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Abstract
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varying the number of grid points and the parameters that control the grid redistribution scheme, to
determine a stability criteria for the scheme and to investigate the effect of several MPDATA options. A two-
dimensional model is used to show the applicability of the scheme in multiple dimensions and to illustrate the
effects of DGA in combination with MPDATA options. Diffusion errors are reduced by more than 90% using
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ABSTRACT

A dynamic grid adaptation (DGA) scheme is developed using various combinations of the multidimensional
positive definite advection transport algorithm (MPDATA) to show the applicability of DGA with the MPDATA
scheme to solve advection problems. A one-dimensional model is used to show the effects of varying the number
of grid points and the parameters that control the grid redistribution scheme, to determine a stability criteriafor
the scheme and to investigate the effect of several MPDATA options. A two-dimensional model is used to show
the applicability of the scheme in multiple dimensions and to illustrate the effects of DGA in combination with
MPDATA options. Diffusion errors are reduced by more than 90% using DGA when compared to static, uniformly
spaced grid computations. Phase errors are reduced using certain MPDATA options by more than 25%.

1. Introduction

Widely varying spatial and temporal scales and the
nonlinearity in atmospheric flows present significant
modeling challenges. Large-scal e featuresdrive smaller-
scale disturbances like fronts, thunderstorms, and tor-
nadoes whose influence can cascade back up to larger
scales. Fortunately, since small-scale phenomena are
frequently distributed nonuniformly throughout the spa-
tial domain it is not necessary to have a fine compu-
tational grid over the entire domain, and isan inefficient
use of computational resources to do so. Dynamic grid
adaptation (DGA) is one of several techniques that per-
mit refining a computational grid in select spatial re-
gions.

In this work the multidimensional positive definite
advection algorithm (MPDATA) of Smolarkiewicz and
Margolin (1998) is used in combination with the grid
redistribution technique of Brackbill and Saltzman
(1982). An extended Courant—Friedrichs—Lewy (CFL)
stability criteria that is applicable to DGA schemes is
developed and used to show that athough the problem
is cast from an Eulerian perspective the use of DGA
yields a Lagrangian aspect to the numerical technique.

Corresponding author address: Dr. John P Iselin, Dept. of Me-
chanical Engineering, Bucknell University, Lewisburg, PA 17837.
E-mail: iselin@bucknell.edu

© 2002 American Meteorological Society

One- and two-dimensional test models are used to show
under what combinations of Courant number and grid
resolution DGA is appropriate.

DGA is the modification of a computational grid in
response to computed characteristics of the flow field
in order to reduce the truncation error of the numerical
scheme. Adaptive grid strategies can be split into grid-
point redistribution schemes and local grid refinement
schemes (Kim and Thompson 1990). Gridpoint redis-
tribution, which is the technique used in this work, al-
lows afixed number of grid pointsto move continuously
during the simulation to increase the gridpoint density
in regions where numerical error would otherwise be
high and subsequently lower the gridpoint density in
regions where the numerical error is low. In contrast,
local grid refinement schemes insert and extract grid
points into a static grid to increase the grid density in
some regions and reduce it in others to achieve the
reduction of truncation error.

DGA techniques have been used extensively in aero-
space applications to resolve discontinuities in flow
properties due to shock waves, slipstreams, and contact
discontinuities (Hawken et al. 1991). Their use has been
more limited in atmospheric modeling. Dietachmayer
and Droegemeier (1992) used the variational approach
of Brackbill and Saltzman (1982) to solve the viscous
Burger’s equation in one dimension. In two dimensions
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a frontogenesis problem, solid-body rotation of four
cones, and the evolution of a buoyant thermal were
calculated. This work was extended by Fiedler and
Trapp (1993). Two- and three-dimensional buoyant ther-
mals were computed in a stably stratified fluid. Prusa
et al. (1996, 2001) used a coordinate mapping technique
in a mesoscale model to move grid points in the sim-
ulation of propagation and breaking of high-altitude
gravity waves. More recently, Smolarkiewicz and Prusa
(2002) have generalized this mapping technique to a
global model. Tomlin et al. (1997) used unstructured
dynamic grids to simulate atmospheric reaction flow
problems. Behrens (1996) used an unstructured grid
with local grid refinement and a semi-Lagrangian ap-
proach in a parallel computing environment to compute
the rotating slotted cylinder about a point (Zalesak
1979). More recently Bacon et al. (2000) have devel-
oped the operational Multiscale Environmental Model
with Grid Adaptivity (OMEGA), which is an unstruc-
tured grid model that uses the gridpoint insertion/ex-
traction technique.

Moving nested grids (Berger and Oliger 1984) is a
combination of dynamic grid adaptation and local grid
refinement. Finer Cartesian grids overlay coarser Car-
tesian grids. The nested grids move, change size, and
are added or removed as directed by the attributes of
the flow. Care must be taken in these models to deal
with abrupt changesin grid resolution at the boundaries
of the nested grids. Conservative interpolation is needed
in order to establish the boundary conditions for the
finer domains. Flow features of the finer grids are not
allowed to propagate onto the coarser grids. DeMaria
et al. (1992) used a nested finite-element model to per-
form hurricane tracking during the 1989 and 1990 hur-
ricane seasons. Skamarock and Klemp (1993) used a
moving nested grid as a form of dynamic grid adapta-
tion. A numerical algorithm controlled the movement
of the nested gridsin two-dimensional simulations. Ska-
marock et al. (1994) used this method to study the three-
dimensional evolution of long-lived squall lines. How-
ever, the movement of the grids was partially directed
through user intervention. Finley et al. (1998a,b) used
moving nested grids to model tornadoes. Although the
nested grids had the ability to move, user interaction
was required during the simulation to direct the grid
movement.

