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Abstract

In this article, first, we prove that weighted-norm inequalities for the M-harmonic
conjugate operator on the unit sphere whenever the pair (u, v) of weights satisfies
the Ap-condition, and uds, vds are doubling measures, where ds is the rotation-
invariant positive Borel measure on the unit sphere with total measure 1. Then, we
drive cross-weighted norm inequalities between the Hardy-Littlewood maximal
function and the sharp maximal function whenever (u, v) satisfies the Ap-condition,
and vds does a certain regular condition.
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1 Introduction
Let B be the unit ball of ℂn with norm |z| = 〈z, z〉1/2 where 〈, 〉 is the Hermitian inner

product, S be the unit sphere and s be the rotation-invariant probability measure on S.

For z Î B, ξ Î S, we define the M-harmonic conjugate kernel K(z, ξ) by

iK(z, ξ) = 2C(z, ξ) − P(z, ξ) − 1,

where C(z, ξ) = (1 - 〈z, ξ〉)-n is the Cauchy kernel and P(z, ξ) = (1 - |z|2)n/|1 - 〈z, ξ〉 |
2n is the invariant Poisson kernel [1].

For the kernels, C and P, refer to [2]. And for all f - A(B), the ball algebra, such that f

(0) is real, the reproducing property of 2C(z, ξ) - 1 [2, Theorem 3.2.5] gives∫
S
K(z, ξ)Re f (ξ)dσ (ξ) = −i

(
f (z) − Re f (z)

)
= Im f (z).

For n = 1, the definition of K f is the same as the classical harmonic conjugate func-

tion and so we can regard K f as the Hilbert transform on the unit circle. The Lp

boundedness property of harmonic conjugate functions on the unit circle for 1 <p < ∞

was introduced by Riesz in 1924 [3, Theorem 2.3 of Chapter 3]. Later, in 1973, Hunt

et al. [4] proved that, for 1 <p < ∞, conjugate functions are bounded on weighted mea-

sured Lebesgue space if and only if the weight satisfies Ap-condition. Most recently,

Lee and Rim [5] provided an analogue of that of [4] by proving that, for 1 <p < ∞, M-

harmonic conjugate operator K is bounded on Lp(ω) if and only if the nonnegative

weight ω satisfies the Ap(S)-condition on S; i.e., the nonnegative weight ω satisfies
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sup
Q

1
σ (Q)

∫
Q

ωdσ
(

1
σ (Q)

∫
Q

ω−1/(p−1)dσ
)p−1

:= Aω
p < ∞,

where Q = Q(ξ, δ) = {h Î S : d(ξ, h) = |1 - 〈ξ, h〉|1/2 <δ} is a non-isotropic ball of S.

To define the Ap(S)-condition for two weights, we let (u, v) be a pair of two non-

negative integrable functions on S. For p > 1, we say that (u, v) satisfies two-weighted

Ap(S)-condition if

sup
Q

1
σ (Q)

∫
Q
udσ

(
1

σ (Q)

∫
Q
v−1/(p−1)dσ

)p−1

:= Ap < ∞, (1:1)

where Q is a non-isotropic ball of S. For p = 1, the A1(S)-condition can be viewed as

a limit case of the Ap(S)-condition as p ↘ 1, which means that (u, v) satisfies the A1

(S)-condition if

sup
Q

1
σ (Q)

∫
Q
udσ

(
esssupQv

−1) := A1 < ∞,

where Q is a non-isotropic ball of S.

In succession of classical weighted-norm inequalities, starting from Muckenhoupt’s

result in 1975 [6], there have been extensive studies on two-weighted norm inequalities

(for textbooks [7-10] and for related topics [11-17]). In [6], Muckenhoupt derives a

necessary and sufficient condition on two-weighted norm inequalities for the Poisson

integral operator. And then, Sawyer [18,19] obtained characterizations of two-weighted

norm inequalities for the Hardy-Littlewood maximal function and for the fractional

and Poisson integral operators, respectively. As a result on two-weighted Ap(S)-condi-

tion itself, Neugebauer [20] proved the existence of an inserting pair of weights. Cruz-

Uribe and Pérez [21] give a sufficient condition for Calderón-Zygmund operators to

satisfy the weighted weak (p, p) inequality. More recently, Martell et al. [22] provide

two-weighted norm inequalities for Calderón-Zygmund operators that are sharp for

the Hilbert transform and for the Riesz transforms.

