constant k such that inequality (20) holds true?
The following proposition gives a perfect answer to this question.

Proposition 2 In any AABC we have the inequality

R 2 r
where the constant ~/2 is best possible, that is, it cannot be replaced by larger numbers.

Proof By using the identity (see [3])

1 1 1 s+r2+4Rr
—t -t
a b ¢ 4Rrs

it follows that inequality (24) is equivalent to the following inequality:

4 3-72
sz——s<f/§r+ \/_R> +r2 +4Rr <0. (25)
V3 2
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It is obvious that inequality (25) can be transformed to the form
s> f(R,r).

By using Theorem 1, in order to prove that inequality (25) holds for any triangle, it is
enough to prove that inequality (25) holds for the isosceles triangle. Note that inequality
(25) is homogeneous with respect to R, r, and s, we may assume the side lengths of the

triangle as

where 0 < x < 1. Then the semiperimeter s, inradius r, and the circumradius R of the tri-

angle can be calculated as follows:

2 1+4%)?
, r=x, R=——""_.
4o(1 — x2)

Substituting x for s, 7, R in (25) gives

4 3-J2
sz——s<«3/§r+ IR) +72 + 4Ry
NE] 2

4 8 R (3 = V/2)(1 + %) ,  (1+42)?
‘(1—x2>2‘ﬁ(1_x2)(ﬁ’” 8x(1-) >+x+1—x2

) () )

<0.

The inequality (25) is proved, we thus conclude that inequality (24) is valid.
Next, we need to show that the constant /2 is best possible in the strong sense.

Consider inequality (24) in a general form as

1 1 1 k. 1 3-k 1 26)
PRAPE f R" 72 7))

Choosing
a=2, b=c=232+2V4+2

in (26), one has

\3/5_1<L< 1 +3_k. V3 )
27 VBN VBEV2+EVA+E) 2 232-1

— @ﬁ f;)f_g) 2va-2va-l<o
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Thus, the best possible values for k in (26) is kmax = ~/2. The proof of Proposition 2 is
completed. d

In [15], Walker presented a celebrated inequality for non-obtuse triangles, i.e.,
§* > 2R* + 8Rr + 3r%. (27)

Inequality (27) is known in the literature as Walker’s inequality. We establish a sharp-
ened version of inequality (27), as follows.

Proposition 3 In any non-obtuse AABC we have the inequality

2(R-2r)(R - (v/2 +1)r)?
R

§*>2R* + 8Rr +3r% + , (28)

where the constant 2 is best possible, that is, it cannot be replaced by larger numbers.

Proof By making use of Theorem 2, in order to prove the validity of inequality (28) for any
non-obtuse triangle, it is sufficient to prove that inequality (28) is valid for the isosceles
triangles in the case when 2r < R < (+/2 + 1)r, and inequality (28) is valid for the right
triangles in the case when R > (v/2 + 1)r.

We rewrite inequality (28) in an equivalent form, by transferring all the terms to the left

2(R=2r)(R - (/2 + 1)r)? 0

H(s,R,7) =s*—2R? —8Rr — 31 — R

(29)

Let us consider the following two cases.

Casel.2r <R< (/2 +1)r.

By the homogeneity of inequality (29) with respect to R, r, and s, we may assume the
side lengths of the isosceles triangle as

1+a2 1+a2
a=2, b= = .
1-x2 1-x2

’ c=
The semiperimeter s, inradius r, and circumradius R of the triangle can be expressed by

2 1+x%)?

s=—7, r=x, R=——"—.
1-x2 4x(1 - x2%)

Moreover, the assumption 2r < R < (v/2 + 1)r implies that

[24/2 1
\/5—1<x< T\/_+§

Direct computation gives

4 (1 +x2)* 2(1 + x%)?
(1-x2)2  8x2(1 —x2)2 1-—x2

_2< (1 +x2)? 2x>< (1+x2)2) _(ﬁ+1)x)24x(1—x2)

4a(1—a2) 4x(1 — 22 (1 +2)2

H(s,R, 1) = —3x%
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_ <_45ﬁ_ 261>(x+ﬁ—1)(x_ﬁ+1)(x2_%)2

4 x%(x% —1)(x2 +1)2
. (14 8\, 2 7
(- (V-w)e -5 )

- 2_ 1y
:<_45f_?>(x+x/§ D -2+ - 3)

x2(x2 —1)(x2 +1)2

7 4\*> 173 26
2
V2 — - 2
x((x 41«/_+41) + x/—)

1,681 1,681
> 0.

Therefore, inequality (29) is valid for the isosceles triangles under the assumption of
2r <R< (V2 +1r.

Case 2. R > (ﬁ +1r.

In view of the homogeneity of inequality (29) with respect to R, r, and s, we may assume
the side lengths of the right triangle as

1-x2 2x

C:l = — = —
’ 1+x% 1+x2

where 0 < x < 1. The semiperimeter s, inradius r, and circumradius R of the triangle can

be expressed by
x+1 x(1 —x) 1
s = - - =
22 +1 1+ 2 2

Thus, we have

H(s,R,7) = (x+ 1)2 1 4x(1-x) ~ 3962(1 _ x)z

T2 1442 (1 +x2)2

@2 +1)2 2
1 2x1-x)\/1 x(1-x)\>
(-Gt

x2(x—1)(x — +/2 +1)2 |
= (-30v/2-42) e (x2 o §>
x(x—1)(x — +/2 +1)2 1\? 2
- 303 () )
> 0.

