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ABSTRACT

In order to understand the mechanisms of formation of broad size spectra of cloud droplets and to develop
a basis for the parameterization of cloud microphysical and optical properties, the authors derive a general
kinetic equation of stochastic condensation that is applicable for various relationships between the supersaturation
relaxation time t f and the timescale of turbulence t L. Supersaturation is considered as a nonconservative variable,
and thus additional covariances and a turbulent diffusion coefficient tensor that is dependent on the supersaturation
relaxation time, kij(t f ), are introduced into the kinetic equation. This equation can be used in cloud models with
explicit microphysics or can serve as a basis for development of parameterizations for bulk cloud models and
general circulation models.

1. Introduction

The characteristics and evolution of the cloud droplet
size spectra determines cloud radiative properties and
the formation of precipitation. To account for these pro-
cesses in cloud-resolving models and climate models
requires correct understanding and then parameteriza-
tion of cloud microstructure and its dependence on pre-
dicted atmospheric parameters.

Condensation theory for a constant updraft has been
shown to narrow the droplet spectrum with time (e.g.,
Mordy 1959; Neiburger and Chien 1960; Buikov 1961).
Since broad spectra are observed in clouds and are re-
quired to initiate collision and coalescence growth of
precipitation, various hypotheses and approaches have
been developed to explain and to describe broad spectra
in clouds. Warner (1969), Baker and Latham (1979),
and Telford and Chai (1980) have attempted to explain
the broadening of the size spectra and occurrence of the
bimodal spectra and large droplets (before coagulation)
by mixing of cloud parcels with environmental air. Ad-
ditional mechanisms that have been proposed include
horizontal inhomogeneities in vertical velocity (e.g.,
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Mazin 1968) and in cloud condensation nuclei (CCN)
(Kabanov et al. 1970), microscopic supersaturation as-
sociated with random distribution of drops (Srivastava
1989), and sedimentation of the cloud droplets (Baker
et al. 1984; Considine and Curry 1996).

The theory of stochastic condensation attributes the
presence of broad drop size spectra in clouds to the
occurrence of condensation in a turbulent medium. This
theory was developed intensively during the period
1960–80. While considerable research was devoted to
the explanation of the various mechanisms of the broad-
ening of the droplet size spectra (see reviews in Cotton
and Anthes 1989; Pruppacher and Klett 1997), the treat-
ment that is mathematically most promising describes
stochastic condensation in terms of kinetic equations
that allow direct calculations of the evolution of the size
spectra. These equations have been derived for two lim-
iting cases: the low-frequency regime in which the char-
acteristic Lagrangian timescale of turbulent fluctuations,
t L, is much greater than the supersaturation absorption
time, t f , that is, t L k t f ; and the high-frequency regime
in which t L K t f . Since t f ; 1–10 s in a developed
cloud, and t L ; 5–10 min, it was believed in earlier
studies that the high-frequency approximation might be
representative of rapidly changing conditions such as
might occur in an entrainment zone or during the initial
phase of condensation, while the low-frequency ap-
proximation might be representative of a developed
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cloud that is quasi-steady. More detailed analysis of the
turbulence in clouds showed that there are pronounced
maxima in the turbulent power spectra of vertical ve-
locity at the frequences v ; 1023–1022 s21 (e.g., Curry
et al. 1988; Sassen et al. 1989). The supersaturation
relaxation (absorption) time in the cloud regions with
smaller particles concentrations can be t f ; 30–60 s
for liquid clouds and can exceed t f ; 30–180 min for
crystalline clouds (e.g., Khvorostyanov and Sassen
1998). Thus the timescales t f and t L can be quite com-
parable and their relation can change during cloud evo-
lution; hence more general kinetic equations for arbi-
trary relations between t f and t L are required.

The method of kinetic equations was introduced in
cloud physics by Buikov (1961, 1963), who wrote the
kinetic equation by analogy with the diffusion equation
but incorporated an additional term describing conden-
sational growth. When deriving analytical solutions to
the kinetic equations, the additional covariances that
appear due to turbulent fluctuations of supersaturation
and the size distribution function were neglected. It will
be shown below that this approach is equivalent to the
high-frequency approximation, t L K t f . Another ver-
sion of the kinetic equations that corresponds to the low-
frequency approximation was derived by Levin and Se-
dunov (1966) and Sedunov (1974), who developed the
theory of stochastic condensation, which attributes the
presence of broad drop size spectra in clouds to turbulent
fluctuations. The stochastic method treats supersatura-
tion and droplet growth rate as stochastic variables and
replaces the usual operator of turbulent diffusion K]/]x
by the operator K(]/]x 1 A]/]s) for a nonconservative
substance s (here, the droplet surface) where A is pro-
portional to the vertical velocity. The solution to this
equation predicts the growth of the peak radius with
time and dispersion of the drop size spectra that as-
ymptotes with time toward a constant value.

More rigorous and detailed derivations of the equa-
tion of stochastic condensation using Reynolds aver-
aging and more careful evaluation of covariances were
performed by Stepanov (1975), Voloshchuk and Se-
dunov (1977), and Manton (1979) using the method of
perturbation theory, which is valid for weak turbulence
(fluctuations are smaller than the mean values). This
derivation was generalized by Merkulovich and Ste-
panov (1977) to account for curvature and solution ef-
fects in droplet growth.