Ding and Lin [23] consider the fractional integral operator and the maximal operator

that contain a function homogeneous of degree zero as a part of kernels and the

authors prove weighted (Lp, Lq)-boundedness for those operators for two weights.

In [24], Muckenhoupt and Wheeden provided simple examples of a pair that satisfies

two-weighted Ap(ℝ)-condition but not two-weighted norm inequalities for the Hardy-

Littlewood maximal operator and the Hilbert transform. In this article, we prove the

converse of the main theorem of [5] by adding a doubling condition for a weight func-

tion. And then by adding a suitable regularity condition on a weight function, we

derive and prove a cross-weighted norm inequalities between the Hardy-Littlewood

maximal function and the sharp maximal function.

Throughout this article, Q denotes a non-isotropic ball of S induced by the non-iso-

tropic metric d on S which is defined by d(ξ, h) = |1 - 〈ξ, h〉|1/2. For notational simpli-

city, we denote ʃQ f ds := f(Q) the integral of f over Q, and
1

σ (Q)

∫
Q
f dσ := fQ the

average of f over Q. Also, for a nonnegative integrable function u and a measurable

subset E of S, we write u(E) for the integral of u over E. We write Q(δ) in place of Q(ξ,

δ) whenever the center ξ has no meaning in a context. For a positive constant s, sQ(δ)
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means Q(sδ). We say that a weight v satisfies a doubling condition if there is a constant

C independent of Q such that v(2Q) ≤ Cv(Q) for all Q.

Theorem 1.1. Let 1 <p < ∞. If (u, v) satisfies two-weighted Ap’ (S)-condition for some

p’ < p and uds, vds are doubling measures, then there exists a constant C which

depends on u, v and p, such that for all function f,∫
S

∣∣K f
∣∣pu dσ ≤ C

∫
S

∣∣f ∣∣pv dσ for all f ∈ Lp(v). (1:2)

To prove the next theorem, we need a regularity condition for v such that for 1 ≤ p

< ∞, we assume that for a measurable set E ⊂ Q and for s(E) ≤ θs(Q) with 0 ≤ θ ≤ 1,

we get

v(E) ≤ (
1 − (1 − θ)p

)
v(Q). (1:3)

Let f Î L1(S) and let 1 <p < ∞. The (Hardy-Littlewood) maximal and the sharp maxi-

mal functions M f, f#p, resp. on S are defined by

Mf (ξ) = sup
Q

1
σ (Q)

∫
Q

∣∣f ∣∣ dσ ,
f #p(ξ) = sup

Q

(
1

σ (Q)

∫
Q

∣∣f − fQ
∣∣pdσ)1/p

,

where each supremum is taken over all balls Q containing ξ. From the definition, the

sharp maximal function f ↦ f#p is an analogue of the maximal function M f, which

satisfies f#
1

(ξ) ≤ 2M f(ξ).

Theorem 1.2. Let 1 <p < ∞. If (u, v) satisfies two-weighted Ap(S)-condition and vds
does (1.3), then there exists a constant C which depends on u, v and p, such that for all

function f,∫
S
(Mf )pu dσ ≤ C

(∫
S

(
f #1

)p
v dσ +

∫
S

∣∣f ∣∣pv dσ)
.

Remark. On the unit circle, we derive a sufficient condition for weighted-norm

inequalities for the Hilbert transform for two weights.

The proofs of Theorem 1.1 will be given in Section 3. We start Section 2 by deriving

some preliminary properties of (u, v) which satisfies the Ap(S)-condition. In Section 4,

we prove Theorem 1.2.

2 Two-weight on the unit sphere
Lemma 2.1. If (u, v) satisfies two-weighted Ap(S)-condition, then for every function f ≥ 0

and for every ball Q,

(fQ)pu(Q) ≤ Ap

∫
Q
f pv dσ .

