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Somatosensory input is known to be essential for postural control. The present study 
examined the effects on postural sway of sensory input delivered via transcutaneous 
electrical nerve stimulation (TENS) applied to the knees during stance.  Electrodes from a 
dual-channel portable TENS unit were adhered to the skin overlying the lateral and medial 
aspect of both knees of 20 young healthy volunteers (mean age 24.0 years, standard 
deviation 4.0). Postural sway parameters were obtained during static bipedal stance with an 
AMTI force platform. Four stimulation conditions were tested with eyes open and with eyes 
closed: no TENS; TENS applied bilaterally; and TENS applied to either the right or the left 
knee. Participants underwent two eight-trial blocks, with each trial lasting 30 seconds. The 
order of conditions was randomized for each participant. Stimulation consisted of a 
biphasic symmetrical stimulus delivered at the sensory detection level, with a pulse 
duration of 200µsec and a pulse frequency of 100Hz.  The application of TENS induced 
significant reductions in mean sway velocity and in the medio-lateral dispersion of the 
center of pressure, with no corresponding effect on the anterior-posterior dispersion. These 
findings suggest that electrical stimulation delivered at the sensory detection level to the 
lateral aspects of the knees may be effective in improving balance control, and that this 
effect may be directionally specific.  
KEY WORDS: TENS, posture, stance, stability, child health & human development, neuroscience, 
sensation and perception 

INTRODUCTION 

Sensory information provided by the visual, somatosensory and vestibular systems are essential for postural 
control during stance. Ongoing somatosensory input required for postural control is mainly provided by 
ankle proprioceptors[1,2], cutaneous  receptors in the sole of the foot[3,4,5,6,7], as well as receptors in the 
knee, hip, trunk, and cervical spine joints and muscles[8,10]. Augmentation of somatosensory input during 
stance is often needed, such as when stance is challenged by external interferences or when the sensory 
systems that sub serve postural control are affected by pathology[8,9,10,11,12]. For example, individuals 
with peripheral sensory neuropathy may utilize somatosensory input from their fingertips by light touch in 
order to compensate for their lower extremity proprioceptive deficits[13].  
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The application of somatosensory input to enhance postural stability is routinely performed during 
clinical rehabilitation, primarily through manual contact. The advantage of utilizing these maneuvers is 
determined by the ability to adjust them in accordance with patient needs.  However, manual input is not 
consistent and the gauging of factors related to its delivery is virtually impossible, given that the amplitude, 
frequency, and duration of manual contact are not amenable to routine quantification. Furthermore, as 
manual contact is dependent on direct interaction between the person providing the input and the person in 
need of somatosensory enhancement, the ability to offer ongoing assistance is limited by practical 
constraints.  

Transcutaneous electrical nerve stimulation (TENS), which involves the pulsatile stimulation of sensory 
fibers, is a widely applied clinical modality used primarily for the purpose of pain modulation[14,15,16]. 
Studies have shown that TENS-induced analgesic effects are related to decreases in the activity of noxiously 
evoked dorsal horn cells stemming from the activation of cutaneous and deep tissue afferent fibers[17,18]. 
TENS has also been shown to affect upper motor neuron and motor cortex excitability[19,20], which 
manifests clinically in decreases in spasticity among patients with post-stroke hemiparesis[21,22], and 
multiple sclerosis[23].  Sensory stimulation also appears to enhance the recovery of functional stability in 
patients following a stroke[24,25]. Furthermore, the application of TENS to the neck muscles in patients 
with hemispatial neglect has been shown to improve spatial orientation and postural control[26,27,28,29].  

Yet, while TENS is a highly accessible and easily applied modality shown to provide effective 
somatosensory input modulating central neural activity, its effect on postural stability has rarely been the 
focus of research attention. In our previous study conducted on this topic, we applied stimulation to the skin 
overlying the posterior calf musculature, resulting in the attenuation of postural sway as expressed by mean 
sway velocity[30]. The aim of the current study was to gain further insight into the effects of sensory TENS 
on stance stability in healthy individuals by applying threshold sensory stimulation along the medio-lateral 
axis at the knee level. Stimulation at this site was selected on the basis of a previous study in which the 
application of random electrical noise applied at this location brought about a decrease in postural sway, 
specifically in the medio-lateral plane[31]. Thus, based on our own as well as on the later cited work, we 
hypothesized that the administration of TENS would be associated with a decrease in postural sway, with the 
effect being especially pronounced in the medio-lateral plane. Increasing stability in this plane is of 
particular interest, as it has been shown to be associated with instability in various pathological 
conditions[32,33]. 

METHODS 

Twenty university students (6 men and 14 women), with a mean age of 24.0 years (standard deviation 4.0), 
volunteered to participate in the study. Participants were blind as to the study objectives. With the exception 
of one individual, all participants had right leg dominance. Individuals with a history of pathology affecting 
one of the lower limbs and/or the postural control system (e.g., vestibular disorders) were excluded. The 
research was approved by the Institutional Ethical Review Committee, and all participants signed an 
informed consent form in which their rights as subjects were clearly outlined.  