The advantages of DGA over nested Cartesian grids
are (i) no abrupt changesin grid resolution, (ii) smaller-
scale features of the flow resolved in the area of grid
clustering can influence the larger scales as occurs in
nature, and (iii) the gridpoint movement is completely
automated. However, it has yet to be shown whether
DGA techniques can be made computationally com-
petitive with nested grid techniques.

Although DGA can be implemented with other nu-
merical schemes, MPDATA is particularly well suited
to DGA because it is a positive-definite, second-order
scheme that requires the velocities to be approximated
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at the half time step and is easily made monotone
through flux-corrected transport. Many second-order
schemes are non—sign preserving and not monotone due
to their dispersive nature. The DGA technique clusters
grid points in areas where high numerical errors occur,
which are typically areas with high slopes and curva-
tures in the simulated field. Since the dispersiveripples
created by most second-order schemes create false areas
of high curvature, DGA has a tendency to move grid
points away from physically realistic features and clus-
ter points around these erroneous features. The sign-
preserving nature of MPDATA eliminates spurious os-
cillations aslong as the background of the advected field
is zero, which is the case for many transport problems.
If the background field is not zero the flux limiting
method of Borisand Book (1973) iseasily implemented,
making the scheme monotone. Therefore, difficultiesen-
countered while implementing most second-order
schemes are eliminated when using MPDATA. Addi-
tionally, MPDATA is advantageous because the fluid
velocity is evaluated at the half time step. When im-
plementing DGA it is necessary to calculate the velocity
of the computational grid point as it moves. In order to
maintain the second-order accuracy of the scheme this
velocity must be known to second order. Since the
MPDATA scheme requires the velocity at the n + 1/2
time step a second-order approximation is easily ob-
tained using a central difference between time steps n
and n + 1.

During the course of this study one- and two-dimen-
sional advection models were developed. The one-di-
mensional model, discussed in section 2, was used to
examine the applicability of various MPDATA options
in a DGA environment, to determine the effect of vary-
ing the number of grid pointsinaDGA—-MPDATA mod-
el, and to investigate the effect of gridpoint movement
on the stability criteria of the MPDATA scheme. The
two-dimensional model, discussed in section 3, was
used to investigate the applicability of DGA and MPDA-
TA in a multidimensional case and to examine the ef-
fects of the various MPDATA options. Conclusions are
drawn in section 4.

2. The one-dimensional model

A one-dimensional model was developed that simu-
lated the passive advection of a Gaussian pulse by a
constant velocity flow. Since a one-dimensional model
required much less time to perform a calculation than
amultidimensional model it was used to investigate the
effects of varying the number of grid points and im-
plementing the various MPDATA options. It was found
that for the gridpoint redistribution scheme used, the
gridpoint velocity could become so high the CFL con-
dition was violated. For the one-dimensional case, a
constraint on the gridpoint movement was developed
that gives insight into how and why dynamic adaptive
grids work and why they are useful. Sections 2a—e de-
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scribe the MPDATA schemein aone-dimensional DGA
setting, the one-dimensional gridpoint redistribution
scheme, the extended CFL stability criteria for DGA
schemes, the specifics of the advection case, and the
results of several numerical experiments, respectively.

a. MPDATA in one dimension

The MPDATA scheme uses the donor-cell scheme to
obtain a first-order approximation at a new time level.
Corrections to this are made by further applications of
the donor-cell scheme using a pseudovelocity that is
specifically designed to approximate the truncation error
of the previous approximations. Therefore, the scheme
is iterative in nature.

Transforming the one-dimensional advection equa-
tion from the physical space g = q(x, t) into an integer
computational space q = q(¢, 7), wheret = Tand x =
f(r, &), yields

9, aa_q:
T €

o (&) [y &
u—(ag) (u 37_>. 2

It is apparent that the velocity on the computational grid
issimply the physical velocity |ess the speed of the grid
point multiplied by a stretching factor (9x/0¢) ~*. Note
that even if the velocity in the physical problem is con-
stant the velocity in the computational domain G will in
general be variable since ax/aT is a function of space
and time.

In order to apply the MPDATA scheme the advection
term in EQ. (1) must be in flux form, and since the
computational velocity U is not constant with respect to
space, Eq. (1) becomes

9, o(0e) _
aT €

where R = q(a0/0¢) in this case.

MPDATA is developed by expanding the temporal
and spatial finite differences using Taylor series, back
substituting approximations of the governing equation
to replace the time derivatives in the higher-order terms
with spatial derivatives, and using a the donor-cell
scheme to approximate the spatial derivative. This is
developed in detail in Smolarkiewicz and Margolin
(1998). This particular form of R yields a pseudovel-
ocity:

0, @

where

R, ©)

N 1 . .. 1aq

1 == _ =4
a 2(A§|u| A7 )q Py 4
This velocity has no physical meaning but is derived
such that when used with the donor-cell scheme and
subtracted from the first-order solution the result is a
second-order solution. For a general R there is a q(00/0¢)
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term and a —R term that appears in the pseudovel ocity.
However, in this particular case they identically cancel,
meaning that this divergence term R only needs to be
included in the first donor-cell iteration.

The MPDATA scheme can be extended to an arbitrary
number of K iterations:

qn = g — {F[q®, q%,, U®,,]
— F[q®,, q®, U®,,1} + R
k=012 ...,K, (5)

where q© = qr, U@ = U = (A7AHI, g+t = g,
S0 IS the Kronecker delta, and F is the donor cell flux:

F(d., g, U) = max(U, 0)g, — min(U, 0)gs. (6)
The pseudovelocities at each iteration are defined as

INE
240 98 ° (7)

When K = 1, this collapses to the donor-cell scheme;
K = 2 isthe most basic MPDATA scheme. If additional
iterations are taken (K > 2), the error decreases, but the
scheme remains second-order accurate.