Proof. If p = 1 and (u, v) satisfies two-weighted A1(S)-condition, we get, for every ball

Q and every f ≥ 0,
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fQu(Q) = f (Q)uQ

≤ A1f (Q)
1

ess sup
Q

v−1

≤ A1

∫
Q
fv dσ ,

since 1/ ess sup
Q

v−1 = ess inf
Q

v ≤ (ξ) for all ξ Î Q.

If 1 <p < ∞ and (u, v) satisfies two-weighted Ap(S)-condition, we have, for every ball

Q and every f ≥ 0, using Holder’s inequality with p and its conjugate exponent p/(p -

1),

fQ =
1

σ (Q)

∫
Q
f v1/pv−1/pdσ

≤
(

1
σ (Q)

∫
Q
f pv dσ

)1/p( 1
σ (Q)

∫
Q
v−1/(p−1)dσ

)(p−1)/p

Hence,

(
fQ

)p
u(Q) =

u(Q)
σ (Q)

(
1

σ (Q)

∫
Q
v−1/(p−1)dσ

)p−1 ∫
Q
f pv dσ

≤ Ap

∫
Q
f pv dσ .

Therefore, the proof is complete.

Corollary 2.2. If (u, v) satisfies two-weighted Ap(S)-condition, then(
σ (E)
σ (Q)

)p

u(Q) ≤ Apv(E),

where E is a measurable subset of Q.

Proof. Applying Lemma 2.1 with f replaced by cE proves the conclusion.

3 Proof of Theorem 1.1
In this section, we will prove the first main theorem. First, we derive the inequality

between two sharp maximal functions of K f and f.

Lemma 3.1. Let f Î L1(S). Then, for q >p > 1, there is a constant Cp,q such that (K f)
#p (ξ) ≤ Cp,qf

#q (ξ) for almost every ξ.

Proof. It suffices to show that for r ≥ 1 and q > 1, there is a constant Crq such that (K

f)#r (ξ) ≤ Crqf
#rq (ξ) for almost every ξ,

i.e., for Q = Q(ξQ, δ) a ball of S, we prove that there are constants l = l(Q, f) and Crq

such that

(
1

σ (Q)

∫
Q

∣∣K f (η) − λ
∣∣rdσ)1/r

≤ Cr,qf
#q(ξQ). (3:1)

Fix Q = Q(ξQ, δ) and write

f (η) =
(
f (η) − fQ

)
χ2Q(η) +

(
f (η) − fQ

)
χS\2Q(η) + fQ

:= f1(η) + f2(η) + fQ.
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Then, K f = K f1 + K f2, since K fQ = 0.

For each z Î B, put

g(z) =
∫
S

(
2C(z, ξ) − 1

)
f2(ξ)dσ (ξ).

Then, g is continuous on B ∪ Q By setting l = -ig(ξQ) in (3.1), we shall drive the

conclusion. By Minkowski’s inequality, we split the integral in (3.1) into two parts,

(
1

σ (Q)

∫
Q

∣∣K f (η) + ig(ξQ)
∣∣rdσ (η))1/r

≤
(

1
σ (Q)

∫
Q

∣∣K f1
∣∣rdσ)1/r

+
(

1
σ (Q)

∫
Q

∣∣K f2 + ig(ξQ)
∣∣rdσ)1/r

:= I1 + I2.

(3:2)

We estimate I1. By Holder’s inequality, it is estimated as

I1 ≤
(

1
σ (Q)

∫
Q

∣∣K f1
∣∣rqdσ)1/rq

≤
(

1
σ (Q)

∫
S

∣∣K f1
∣∣rqdσ)1/rq

≤ Crq

σ (Q)1/rq
∥∥f1∥∥Lrq ,

since K is bounded on Lrq(S) (rq > 1). By replacing f1 by f - fQ, we get

∥∥f1∥∥Lrq =
(∫

2Q

∣∣f − fQ
∣∣rqdσ)1/rq

≤
(∫

2Q

∣∣f − f2Q
∣∣rqdσ)1/rq

+ σ (2Q)1/rq
∣∣f2Q − fQ

∣∣ .
Thus, by applying Hölder’s inequality in the last term of the above,

σ (2Q)1/rq
∣∣f2Q − fQ

∣∣ ≤ σ (2Q)1/rq

σ (Q)