Instrumentation and Protocol 

The study was conducted during the morning hours in a quiet room. Prior to testing, adhesive TENS 
electrodes (2.5x2 cm) were fastened to the skin overlying the lateral and medial aspect of both knee joints, 
with the midline of the electrodes positioned parallel to the joint gap line. Except for the specific stimulation 
sites, the general protocol was similar to the one applied in our previously reported study[30]. Testing was 
conducted with participants standing in their socks on a portable 50x50x3cm AMTI force plate (Advanced 
Mechanical Technology Inc., 176 Waltham St, Watertown, MA 02472, USA), while maintaining an 8cm 
distance between the medial malleoli and a 10° angle between their feet. When assuming the testing position 
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for the first time, the circumference of the feet was marked on the plate in order to assure participants’ return 
to the same foot placement in each trial. The participants’ upper extremities were kept folded against their 
chest throughout all testing trials. 

The testing procedure consisted of two blocks of eight trials, with each trial lasting 30 seconds, and a 
resting period of three minutes between trial blocks. A unique combination of a visual condition and a 
stimulus condition was used in each trial, and the order of conditions was randomized for each participant. 
The two visual conditions were: eyes open (EO) and eyes closed (EC). The four stimulation modes were: No 
TENS (NT); TENS applied bilaterally (BT); TENS applied only to the left knee (TL); and TENS applied 
only to the right knee (TR). 

The stimulation was delivered by a dual-channel battery-operated commercial TENS unit (Elpha 2000 
unit, 301 Moodie Drive, Suite 205 Ottawa, Ontario K2H 9C4 Canada). Stimulation consisted of a biphasic 
symmetrical pulse, with a 200µsec pulse duration and a 100 Hz frequency. Stimulation amplitude was 
adjusted before the start of each trial in one-milliampere increments and was set at the sensory detection 
threshold of each participant.   

Data Analysis  

 
Center of pressure (COP) data were collected at a 50 Hz sampling frequency and analyzed offline by a 
dedicated software program (AMTI Accuswayplus). Postural control was assessed with the following 
variables: mean COP velocity, which represents the total distance traveled by the COP divided by testing 
time; amplitude variability of the COP excursion in the anterior-posterior direction; and amplitude variability 
of the COP excursion in the medio-lateral direction. 

For each variable, the mean values of identical trials in the two blocks were used for analysis. 
Descriptive statistics and repeated measures ANOVA were applied to compare the effects of the four TENS 
conditions (i.e., NT, BT, TL, TR) and to examine their potential interactions with the effects of vision (i.e., 
EO, EC). Significance was set at p<0.05. Preplanned contrasts were further applied to test the effects of NT 
(No Tens) against the pooled effect of the other three TENS conditions.  
 

RESULTS 

 
No significant interactions were observed between the visual conditions and the TENS conditions. Visual 
condition had a significant effect on all the examined variables, with larger mean sway velocity and sway 
variability found in both the ML and AP directions for the eyes closed condition than for the eyes open 
condition. Taken individually, none of the TENS conditions had a significant effect on mean sway velocity. 
However, the pooled effect of the TENS conditions, as compared to the No TENS condition, resulted in a 
significant TENS-induced decrease in mean sway velocity (F(1,18)=7.29, p= 0.01, partial ?2 =0.046). The 
mean sway velocity in each of the four TENS conditions is depicted in Figure 1. 
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Figure 1.  Mean and standard deviation of center of pressure sway velocity in each of the four 
TENS conditions with eyes open and eyes closed. 
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Figure 2. Mean and standard deviation of medio-lateral variability in each of the four TENS 
conditions with eyes open and eyes closed. 

 
A similar trend is noted for the effect of the TENS conditions on medio-lateral variability (F(3,16)=2.58, 

p=0.089), with their pooled effect resulting in a significant TENS-induced decrease, as compared to the  No 
TENS  condition (F(1,18)=6.81, p=0.018, partial ?2 =0.04). No similar TENS-induced effect was observed 
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in the anterior-posterior direction. The medio-lateral variability in each of the four TENS conditions is 
depicted in Figure 2. 

DISCUSSION 

 
The present study demonstrated that COP mean velocity during bipedal static stance is attenuated by TENS 
applied to the medial and lateral aspects of the knees at sensory threshold intensity. Moreover, the present 
treatment protocol reduced COP sway variability solely along the frontal plane. In accordance with previous 
studies, visual input contributed significantly to stability[34,35], with the observed directionally specific 
effect of TENS found to be independent of the visual condition. 