Smolarkiewicz and Margolin (1998) discuss several
different options to the MPDATA scheme that are in-
cluded in thiswork. The **third-"" order accurate scheme
includes corrections that make the scheme third-order
accurate in the absence of velocity gradients. Although
this schemeis still second-order accuratein the presence
of velocity gradients, it has the effect of distributing the
error in amore symmetric manner than schemeswithout
these added terms. Margolin and Smolarkiewicz (1989)
also devel op the recursive pseudovel ocity (RPV) option,
which is a strictly two-pass scheme where the pseu-
dovelocity of the second pass is derived using the sum-
mation of an infinite number of MPDATA iterations. A
detailed explanation of these options in combination
with DGA can be found in Iselin (1999).

U® =[O« — Otn(eD]

b. One-dimensional gridpoint redistribution

Ideally, given a numerical method, the lowest-order
error terms would be derived, assuming an uneven and
time-dependent mesh. These error terms could then
serve as aweight function that when equally distributed
over the domain would result in a set of equations,
which, when solved, would yield adesirabledistribution
of grid points. Analysis of a one-dimensiona passive
advection problem with centered space and time dis-
cretizations yields 13 unique leading error terms that
are in general nonlinear. Due to the impracticality of
using all of these terms and the inability of determining
the most important ones, a more heuristic measure of
the error is used than the truncation error of the scheme.

When using DGA, it isnot crucial to locate grid points
in some precise location as long as reasonabl e resol ution
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occursin the areas of interest. Thus as long as the model
developer makes reasonable decisions on the grid re-
distribution criteria, dramatic improvements in numer-
ical solutions are possible without increasing the number
of grid points. There are several parametersrequired for
the techniques described in this section and in section
3c that must be set by the user. However, it was found
that the numerical performance with DGA is quite ro-
bust with regard to the precise values of these param-
eters. Reasonable performance is almost guaranteed as
long as grid points cluster, no region is left void of grid
points, and gridpoint movement is not too fast.

Following Dietachmayer and Droegemeier (1992) the
sum of the absolute values of the first and second de-
rivatives of the prognostic variablewas used to construct
the weighting function:

q
ox

9%q

W =
ox?

where L is a characteristic scale. In our simulations, we
chose this scale to be the domain size. While other
choices are possible (e.g., the integral scale for a tur-
bulence) and may even be preferred in a specific ap-
plication, they are problem specific and less straight-
forward to implement. A disadvantage of our choice for
L was it often resulted in the second derivative domi-
nating the value of the weighting function.

The weight function was based solely on the prog-
nostic field variable at the old time step n. Since it was
used to integrate forward in time from time step nto n
+ 1, the weight function was smoothed using a 1-2—1
filter to spread the influence of the gridpoint clustering
out in front of the propagating phenomenon. Both the
dependent and the independent variables were scaled
between 0 and 1 so the scheme would work indepen-
dently of the problem size.

In order to counter the dominance of the second de-
rivative previously mentioned the scaled weight function
was raised to the 1/4 power. This had a tendency to
compress the local maxima closer to one, decreasing this
dominance. To avoid the possibility that the weight func-
tion vanishes and thus aregion void of grid points forms,
an arbitrary positive value of one was added to the weight
function. Thus the weight function was defined as

w, = 1 + AW, (8)

where A is the grid stretching parameter specified by
the user to control the extent of grid adaptation and W;
is the value of the smoothed and scaled weight function
at grid point i.

Using calculus of variations Thompson et al. (1985)
present a method of grid generation based on the min-
imization of a weighted gridpoint density. The global
measure of the gridpoint density is

| = J(f—vgzdx, ©)
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where ¢, represents the derivative of £ and w is afunc-
tion of x. Because ¢ and w were chosen as functions of
x the problem was solved without iterating. Integration
of the resulting Euler—Lagrange equation for Eq. (9)
equally distributes the weighted grid points over the
domain:

aé _w
dx ¢’

(10)

Equation (10) was solved by the use of numerical in-
tegration over the entire domain and | — 2 one-dimen-
sional interpolations, where | is the number of grid
points in the domain.

c. The extended CFL condition for DGA methods

When a grid redistribution DGA scheme is used in
conjunction with an explicit numerical scheme, viola-
tions of the CFL condition can occur if the gridpoint
velocity relative to the flow istoo large. Thisis evident
from Eq. (2) where the apparent velocity is proportional
to the grid speed. Although this problem was only en-
countered in the one-dimensional model it can occur in
higher-dimensional modelsif the gridpoint velocity, rel-
ative to the fluid velocity, is large enough.

Yanenko et al. (1979) includes a L agrangian transport
term in the grid stretching criteria and Thompson et al.
(1985) refer to grid points as ‘‘ observers” that follow
the flow. Therefore, others have had the conceptual idea
that the DGA technique is a blend between Eulerian and
Lagrangian references. Thefollowing analysisexplicitly
presents the Lagrangian aspect of the DGA technique.

By using Eq. (2) at the half time step and cell bound-
ary the traditional CFL condition is generalized to an
extended CFL stability condition:

Aé a7 | OX
Substituting a central difference about x"~2 for ox/ar,
noting that A¢ = 1, and solving for x*** yields an ex-

pression for locations of x"** that will satisfy the ex-
tended CFL condition:

=1 (1)

J J
(" + Ar) — a_)g(s X1 = (x0 + ArU) + a_)g( (12)

This expression illustrates that there is a bounded
region in which a grid point can move. The expression
in parentheses is the first-order Lagrangian transport of
the grid point by the fluid. Had a higher-order finite-
difference approximation for ax/ot been used this brack-
eted expression would be higher order. The width of the
region is determined by the metric term ox/o&. If the
grid point is not allowed to move, the expression reverts
back to the typical expression for the CFL condition:
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Xus:

Xds

Fic. 1. () Zone of stability for a static grid; (b) zone of stability for a dynamic grid. If the advected distance uAt
remains within the shaded cone, the scheme is stable. In (b) the x is the advection distance if the u < 0, and X, is

the distance if u > 0.