∫
Q

∣∣f − f2Q
∣∣ dσ

≤ σ (2Q)1/rqσ (Q)1−1/rq

σ (Q)

(∫
2Q

∣∣f − f2Q
∣∣rqdσ)1/rq

= R1/rq
2

(∫
2Q

∣∣f − f2Q
∣∣rqdσ)1/rq

(by(4.2)).

Hence,

I1 ≤ Crq

(
1 + R1/rq

2

)
f #

rq
(ξQ). (3:3)

Now, we estimate I2. Since f2 ≡ 0 on 2Q, the invariant Poisson integral of f2 vanishes

on Q, i.e., limt↗1
∫
S P(tη, ξ)f2(η)dσ (η) = 0 whenever ξ Î Q. Thus, for almost all ξ Î Q,

iK f2(ξ) =
∫
S\2Q

(
2C(ξ , η) − 1

)
f2(η)dσ (η) = g(ξ)
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and then, by Minkowski’s inequality for integrals,

I2 =
(

1
σ (Q)

∫
Q

∣∣iK f2 − g(ξQ)
∣∣rdσ)1/r

≤
∫
S\2Q

2
∣∣f2(η)∣∣

(
1

σ (Q)

∫
Q

∣∣C(ξ , η) − C(ξQ, η)
∣∣rdσ (ξ))1/r

dσ (η).

By Lemma 6.1.1 of [2], we get an upper bound such that

I2 ≤ Cδ

∫
S\2Q

∣∣f2(η)∣∣∣∣1 − 〈
η, ξQ

〉∣∣n+1/2 dσ (η), (3:4)

where C is an absolute constant. Write S\2Q =
⋃∞

k=1
2k+1Q\2kQ. Then, the integral

of (3.4) is equal to

∞∑
k=1

∫
2k+1Q\2kQ

∣∣f (η) − fQ
∣∣∣∣1 − 〈

η, ξQ
〉∣∣n+1/2 dσ (η)

≤
∞∑
k=1

1

2(2n+1)kδ2n+1

∫
2k+1Q\2kQ

∣∣f − fQ
∣∣ dσ

≤
∞∑
k=1

1

2(2n+1)kδ2n+1

⎛
⎝∫

2k+1Q

∣∣f − f2k+1Q
∣∣ dσ+ k∑

j=0

∫
2k+1Q

∣∣f2j+1Q − f2jQ
∣∣ dσ

⎞
⎠.

By Hölder’s inequality, by (4.3),

∫
2k+1Q

∣∣f − f2k+1Q
∣∣ dσ ≤ R2k+1δ

(
1

σ
(
2k+1Q

) ∫
2k+1Q

∣∣f − f2k+1Q
∣∣rqdσ

)1/rq

≤ R2k+1δf
#rq(ξQ),

(3:5)

Similarly, for each j,

∫
2k+1Q

∣∣f2j+1Q − f2jQ
∣∣dσ ≤ σ

(
2k+1Q

)
σ (2jQ)

∫
2jQ

∣∣f − f2j+1Q
∣∣dσ

≤ R2k−j+1

∫
2j+1Q

∣∣f − f2j+1Q
∣∣dσ (by (4.2))

≤ R2k−j+1R2j+1δf
#rq(ξQ)

(
from (3.5) with k = j

)
= R1R2k+2δf

#rq(ξQ).

Thus,

k∑
j=0

∫
2k+1Q

∣∣f2j+1Q − f2jQ
∣∣ dσ ≤ (k + 1)R1R2k+2δf

#rq(ξQ). (3:6)

Since Rs increases as s ↗ ∞ and R1 > 1, by adding (3.5) to (3.6), we have the upper

bound as

(k + 2)R1R2k+2δf
#rq(ξQ).
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Eventually, the identity of R2k+2δ = R122n(k+2)δ2n yields that

I2 ≤ 24nCR2
1

∞∑
k=1

k + 2
2k

f #
rq
(ξQ), (3:7)

and therefore, combining (3.3) and (3.7), we complete the proof.