Hence, inequality (29) is valid for the right triangles under the assumption of R > (v/2 +
1r.

By combining Cases 1 and 2, we deduce from Theorem 2 that inequality (28) holds true
for arbitrary non-obtuse triangles.

We next prove that the constant 2 in (28) is best possible in the strong sense.
Consider inequality (28) in a general form as

KR =21 (R - (V2 +1)r)?
2 >2R* +8Rr+3r* + ( ) R(f+ )r)'

(30)
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Putting
2 1+4%)?
s= , r=x, R=
1—x2 4x(1 - x2)
and
x—1

in (30), we get

¥ < Tim —2(x = /2 =1)(x + /2 + 1)(x% + 1)2
T eol(40v2 4 57) - V2 + Dx+ V2 - )2 - 242 -1)2

Therefore, the best possible values for k in (30) is kpax = 2. The proof of Proposition 3
is completed. d

In [16] and [17], Finsler and Hadwiger proved the following inequality:
43F +Q<da®+b*+ <4V3F +3Q, (31)
where a, b, ¢ are the side lengths of a triangle, F is the area, and
Q=(a-b?>+b-c)?+(c-a)’
Here, we establish an improved Finsler-Hadwiger inequality for non-obtuse triangles.
Proposition 4 [n any non-obtuse AABC we have the inequality
a*+ b+ <4V3F+(2-3)(3+2v2)Q, (32)

where a, b, c are the sides lengths of a triangle, F is the area of the triangle. The constant
(2 — v/3)(3 + 2+/2) is best possible, that is, it cannot be replaced by smaller numbers.

Proof By using the identities (see [3])

(@-b)?+(b-c)+(c-a)*=2(s* - 3r* —12Rr),
a* +b* +* =2(s* —r* —4Rr),

F=sr,
it follows that inequality (32) is equivalent to

H(s,R,7) = (2(2 -V3)B3+2v2) - 2)52 +4~/3rs + 8Rr + 21*

~(2-+/3)(3 +2v2)(6r* + 24Rr) > 0. (33)
It is easy to see that inequality (33) can be equivalently transformed to the form of

s> f(R,r).
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By making use of Theorem 2, in order to prove the validity of inequality (33) for any
non-obtuse triangle, it is sufficient to prove that inequality (33) is valid for the isosceles
triangles in the case when 2r < R < (+/2 + 1)r, and inequality (33) is valid for the right
triangles in the case when R > (V2 +1)r.

We consider the following two cases.

Casel.2r <R<(+/2+Dr.

By the homogeneity of inequality (33) with respect to R, r, and s, we may assume the

side lengths of the isosceles triangle as

1+ x2 1+a2
a=2, b= = .
1-x2 1-x2

’ c=
The semiperimeter s, inradius r, and circumradius R of the triangle can be expressed by

2 1 +x2)?
r=x, R=—"—
4x(1 — x2)

Moreover, the assumption 2r < R < (v/2 + 1)r implies that

24/2
V2-1<x< i

+ =
7 7

Direct computation gives

2
H(s,R,7) = (2(2—«/§)(3+2\/§)—2)< ) +8v3—

1-—x2 1-—x2

2(1 +4%)? 6(1 +4%)°
+ W + 2.?62 - (2 - \/g)(?) + 2\/§)<6x2 + W)

= (54+/3 = 72/2 + 3676 —102)(x — /2 + 1)

( (7_\/5)(4\/§+1)>(x—%)2
XX+
47 (x2 -1)2

> 0.

Hence, inequality (33) is valid for the isosceles triangles under the assumption of 2r <
R< (V2 +1)r.

Case 2. R> (v/2 + 1)r.

In view of the homogeneity of inequality (33) with respect to R, r, and s, we may assume

the side lengths of the right triangle as

1-x2 2x

c=1, a=——-7H, =—,
1+ a2 1+x2

where 0 < x < 1. The semiperimeter s, inradius r, and circumradius R of the triangle can

be expressed by

x+1 x(1 —x) 1

S =
2+1 1+42° 2
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Thus, we have

(x+1)2

H(s,R,7) = (2(2-+/3)(3 +2+2) -2)

x(1-x2) 4dx(l-%) 2x%(1-x)?
+4\/§(1 +x2)2 " 1+x2 (1 +x2)2

_(2_ﬁ)(3+2ﬁ)<6x2(1—x)2 N 12x(1—x))

(1 +x2)2 1+ x2

= (2442 -18+/3 126 + 34)(x2 - (5‘@ _2v2 + 66 + E)x

47 47 47 47

47 ) (a2 +1)2

22 5 6 34\ (x — V2 +1)?
+EI—EI—E«/€+—>—

> 0.

We conclude that H(s,R,r) > 0, that is, inequality (33) is valid for the right triangles
under the assumption of R > (ﬁ +1r.

By combining Cases 1 and 2, we deduce from Theorem 2 that inequality (32) holds true
for arbitrary non-obtuse triangles.

Finally, we need to prove that the constant (2 — +/3)(3 + 2+4/2) in (32) is best possible in
the strong sense.

Consider inequality (32) in a general form as
a* +b* + ¢® < 4V3F + k(a-b)* + (b—0)* + (c - a)*. (34)

Putting

into (34), we get
k> (2-+/3)3+2v2).

Therefore, the best possible values for k in (34) is that kpin = (2 — v/3)(3 + 2+/2). This
completes the proof of Proposition 4. d
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