=1, (13

A'ra—gu
oX

where an approximation to d&/ox is /AX.

Figure 1 illustrates the zone of stability for a static
grid and one where the grid point is advected with the
flow. If the distance a fluid parcel travels over a time
step is outside this shaded region, the CFL condition is
violated and an explicit scheme, like MPDATA, will
become unstable. Note that in Fig. 1b this advection
distance is not equal for upstream and downstream di-
rections. If the grid point motion (to the right in Fig.
1) is in the same direction as the fluid motion, larger
time steps, corresponding to larger Courant numbers,
can be taken because the zone of stability is tilted in
that direction. This downstream distance is indicated as
Xg4 IN Fig. 1. However, if the gridpoint motion opposes
the flow direction (to the left in Fig. 1), smaller time
steps are required, since the upper corner of the zone
tilts away from the flow direction. This upstream dis-
tance is indicated by x,. If the gridpoint motion was
completely determined by the flow advection, infinitely
large time steps could be taken because the value of g
at the grid point would be constant. Grid points are most
free to take on this Lagrangian character only in the
interior of the domain. Near the boundaries, the Eulerian
character of the regular grid must manifest itself as grid
points cannot cross the boundary of the domain.

When upstream motion of grid points is combined
with close grid spacing the extended CFL condition is
very restrictive. It was found that when the number of
grid points in the one-dimensional model was less than
250, ox/0& was large enough that with a reasonable time
step the scheme was always stable. However, with larger
numbers of grid points, 9x/0& became so small that al-
most any gridpoint movement caused a violation of the
extended CFL condition.

Two different techniques that used Eqg. (12) to ensure
stability were attempted. The first technique limited the

amount the grid points could move based on the most
severe violation of the CFL condition. The second tech-
nigue let the grid points move as directed by the grid
generator and adjusted the time step so that the scheme
would be stable. The first technique was successful
while the second was not.

The first technique limited the movement of the grid
points using the greatest violation of the CFL condition.
This was done by calculating the maximum allowable
movement of each grid point and identifying which ex-
ceeded this allowable movement by the greatest per-
centage. At each grid point, the fraction of the original
movement allowed was calculated as

- [AXy, 1

¢, = min AXAi, ,
where Ax,, is the maximum allowable distance so the
CFL is not violated at point i and Ax,, is the unlimited
distance at point i. To ensure that no grid points were
allowed to cross, al of the gridpoint movements were
limited by the smallest ¢,. Often a couple of iterations
of the procedure were required to obtain an acceptable
gridpoint redistribution.

The second method attempted to adjust the time step
size in order to meet the CFL criteria simultaneously at
all the grid points. The inequalities in Eq. (12) can be
rearranged to yield a minimum and maximum allowable
time step for stability. These minimum and maximum
time steps were computed for each grid point. If the
largest minimum time step was less than the shortest
maximum time step, the technique worked. However,
in practice, situations occurred where the minimum time
step of one point was larger than the maximum time
step of another point and it was not possible to simul-
taneously satisfy Eq. (12) for al grid points.

(14)

d. One-dimensional model description

The equation used to model the passive advection of
the tracer is
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o, 9

u— =0,
ot X

(15)
where g, u, t, and x represent a non-negative intensive
tracer quantity, the fluid velocity, time, and space re-
spectively. Equation (15) was solved on a domain 0 <
X < 1 using a scaled Gaussian pulse of the form

N 1(x = 0.2\*
a0 = 372, ®P| 2\ 003
as an initial condition. The velocity field was set to a
constant, u = 1. The integration continued until t =
0.5.

The locations of the cell boundaries were used as the
physical points in the grid redistribution scheme rather
than the cell centers since MPDATA requires the ve-
locity values at cell boundaries. Additionally, the co-
ordinates of the cell centers are simply the average of
the cell boundary coordinates, whereas the opposite is
not true. The first and the last cell boundaries were set
to 0 and 1, respectively, and served as boundary con-
ditions for the elliptic grid solver. Ghost cell centers
were calculated by reflecting the adjacent cell center
about the end cell boundary to provide locations for
boundary values that could be transported into the do-

(16)

(17)

main.

The initial condition was created from an evenly
spaced grid followed by 10 repeated applications of the
grid generator and the initial condition (16).

The time step was held constant throughout the in-
tegration. It was determined as

s . fax|"°
At Ljr‘rgin(d§ | )
where the metric term dx/d¢ was approximated by a
central difference expression and the s was a safety
factor such that 0 < s = 1. If the grid points were not
permitted to move, this safety factor would be identical
to the Courant number. However, since the grid points
were permitted to move, the Courant number was based
on the fluid velocity plus the grid speed.

The error in the numerical solution was evaluated

using the L, error norm, which was defined as

Ef{% f [0 1) — q(x t)12dx} .9

where q(x, t) and §(x, t) are the numerical and analytical
solutions, respectively. The trapezoidal rule was used
to compute the L, norm.

e. One-dimensional experimental results

A series of computations was conducted using a stat-
ic, uniform-resolution grid to test different combinations
of either two iterations, three iterations, four iterations,
or the RPV option, and the third-order terms of the
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MPDATA scheme. All variationswithout thethird-order
terms were second-order accurate. When thethird-order-
accurate termswereincluded, MPDATA wasthird-order
accurate due to the constant velocity of this test case.
The log, of the L, error norm was used to evaluate the
accuracy of the different schemes. As the number of
grid points increases by multiples of two, this measure
of the error drops by the order of the scheme. Our results
agreed completely with the findings in Margolin and
Smolarkiewicz (1989).