The main theorem depends on Marcinkiewicz interpolation theorem between two

abstract Lebesgue spaces, which is as follows.

Proposition 3.2. Suppose (X, μ) and (Y, ν) are measure spaces; p0, p1, q0, q1 are ele-

ments of [1, ∞] such that p0 ≤ q0, p1 ≤ q1 and q0 ≠ q1 and

1
p
=
1 + t

p0
+

t

p1
,

1
q
=
1 − t

q0
+

t

q1
(0 < t < 1).

If T is a sublinear map from Lp0 (μ) + Lp1(μ)to the space of measurable functions on Y

which is of weak-types (p0,q0) and (p1,q1), then T is of type (p, q).

Now, we prove the main theorem.

Proof of Theorem 1.1. Under the assumption of the main theorem, we will prove that

(1.2) holds. We fix p > 1 and let f Î Lp(v).

By Theorem 1.2, there is a constant Cp such that∫
S

∣∣K f
∣∣pu dσ ≤

∫
S

∣∣Mu(K f )
∣∣pu dσ

≤ Cp

∫
S

∣∣∣(K f )#
1
∣∣∣pu dσ

≤ Cp

∫
S

∣∣∣f #q ∣∣∣pu dσ (
by Lemma3.1with q > 1, p/q > 1

)
≤ 2pCp

∫
S

(
M

∣∣f ∣∣q)p/q
u dσ (by the triangle inequality).

(3:8)

where Mu is the maximal operator with respect to uds, the second inequality follows

from the doubling condition of uds.
Without loss of generality, we assume f ≥ 0. By Holder’s inequality and by (1.1), we

have

1
σ (Q)

∫
Q
dσ ≤

(
1

σ (Q)

∫
Q
f p/qv dσ

)q/p( 1
σ (Q)

∫
Q
v−1/(p/q−1) dσ

)1−q/p

≤ Aq/p
p/q

(
1

σ (Q)

∫
Q
f p/qv dσ

)q/p(
σ (Q)
v(Q)

)q/p

for all Q.

Thus, if fQ >l, then

u(Q) ≤ Ap/qλ
p/q

∫
Q
f p/qvdσ for all Q. (3:9)

Let E be an arbitrary compact subset of {ξ Î S: M f(ξ) > l}. Since vds is a doubling

measure, from (3.9), there exists a constant Cp,q such that

u(E) ≤ Cp,qλ
p/q

∫
S
f p/qvdσ .
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Thus, M f is of weak-type (Lp/q(vds),Lp/q(uds)). Moreover,∥∥Mf
∥∥
L∞(udσ ) ≤ ∥∥Mf

∥∥
L∞ (since udσ � dσ )

≤ ∥∥f∥∥L∞

=
∥∥f∥∥L∞(udσ ) (since udσ � dσ , v > 0 a.e. by (1.1)).

Now, by Proposition 3.2, M f is of type (Lr(vds), Lr(uds)) for f >p/q.
Hence, the last integral of (3.8) is bounded by some constant times∫

S

∣∣f ∣∣qrvdσ (for all r > p/q).

Since q is arbitrary so that p/q > 0, we can replace qr by p with p > 1. Therefore, the

proof is completed.

4 Proof of Theorem 1.2
Theorem 1.2 can be regarded as cross-weighted norm inequalities for the Hardy-Little-

wood maximal function and the sharp maximal function on the unit sphere. For a sin-

gle Ap-weight in ℝn, refer to Theorem 2.20 of [8].