COP movement, expressed as path length (or its equivalent mean velocity), has been determined as the 
most sensitive postural measure for differentiating between stance conditions or age groups[36]. Yet, 
changes in this variable alone do not necessarily imply changes in level of stability[37]. More relevant to 
stability are sway variability measures in the anterior-posterior and/or the medio-lateral directions, which 
signify the amplitude of the movement around the mean COP location. Decreases in amplitude variability 
point to a stiffening strategy, which is observed during stance under conditions perceived as threatening to 
stability, such as when standing on a raised surface[38,39] or while performing a secondary cognitive task 
demanding attention[40]. It is hypothesized that the prioritization of stability achieved by reducing the 
amplitude of the sway allows attention to be diverted to whatever secondary condition may be affecting 
postural control.  

The unique finding of the current study lies in the demonstration of a direction-specific effect of the 
TENS application, as determined by decreases in sway variability in the medio-lateral plane. Human joint 
movements and related muscular activity are largely expressed along the two orthogonal planes, namely, the 
anterior-posterior and the medio-lateral planes. It is intuitively assumed during rehabilitation that manually 
applied somatosensory cues facilitate stability along the plane of sensory input. Thus, for example, when an 
individual exhibits a tendency to sway/fall sideways, sensory cues are generally provided along the lateral 
aspects of the body.  

In our previous work[30], the application of TENS posteriorly to the skin overlying the medial and 
lateral gastrocnemius muscles demonstrated a similar reduction in overall sway, but did not induce a similar 
directionally specific effect. Control of stability in the medio-lateral axis is of particular clinical significance, 
given that it is affected by a wide range of disorders. For example, elderly fallers, as well as individuals with 
hemiparesis or Parkinson’s disease, manifest increased medio-lateral instability[32,33]. Yet, the clinical 
significance of the observed reduction in sway amplitude has yet to be determined. 

While these results support the intuitive approach of applying sensory cues in the direction of required 
stability, they are surprising in terms of the role of the knee musculature during stance. The knee joint, being 
primarily uni-axial, predominantly controls the height of the body's center of mass, whereas medio-lateral 
stability is controlled either at the hip with the abductor/adductor musculature or at the ankle with the 
invertor/evertor musculature. Thus, the process of postural modulation through sensory input must involve 
central mechanisms, invoking responses in muscles not underlying the area of stimulation.  

In several previous studies, sub-threshold random stimulation, either in the form of vibration to the soles 
of the feet or in the form of electrical impulses to the knees or feet, has been demonstrated to reduce postural 
sway measures in both non-impaired young and old adults[31,41]. Of particular relevance is the study by 
Gravelle et al. (2002), who used a form of white noise electrical stimulation to the lateral aspects of the knee 
during one leg stance and demonstrated decreases in postural sway, as well as in the dispersion of the COP 
along the medio-lateral plane, similar in magnitude to those found in this study.  

It is hypothesized that low-level noise enhances the detection and transmission of weak signals via a 
mechanism known as stochastic resonance[42]. This concept has been demonstrated in a variety of physical 
and biological systems, with human subjects demonstrating a lower somatosensory detection threshold as a 
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result of noise application[43,44,45,46]. Thus, it is speculated that the application of noise enhances the use 
of undetected sub-threshold proprioceptive input that contributes to balance control. 

There are two fundamental differences between the TENS used in the present study and electrical noise 
application, namely, the current stimulus parameters were constant rather than randomized, and intensity was 
set at the sensory detection level rather than at sub-threshold level.  Therefore, it cannot be assumed that 
stochastic resonance is the underlying mechanism of the observed effect. It is more likely that the TENS 
enhances somatosensory input through its direct effect on the afferent nerve fibers. Experimental evidence 
indicates that the CNS is informed on the position and movements of the knee via ensemble coding 
mechanisms, rather than via modality specific pathways[47]. These coding mechanisms involve inputs from 
the skin, ligaments, capsular and muscle receptors, acting as a final common path that conveys information 
to the CNS[48]. Thus, although the effect of TENS is primarily exerted via cutaneous afferents, the potential 
influence on proprioceptive information to the CNS is highly plausible.  As TENS inputs are mediated via 
central, mainly cortical, networks, which affect motor cortex excitability[20,49], higher-order effects may 
also contribute to the TENS-induced changes in postural sway.  It must be, however, noticed that the small 
effect sizes (partial η2 were below 0.10) are below what might be considered clinically useful. Yet, this 
preliminary study examined the effect of a very short stimulation period in young and healthy adults with 
intact postural stability. These factors most likely minimized the stimulation effects.  

CONCLUSIONS 

The results support our previous study and point to the potential of TENS applied at very low stimulation 
doses to affect postural sway, indicating that the location of the stimulus may have a directionally specific 
effect. Due to the limited nature of this study, however, wide-ranging interpretations should be avoided. 
Future studies should explore questions related to the clinical significance of these findings, particularly in 
populations with postural control impairments. The low cost and ease of application of TENS render its use 
extremely accessible. Additional research should also be conducted on various aspects of treatment protocol, 
such as stimulation parameters (e.g., application site and time, pulse width, frequency, and intensity), which 
may further enhance the effectiveness of treatment.  
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