A set of computations using DGA were run while
varying the MPDATA options. The percentage reduc-
tion of the L, error for agiven combination of MPDATA
options was defined as

Esa(ic - Edynamic

Esalic

% reduction = 100 , (19

where Egyi. and Egyaric are the L, errors associated the
computations performed with the static, uniform-reso-
lution grid and the dynamically adaptive grid, respec-
tively. Figure 2 shows the percentage reduction of the
L, error norm when the DGA technique is used com-
pared to a static, evenly spaced grid. When a static,
uniform-resolution grid is used and the fluid velocity is
constant, the Courant number is a constant at all grid
points. However, when the grid points are allowed to
move, the Courant number isdifferent at each grid point.
The maximum Courant number based on theinitial grid
stretching and ignoring the grid speed was called the
safety factor. When the safety factor was 0.8 or less,
the error was reduced by 90% when the third-order cor-
rection terms are not used. The use of constant velocity
field for these experiments had the following two ef-
fects. First, MPDATA with the third-order terms is ac-
tually third-order accurate in the absence of velocity
gradients. Therefore, the improvements due to the DGA
are less impressive in Fig. 2c than in the cases where
the third-order terms were not used. Second, the ad-
vection equation is a linear equation when the velocity
profile is linear and thus the numerical solution ap-
proaches the exact analytical solution as the Courant
number approaches one. Naturally, in this limiting case
the DGA results appear less impressive.

Figure 3a depicts effects on the error of the DGA
scheme of the number of smoothing passes of the weight
function used in the grid generation procedure. These
results were obtained using the RPV option without any
third-order terms but are representative of any combi-
nation of the MPDATA options with DGA. When a
small number of grid points was used, the effect of
increasing the number of smoothing passes was detri-
mental to the solution, because the smoothing passes
declustered the grid points. By comparing Figs. 3a and
3b it is apparent that when greater numbers of grid
points were used, the smoothing passes reduced the
number of times the gridpoint movements had to be



1032

Q

-

o ~ o

=) a

B REEEE EEE
e J

N
(&)
T T

——&—— 32 grid points
—A— 64
—— 128
—»—— 256
—<— 512
—— 1028

n
(5]
T

Percent Reduction of L, Error
3 o
aann T

4
(o))
——

qoobm—
10%.2 04

0.6
Safety Factor

Percent Reduction of L, Error

e E—y

0.6
Safety Factor

limited. Figure 3b shows the gridpoint limiting had a
significant detrimental effect on the error. The best re-
sults were obtained when just enough smoothing passes
were used to prevent the limiting of gridpoint move-
ment.

Figure 4 compares the error as a function of com-
putational cost for both codes. Although the DGA tech-
nique used fewer grid points, the equation for redis-
tributing the grid points was solved at each time step.
This added computational expense was nearly the com-
putational savings that was achieved due to the method.
When relatively few grid points were used, the slope of
the curve in Fig. 4b was steeper (—5.1 X 10-7) than
the slopein Fig. 4a(—2.3 X 10-9), indicating that when
the number of grid points is small, increasing the num-
ber of points in the DGA code is more advantageous
than adding grid points to the static grid code. However,
as the grid points increase, the benefits diminish and
eventually become liabilities. DGA exhibits 2.8-order
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FiG. 2. Reduction of L, error norm when the DGA technique is
employed compared to results obtained with an evenly spaced static
grid. The safety factor is the maximum Courant number based on the
initial stretched grid and ignoring the effect of the grid movement.
(a) The most basic MPDATA using two iterations and no third-order
correction terms. (b) The RPV option but with no third-order cor-
rection terms. (c) The RPV option with the inclusion of the third-
order correction terms.

accuracy for a small number of grid intervals (16 = N
= 64), while the static grid exhibits 1.6-order accuracy
for a small number of grid intervals (32 = N = 128).
For large numbers of grid points (N > 128) these trends
are reversed.

Note that these computational expenses are not rep-
resentative of what would be expected from a full nu-
merical weather prediction model using DGA. The per-
centage of CPU cycles taken by DGA in this case is
significantly higher than would be taken in afull model.
Although al of the DGA overhead is included in this
case, only a hyperbolic advection equation is being
solved. In acomplete model an elliptic pressure equation
would need to be solved in conjunction with hyperbolic
equations for velocity components and tracer transport.
Clearly the percentage overhead of DGA would be sig-
nificantly reduced in this case. Even with this significant
handicap, the DGA is competitive with the uniform stat-
ic grid simulations.



APRIL 2002

log,(error)

10 20 30
Number of Smoothing Passes

ISELIN ET AL.

1033

. b
10
| < 512 Grid points
* 1024
%\ i ‘
E B ‘
=-15|- <
o < M
o *
< *
i <
| *
Y
20¢ o
L RN | L RN | L R |
10° 10 10° 10°

Number of Limits

FiG. 3. The effects of limiting the gridpoint movement. The options used were RPV, no third-order terms, A, = 70, and A, = 0. The error
used was the L, error. The legend indicates the number of grid points.