From Proposition 5.1.4 of [2], we conclude that when n > 1,


2(n/2 + 1)
2n−2
(n + 1)

s2n ≤ σ (Q(sδ))
σ (Q(δ))

≤ 2n−2
(n + 1)

2(n/2 + 1)

s2n,

and when n = 1,

2
π
s2 ≤ σ (Q(sδ))

σ (Q(δ))
≤ π

2
s2

for any s > 0. Throughout the article, several kinds of constants will appear. To avoid

confusion, we define the maximum ratio between sizes of two balls by

Rs : Rs,n = max
(
2n−2
(n + 1)

2(n/2 + 1)

,
π

2

)
s2n, (4:1)

and thus, for every s > 0, for every δ > 0,

σ (sQ(δ)) ≤ Rsσ (Q(δ)). (4:2)

Putting δ = 1 in (4.2), we get

σ (Q(s)) ≤ Rs. (4:3)

To prove Theorem 1.2, we need some lemmas. The next result is a covering lemma

on the unit sphere, related to the maximal function. Let f Î L1(S) and let t >
∥∥f∥∥L1(S).

We may assume
∥∥f∥∥L1(S) �= 0. Since {M f >t} is open, take a ball Q ⊂ {M f >t} with cen-

ter at each point of {M f >t}. For such a ball Q,

σ (Q) ≤ 1
t

∫
Q

∣∣f ∣∣ dσ . (4:4)

Thus, to each ξ Î {M f >t} corresponds a largest radius δ such that the ball Q = Q(ξ,

δ) ⊂ {M f >t} satisfies (4.4). Hence, we conclude the following simple covering lemma.
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Lemma 4.1 (Covering lemma on S). Let f Î L1(S) be non-trivial. Then, for

t >
∥∥f∥∥L1(S), there is a collection of balls {Qt,j} such that

(i)
{
ξ ∈ S : Mf (ξ) > t

} ⊂ ⋃
j Qt,j,

(ii) σ (Qt,j) ≤ t−1
∣∣f ∣∣ (Qt,j),

where each Qt,j has the maximal radius of all the balls that satisfy (ii) in the sense

that if Q is a ball that contains some Qt,j as its proper subset, then s(Q) >t-1 ʃQ |f| ds
holds.

Now, we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. Fix 1 <p < ∞. We may assume f#
1

Î Lp(v) and f Î Lp(v), other-

wise, Theorem 1.2 holds clearly. Since v satisfies the doubling condition, we have ||M

f||Lp(v) ≤ C||f#
1

||Lp(v). Combining this with f#
1

Î Lp(v), we have ||M f||Lp(v) < ∞.

Suppose that f is non-trivial and we may assume that f ≥ 0. Let

t > max
(
2, 2R2

2, R3
) ∥∥f∥∥L1(S).

For ε > 0, Et be a compact subset of {M f >t} such that u({M f >t}) <u(Et) + e-tε.

Indeed, since u is integrable, u ds is a regular Borel measure absolutely continuous

with respect to s.
Suppose {Qt,j} is a collection of balls having the properties (i) and (ii) of Lemma 4.1.

Since {Qt,j} is a cover of a compact set Et, there is a finite subcollection of {Qt,j}, which

covers Et. By Lemma 5.2.3 of [2], there are pairwise disjoint balls, Qt,j1 , Qt,j2 , ...,Qt,j� of

the previous subcollection such that

Et ⊂
�⋃

k=1

3Qt,jk ,

σ (Et) ≤ R3

�∑
k=1

σ (Qt,jk),

where ℓ may depend on t. To avoid the abuse of subindices, we rewrite Qt,jk as Qt,j.

Let us note that from the maximality of Qt,j,

t >
1

σ (2Qt.j)

∫
2Qt,j

f dσ ≥ σ (Qt.j)

σ (2Qt.j)
t ≥ R−1

2 t. (4:5)

Fix Q0 = 2Qkt,j0, where �-1 = 2R2. (Here, � < 1/2, since R2 > 1.) Let l > 0 that will be

chosen later. From the definition of the sharp maximal function, there are two possibi-

lities: either

Q0 ⊂ {f #1 > λt} or Q0 �⊂ {f #1 > λt}. (4:6)

In the first case, since Qt,j’s are pairwise disjoint,∑
{
j:Qt,j⊂Q0⊂{f #1>λt}

} v(Qt,j) ≤ v({f #1 > λt}),
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and also,∑
Q0

Q0⊂{f#1 >λt}

∑
{j:Qt,j⊂Q0}

v(Qt,j) ≤ v({f #1 > λt}).
(4:7)

In the second case,

1
σ (Q0)

∫
Q0

|f − fQ0 |dσ ≤ λt. (4:8)

Since 2−1t >
∥∥f∥∥L1(S), by (4.5), taking fQ0 ≤ R2kt = 2−1t into account, we have

∑
{
j:Qt,j⊂Q0 �⊂{f #1>λt}

} (t − t/2)σ (Qt,j) ≤
∑

{
j:Qt,j⊂Q0 �⊂{f #1>λt}

}
∫
Qt,j

f − fQ0dσ

≤
∑

{
j:Qt,j⊂Q0 �⊂{f #1>λt}

}
∫
Qt,j

|f − fQ0 |dσ

≤
∫
Q0

|f − fQ0 |dσ

≤ λtσ (Q0) (by (4.8)).

Thus, ∑
{
j:Qt,j⊂Q0 �⊂{f #1>λt}

} σ (Qt,j) ≤ 2λσ (Q0).
(4:9)

In (4.9), take a small l > 0 such that

2λ < 1. (4:10)

(Note that the condition (4.10) enables us to use (1.3).) Thus, (4.9) can be written as∑
{
j:Qt.j⊂Q0 �⊂{f #1>λt}

} v(Qt,j) ≤ (
1 − (1 − 2λ)p

)
v(2Qκ t,j0 ).

Adding up all possible Q0’s in the second case of (4.6), we get∑
Q0

Q0 �⊂{f#1 >λt}

∑
{j:Qt,j⊂Q0}

v(Qt,j) ≤ (
1 − (1 − 2λ)p

)∑
k

v(2Qκ t,k).
(4:11)

Since
{
Mf > t

} ⊂ {
Mf > R−1

2 t
}
and σ

(
2Qt,j

) ≤ R2t
−1

∫
2Qt,j

f dσ holds (4.5), we can

construct the collection of balls
{
QR−1

2 t,j

}
which covers

{
Mf > R−1

2 t
}
with maximal

radius just the same way as Lemma 4.1, so that 2Qt,j is contained in
{
QR−1

2 t,i

}
for some

i. Recall that R−1
2 kt = 2−1R−2

2 t >
∥∥f∥∥L1(S), hence, (4.11) turns into∑

Q0

Q0 �⊂{f#1 >λt}

∑
{j:Qt,j⊂Q0}

v(Qt,j) ≤ (
1 − (1 − 2λ)p

)∑
k

v(QR−1
2 κ t,k).

(4:12)

Rim and Lee Journal of Inequalities and Applications 2011, 2011:117
http://www.journalofinequalitiesandapplications.com/content/2011/1/117

Page 10 of 14



Combining (4.7) and (4.11), we summarize∑
j

v(Qt,j) ≤ v({f #1 > λt})+
∑
k

(
1 − (1 − 2λ)p

)
v(QR−1

2 κ t,k). (4:13)

Now, put

αv(t) =
∑
j

v(Qt,j),

βu(t) = u(Et).

(4:14)

Then,

βu(t) ≤
∫

∪j3Qt,j

u dσ ≤
∑
j

∫
3Qt,j

u dσ

≤ Ap

∑
j

∫
3Qt,j

v dσ (by Corollary 2.2 with E = Q = 3Qt,j)

≤ Ap

∑
j

∫
Q

R−1
3 t,j

v dσ

= Apαv(R
−1
3 t),

(4:15)

where the fourth inequality follows from the fact that 3Qt,j ⊂ QR−1
3 t,i for some i.

Indeed, we can construct QR−1
3 t,i as before, since R−1

3 t >
∥∥f∥∥L1(S).

Eventually, putting the constant ep =
∫ ∞

0
tpe−tdt, and N = max

(
2, 2R2

2, R3
)
(which

depends only on n), we have∫
S
|Mf |pu dσ ≤

∫ ∞

0
ptp−1βu(t)dt + epε

≤
∫ N‖f‖L1(S)

0
ptp−1βu(t) dt + Ap

∫ ∞

N‖f‖L1(S)
ptp−1αv(R

−1
3 t)dt + epε (by (4.15))

:= I + II + epε.