3. The two-dimensional model

A two-dimensional advection model was devel oped
that solved the rotating cone problem. The purpose of
this model was to evaluate the use of DGA-MPDATA
in multiple dimensions. The results of the two-dimen-
sional code more clearly illustrate the benefits of the
different MPDATA options in combination with the
DGA technique than does the one-dimensional model.
Section 3a describes the rotating cone problem. Section
3b highlights the aspects of the MPDATA scheme in
two dimensions that are not obvious extensions of the
one-dimensional version. The grid redistribution
scheme is significantly different in two dimensionsthan
in one dimension. These differences are described in

32 grid
intervals 128 grid
F intervals
8F 2 § /
oE N 512 grid
- R intervals
12F / 2048 grid
E intervals
Q"“ 3 8192 grid
o intervals
g -16 =
L F
U‘.,“-‘IB -
9 -
-20
T —8—— 2 MPDATA iterations
-22F —A— 3 MPDATA iterations
I ——v— 4 MPDATA iterations
24| —Pp—— 3 MPDATA iterations, "3rd order"
f —<— RPV
26 —&—— RPV, "3rd order"
gkl ol e
10° 10 107 10° 10°
CPU Cycles

section 3c. In section 3d the results of several experi-
ments are discussed.

a. Two-dimensional model description

The two-dimensional model was developed to sim-
ulate the advection of a passive tracer through the trans-
formed equation:

J 0 .0
e e ) (20)
ot d€ an
where
b - 16 grid
sk | ~®——— jntervals
103— 64 grid
s intervals
12F
A4f
B 1ok
e
S-18
& 256 grid
=20 - intervals
225—
‘24;‘ 1024 grid
26F intervals
-28 S T SR R SR
10° 10 10 10 10

CPU Cycles

Fic. 4. The L, error vs CPU cycles when A = 70 and safety factor = 0.6: (@) static uniform grid with 32, 64, 128, ..., 8192 grid
intervals and (b) dynamic grid, A = 70 and 16, 32, 64, ..., 1024 grid intervals.
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have been used to rewrite the two-dimensional version
of Eg. (15) into transformed coordinates. The two-di-
mensional Jacobian is

ixay _ oxdy

aEom  amoE

Equation (20) was solved for the two-dimensional
rotating cone problem in a square bounded by 0 = x =
1 and 0 =y = 1. The value of the prognostic variable
g was initialized as

(24)

, =

- — 2 — 2
q = max|4 015\/(x 05)2 + (y — 0.75),

(25)

The velocity field was atemporally constant prescribed
vortex:

u= —2m(y — 05) v =2m(x— 05). (26)

b. MPDATA in two dimensions

Aswith the one-dimensional case, MPDATA requires
the equations to be in flux form. Following Eq. (3), Eq.
(20) is rewritten as

99, 99l  aqv) _ R @7
ot X ay
where the divergence term R is
o v
R=ql—+ —]. 2
q( Py: an) (28)

The major differences for the two-dimensional ver-
sion of MPDATA are additional spatial terms that ac-
counts for the orthogonal direction and the cross deriv-
atives. Therefore, the pseudovelocity components for
two-dimensional case are
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— U®V® An Gq_,
2q% an
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VD) = (V®] — V(k)v<k)) An 6q®
2q% an
Af 3q(k)
— Uwyw—= 2q% o9&’ (29)
where
J® = i_;uw) VK = Eg@' (30)
mn

When k = 0, the physical velocity is used; otherwise,
k represents the iteration level. The spatial grid location
for these calculationsis (i + 1/2, j) and (i, j + 1/2) for
the 0 and v pseudovelocities, respectively. MPDATA
algorithm in two dimensions for a moving reference
frame becomes

qksd = q® — {F[q.“?, ,(5)1,, Ui(!?l/zj]

- F[qi@l-, q%9, U0y, 1}
— {F[a®, a¥,,, V¥, ]
- F[q(k) ﬁ)’ V(k) 1/2]} + Rin5(k)o
wherek = 0, ..., K, (31)

where q© = g and gt = q®.

c. Two-dimensional gridpoint redistribution

Following the one-dimensional case, the weight func-
tion was defined using the first and second derivatives
of q (excluding the cross derivatives). During applica-
tion of the two-dimensional grid distribution component
it was found that extremely high values of the weight
function could occur near the boundaries. These ex-
tremely high weights caused the grid to stretch to this
boundary point and ignore the remainder of the domain.
Therefore, the weight function was limited to be no
larger than three standard deviations above the average
value of the unsmoothed, unscaled weight function. The
weight function was smoothed using

WO = W, (32)
1
Wi,j = é[4_W(P 4+ W(P 1) + W(P 1) + W(P 1) + W(P 1)] (33)
wherep = 1, P
Wy = Wi, (34)

where (p) represents the iteration level, Wis the limited
but unsmoothed weight function, W® is the partially
smoothed weight function, and W is the final smoothed
weight function. The i, j subscripts represented the &
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Fic. 5. Gridpoint distributions with and without boundary clustering: 80 X 80 grid points with A, = 4.0, A, = 0.0, and K = 4 smoothing
passes. (a) Poor quality grid. (b) Improved quality grid.

and 7 indices, respectively; the (p) superscript repre-
sented the iteration level; and the (n) superscript rep-
resented the time level.

Like the one-dimensional case the weight function
was scaled between 0 and 1, raised to afractional power
(/2 in this case) to reduce the difference between the
significant peaks of the weight function, and added to
one to eliminate any zero values:

wy =1+ VA, (35

where W is the limited, smoothed, and scaled weight
function.

Following the grid redistribution scheme of Brackbill
and Saltzman (1982) integrals that control the grid dis-
tribution using the weight function, orthogonality of the
grid, and grid smoothness were set up. Variational cal-
culus was then used to minimize a weighted sum of
these measures, with A, and A, being user-specified co-
efficients of the grid smoothness and orthogonality
terms, respectively. See the appendix for details.

Unlike the one-dimensional case where the equations
could be solved using one numerical integration over
the entire domain followed by an interpolation for each
interior grid point, this set of equations was solved it-
eratively. Using central finite differences to represent
the equations the system becomes block pentadiagonal
where each block is atwo-by-two matrix that represents
the x and y location values for a (&;, n;;) location. The
entire system was solved using successive overrelaxa-
tion (SOR) with each individual two-by-two block
solved using Cramer’s rule. The convergence criteria
was set to 2% of the unstretched grid cell width so that
it was independent of the the number of grid points. In
the experiments that follow in section 3d, 50-60 SOR
iterations were required to generate the initial grid and

typically 10 iterations were required to redistribute the
grid points at a time step n + 1 since the grid at time
step n was used as the initial guess for SOR.

Since w;; is a function of the physical coordinates,
the weight function was updated between iterations us-

ing

owk IWK
k+1 — k+_ k+1_k+_ k+1 k, 36
WA= W =)+ S = ), (39)

where Egs. (23) were used to interchange the indepen-
dent and dependent variables of the metric terms.

In order to produce acceptable grids when large nu-
merical errors would occur near the boundary it was
necessary to allow the boundary grid points to move
parallel to the boundary. However, it was found that
they could cluster inappropriately closely, producing
cells with large aspect ratios as shown in Fig. 5a. This
problem was solved as seen in Fig. 5b by specifying
the boundary point weights to be 80% of the maximum
weight function before smoothing. The smoothing
spread the influence of this weight to the interior and
the boundary cell areas were kept small. It also provided
a more fundamental need of clustering points at the
boundaries in anticipation of fine-scaled phenomenaen-
tering the domain. Although this could not happen in
the rotating cone case, the redistribution technique ul-
timately was designed to be used with a limited area
model and would need to account for such inflow con-
ditions. A potentially more elegant solution to this prob-
lem would have been to include a measure of the grid
aspect ratio in addition to the spacing, smoothness, and
orthogonality criteria in the development of the grid
redistribution scheme. The option was not implemented
because adverse grid aspect ratios were not observed at
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FiG. 6. Results of the rotating cone problem after six revolutions:
0.25 = x = 0.75and 0.5 = y = 1.0 in each panel. (upper left) The
initial condition, (middle column) results using the static MPDATA
scheme, and (right column) results using the dynamic MPDATA
scheme. Theresultsin thefirst row were obtained using two MPDATA
iterations and no third-order terms. The results in the second row
were obtained using two MPDATA iterations and third-order terms.
The results in the third row were obtained using the RPV option
without third-order terms. The resultsin the fourth row were obtained
using the RPV option and third-order terms.

other locations, significant computational expenseisre-
quired to add another grid adaptation criterion, and
boundary clustering would have been needed anyway.

d. Two-dimensional experimental results

A series of computations were performed involving
six complete revolutions of the cone on a4l X 41 grid
with different combinations of the static and dynamic
grids, inclusion and exclusion of the third-order terms,
and different numbers of MPDATA iterations or alter-
natively the RPV option. Figure 6 shows contour plots
of theinitial condition and representative samples of the
computations. The dynamic grid parameters were set to
A, = 5.0 and A, = 0, four smoothing passes, and a
safety factor s = 0.6. As with the one-dimensional grid
when DGA was used, the initial grid was generated by
10 iterations of initializing the grid with q and then
redistributing the grid points. The time step was held
constant throughout the integration and was based on
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the initial grid spacing. In agreement with the findings
of Margolin and Smolarkiewicz (1989) the effect of
additional iterations and the third-order correction terms
are a reduction in the diffusion error and a more sym-
metric distribution of the error, respectively. In contrast
to the one-dimensional results, the added effect of the
dynamic grid is a dramatic decrease in the diffusion
error in all cases.

Figure 7 illustrates the L ,, diffusion, and phase errors
for this series of computations. The diffusion error was
calculated as

E, = 37

n??x (qll) - n??x (qu)

and shows the expected reduction with diminishing re-
turns when additional iterations are taken. Theinclusion
of the third-order terms had a tendency to reduce the
diffusion error in all cases, so it may be concluded that
although the third-order terms do not actually reduce
the scheme’s order, except in the restrictive case of zero
velocity gradient, it has the benefit of lowering not only
the phase error but the diffusion error as well. However,
the leading cause of the reduction of diffusion error is
the use of DGA. In all cases the diffusion error was
reduced by a minimum of 25%, by 70% or more in all
but two cases, and by 96% in one case.

Figure 7b shows the phase error. The phase error was
calculated by taking the magnitude of the distance from
the location of the maximum value of q of the final
solution from the corresponding location of the initial
condition represented on the initial grid. The most dra-
matic improvements came from the inclusion of the
third-order correction terms. When the third-order op-
tion was not used, DGA reduced the the phase error.
Note that when the third-order option was used in con-
junction with the static grid computations with three or
more iterations that the phase error was exactly zero,
whereas the same calculations with the dynamic grid
had a nonzero phase error. Zero phase errors in static
grid computations occur when the maximum values of
the computed solution and the initial condition occur at
the same grid point. In contrast, zero phase error in a
DGA computation can only occur when the spatial co-
ordinates of the grid points where the maximum values
of the initial condition and final solution occur are the
same. The likelihood that these coordinates are exactly
the same to machine precision is so small that the ex-
istence of some phase error is almost guaranteed in the
DGA computations.

Figure 7c shows the L, error norm, which may be
thought of as showing the combined effect of the dif-
fusion and phase error. This was calculated as

E, = {% J [at y. ) —ax y, t)]sz} . (39)

where §(x, v, t) is the analytic solution and q(x, y, t) is
the computed solution and the integration was per-
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formed using the trapezoidal rule. In this test case the
gradient of the the profile was a steep 26.7. Therefore,
the slightest phase error resulted in dramatic increases
in the L, error norm. The use of the third-order terms
is thus highly advantageous in reducing the L, error
norm. Surprisingly, the DGA technique without third-
order error terms is quite competitive with the static
grid computations with them.