The first term I is dominated by

Np ‖ u‖L1(S) ‖ f ‖pL1(S) ≤ Np ‖ f ‖p
Lp(v)

‖ u‖L1(S)
(∫

S
v−1/(p−1)dσ

)p−1

≤ NpAp ‖ f ‖pLp(v) (since (u, v) ∈ Ap(S)),

where the first inequality follows from Hölder’s inequality for
∥∥f∥∥oL1(S).

On the other hand,

II ≤ ApCp

∫ ∞

0
ptp−1v({f #1 > R−1

3 t})dt (by Lemma 4.3)

= ApCpR
p
3

∫ ∞

0
ptp−1v({f #1 > t})dt (by the change of variable)

= ApCpR
p
3

∫
S
|f #1 |pv dσ .
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Hence,∫
S
|Mf |pu dσ ≤ NpAp ‖ f ‖pLp(v) +ApCpR

p
3

∫
S
|f #1 |pv dσ + epε.

The first and the last integrals are independent of ε. Letting ε ↘ 0, therefore, the

proof is complete after accepting Lemma 4.3.

Lemma 4.2. Let av be defined in (4.14). Then, for every q ≥ p and every r > 0,∫ r

0
tq−1αv(t)dt < ∞.

Proof. For a positive real number r, we set

Ir =
∫ r

0
qtq−1αv(t)dt. (4:16)

Since
∑

j v(Qt,j) ≤ ∫
{Mf>t} v dσ, we have

Ir ≤
∫ r

0
qtq−1

∫
{Mf>t}

v dσ dt.

We note that Ir is finite, since p ≥ p0 and it is bounded by

qrq−p

p

∫ r

0
ptp−1

∫
{Mf>t}

v dσ dt ≤ qrq−p

p
‖ Mf ‖pLp(v) < ∞,

since M f Î Lp(v). Therefore, the proof is complete.

Now, filling up next lemma, we finish the proof of Theorem 1.2.

Lemma 4.3. Under the same assumption as Theorem 1.2, if av is defined in (4.14),

then there is a constant Cp such that∫ ∞

0
tp−1αv(t)dt ≤ Cp

∫ ∞

0
tp−1v({f #1 > t})dt.

Proof. Recall (4.13), i.e.,

αv(t) ≤ v({f #1 > λt}) + (
1 − (1 − 2λ)p

)
αv(R

−1
2 κt).

By integration, it follows that∫ r

0
tp−1αv(t) dt

≤
∫ r

0
tp−1v

({
f #1 > λt

})
dt

+
(
1 − (1 − 2λ)p

) ∫ r

0
tp−1αv

(
R−1
2 kt

)
dt

=
∫ r

0
tp−1v

({
f #1 > λt

})
dt

+
(
1 − (1 − 2λ)p

)
Rp
2k

−p
∫ R−1

2 kr

0
tp−1αv (t) dt

≤
∫ r

0
tp−1v

({
f #1 > λt

})
dt

+ 2pR2p
2

(
1 − (1 − 2λ)p

) ∫ r

0
tp−1αv(t) dt

(
since k = 2−1R−1

2 ,R−1
2 k < 1

)
,

(4:17)
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where the equality is due to the change of variable.

Take a small l so that

2pR2p
2

(
1 − (1 − 2λ)p

)
< 1/2,

2λ < 1,

where the second inequality comes from (4.10). Then, by Lemma 4.2, (4.17) can be

written as

1
2

∫ r

0
tp−1αv(t)dt ≤

∫ r

0
tp−1v

({
f #

1
> λt

})
dt

= λ−p
∫ λr

0
tp−1v

({
f #

1
> t

})
dt,

where the equality is caused by the change of variable.

Finally, letting r ↗ ∞, we obtain∫ ∞

0
tp−1αv(t) dt ≤ 2λ−p

∫ ∞

0
tp−1v

({
f #

1
> t

})
dt.

Therefore, the proof is complete.
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