Figure 8 shows the diffusion error as a function of
the computational cost for different combinations of
grids and MPDATA options. Comparison of the static,
uniform grid computations and the DGA computations
predictably shows that DGA requires an order of mag-
nitude more in computational resources but also delivers
an order of magnitude lower diffusion error when the
RPV and third-order terms are used. Two additional
computations are shown by the diamond symbol in Fig.
8 where the number of the grid points of the uniform
static grid was increased to 101 X 101 and 201 X 201.
The decrease in computational error achieved by the
DGA schemes was never realized even though over five
times the computational resources were used. It is clear
that the DGA technique is more efficient at reducing
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Fic. 7. Error and computational cost for the rotating cone: (a)
diffusion error, (b) phase error, and (c) L, error. All calculations were
performed on a 41 X 41 grid for six revolutions.

the diffusion error than a static, uniform grid with many
more grid points.

In the DGA computations for this simple advection
case most of the computational effort (78% of the CPU
time) was expended solving the elliptic equations to de-
termine the gridpoint distribution at each time step. The
remaining time was used to generate the weight function
from the prognostic variable field (6%), solve the ad-
vection problem using MPDATA and control the logic
of the code (12%), and calculate the contravariant ve-
locities at each step (4%). However, as in the one-di-
mensional case these percentages misrepresent the po-
tential of DGA if extrapolated to afull weather prediction
model where the velocity componets, atracer component
(water vapor), and pressure equation must be solved. By
categorizing the types of equations that must be solved
and using the above percentages as typical computational
weights for a full two-dimensional model, an estimate of
the effect of DGA on a full model can be made. Since
the equations for the two velocity components and the
tracer are hyperbolic, they would be given each aweight
of 12, like the advection equation. Since the pressure
equation would be dliptic, its solution would demand
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resources similar to the grid redistribution equation
amounting to a weight of 78, like the elliptic grid redis-
tribution equation. The sum of these in addition to the
weights of 78, 6, and 4 for the grid redistribution; the
calculation of the grid redistribution weights;, and the
calculation of the relative velocities yields atotal of 202.
This estimate indicates that DGA would consume 44%
of the total computational resources as compared to 88%
for the simple advection case.

Although further quantative extrapolation to a full
three-dimensional model is difficult, the DGA overhead
would clearly decrease further than in the full two-di-
mensional case. The computational effort to solve the
pressure equation would increase by a factor at least as
great as the number of vertical levelsin the model due
to the nature of elliptic solvers. When developing a
three-dimensional model it could be sufficient and de-
sirable to keep vertical columns of grid points aligned.
A grid redistribution scheme to accomplish this could
consist of the two-dimensional grid redistribution
scheme in the horizontal directions and the one-dimen-
sional grid redistribution scheme applied to each column
of grid points. This computational expense would not
approach that of the pressure solver. A conservative
estimate of the additional overhead to perform DGA in
afull three-dimensional model might be 30%. Assuming
similar reductions in computational error can be
achieved asinidicated in Fig. 8, then this added expense
would certainly be warranted.
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4. Conclusions

A dynamic grid adaptation (DGA) model has been
developed that works effectively with the nonoscilla-
tory, second-order-accurate multidimensional positive
definite advection transport algorithm (MPDATA)
scheme. Second-order accuracy was maintained in
MPDATA by (i) deriving the correction termsto account
for grid motion, and (ii) using the contravariant velocity
for advecting the prognostic variable.

Based upon one-dimensional considerations, a new
extended CFL stability condition has been developed
for DGA methods that shows the partial Lagrangian
characteristics of the technique. This extended CFL sta-
bility condition was successfully used, in the one-di-
mensional case, to control the movement of the grid
points and keep the scheme stable. It was found that
the gridpoint control was needed only in cases when
many grid points (>250 in this case) were used. When
the DGA technique is chosen, a smaller number of grid
points is used in a more judicious manner than with a
static, uniform-resolution grid model. A user should not
expect to see the same degree of error reduction by
dramatically increasing the number of grid pointsin a
DGA model as they would expect to see in a static,
uniform-resolution grid model.

The two-dimensional simulations of the rotating cone
test problem showed very significant reduction in the
diffusion error due to DGA of up to 90%. While DGA
was more computationally expensive than using uniform
grids with the same number of grid points, it was far
less expensive than uniform grids with similar accuracy
and many more grid points.

The major cost associated with DGA for the advection
case is the solution of the elliptic grid redistribution
scheme. If applied to the full set of momentum, energy,
and elliptic pressure equations, which need to be solved
iteratively, the cost of moving the grid points should be
a much smaller fraction of the total.
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APPENDIX

Two-Dimensional Grid Generation Equations

The two-dimensional grid redistribution scheme
based on the scheme developed by Brackbill and Saltz-
man (1982) is developed by considering a weighted
measure of the grid smoothness, cell volume, and grid
orthogonality:
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| = J [(VE-VE+ Vi Vi) + AW,

+ A,(VE- Vn)2J3] dA, (A1)

where V is the gradient with respect to the physical
coordinates (x, y), w is the weight function, J, is the
Jacobian of the transformation matrices, and V is the
volume of the cell. The first term in brackets represents
a measure of the smoothness of the grid. The terms
beginning with the user-specified A, and A, represent a
measure of the grid cell volume and grid orthogonality,
respectively. According to Thompson et al. 1985 the
J3 is "*somewhat arbitrary, and caused orthogonality to
be emphasized more strongly in the larger cells.”

In order to take advantage of the even grid spacing
of the computational domain Egs. (23) were used to
switch the independent and dependent variables. Using
calculus of variations these measures were minimized
yielding a quasi-linear set of elliptic equations:

“9&2 Csagan Conz og? Czagan
92y

+(‘ea—nz=)\vva

JIX L X ox oy oy

T2 Czégan (\“anz 07552 Cgagan
a2y

TG T AR, (A2)
n

where the cs are functions of the of A, and the first
partial derivatives of x and y.
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