The kinetic equations derived in the aforementioned
studies are valid in the low-frequency approximation,
that is, when t L k t f . In this case, the fluctuations of
supersaturation and droplet growth rate are highly cor-
related with the vertical velocity. Although the low-
frequency stochastic kinetic equations can explain some
features of the drop size spectral dispersions in strati-
form clouds, Manton (1979) showed that the stochastic
approach leads to dispersions that are still narrower than
those observed in convective clouds. By hypothesizing
a negative correlation between the fluctuations in mean

droplet radius and vertical velocity, Manton (1979) de-
rived a modified version of the kinetic equation that
produced broader (or bimodal) size spectra with dis-
persions increasing for a longer time. In a subsequent
discussion of Manton’s theory (Merkulovich and Ste-
panova 1981; Manton 1981), it was clarified that the
condition of mass balance imposes some additional lim-
itations on the basic assumptions and analytical solu-
tions to the kinetic equation; in particular, it was shown
that the bimodal spectra predicted by this theory should
be monomodal in many cases, and the dispersions
should be smaller. Austin et al. (1985) showed that the
basic assumption of Manton’s theory on the negative
correlation between the fluctuations in integral radius
and vertical velocity is not observed in the continental
cumuli, while Curry (1986) found some evidence of
negative correlation in Arctic stratus. Thus further ver-
ification or another hypothesis is required to break the
link between supersaturation and vertical velocity,
which appears to be the primary requirement for deriv-
ing a sufficiently broad drop spectra using the stochastic
kinetic equations.

The first cloud models with explicit microphysics
based on the kinetic equations were developed in the
early 1970s (e.g., Clark 1973; Buikov and Pirnach 1973,
Buikov and Khvorostyanov 1976). However, for many
years explicit microphysical models were still a rather
rare phenomenon among the much more frequently used
bulk microphysical models. During 1980s and 1990s,
the intensive development of cloud models with explicit
microphysics was made possible by an increase in com-
putational speed (e.g., Khvorostyanov 1982, 1995;
Flossman et al. 1985; Marchuk et al. 1986; Tzivion et
al. 1987; Kogan 1991; Feingold et al. 1994; Khvoros-
tyanov and Sassen 1998). Additional impetus for ex-
plicit microphysics models has been provided by the
Global Energy and Water Experiment (GEWEX) Cloud
System Study, designed for development of the param-
eterizations for climate models (Browning 1994).

However, a gap remains between the theory of sto-
chastic condensation and the practical needs of mod-
eling. In applying the kinetic equation for stochastic
condensation in numerical cloud models, we are faced
with the following dilemmas.

1) A few attempts have been made to use the more
complete stochastic kinetic equations in the low-fre-
quency approximation of the kinetic equations in nu-
merical cloud models (e.g., Vasilyeva et al. 1984),
but the small characteristic timescale for the con-
densation process and presence of cross derivatives
makes the numerical solution very computationally
intensive. Hence, only the simplest versions of the
kinetic equations in the high-frequency approxima-
tion are used now in most of the cloud models with
explicit microphysics, neglecting terms that may in-
fluence the numerical solutions and physical effects.

2) Analytical solutions to stochastic kinetic equations
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in the low-frequency regime have been obtained of
the Gaussian distribution type, which does not agree
very well with observations that are typically in bet-
ter agreement with a gamma distribution. This sug-
gests that there are deficiencies in the formulation
of the kinetic equations for stochastic condensation.

To address these concerns, we derive a new version
of the kinetic equation for stochastic condensation for
arbitrary relative values of t L and t f that is suitable for
numerical cloud models. The principal assumptions that
differentiate the new version of the kinetic equation
from previous versions are 1) consideration of super-
saturation as a nonconservative substance with differ-
entiation between the macroscale and microscale su-
persaturation, and 2) consideration of the supersatura-
tion fluctuations of various frequencies over the whole
turbulent spectrum without assuming proportionality of
supersaturation and vertical velocity. These assumptions
break the link between the fluctuations in supersatura-
tion and vertical velocity and lead to a solution of the
gamma distribution type (see Part II of this paper, Khvo-
rostyanov and Curry 1999a).

2. A model of the condensation process in a
turbulent cloud

a. Basic equations

The kinetic equation of condensation can be written
in the following form (following Buikov 1961; Levin
and Sedunov 1966; Cotton and Anthes 1989; Khvoros-
tyanov 1995):

] f ] ]
1 [(u 2 y (r)d ) f ] 1 (ṙ f ) 5 J (2.1)i i3]t ]x ]ri

where r is the droplet radius and ṙ is the droplet radius
rate of growth, xi and ui are the coordinates and velocity
components, J describes droplet sources and sinks, and
the usual summation convention over doubled indices
is assumed, i 5 1, 2, 3. Other variables are defined in
the appendix. Equation (2.1) is a continuity equation
for the dropsize spectra. The ](ṙf )/]r term in (2.1) rep-
resents the divergence of f (r) due to condensation
growth. Equation (2.1) can be regarded as considering
a system in four-dimensional phase space (xi, r), where
each possible state of the system corresponds to a
uniquely determined point in the space (xi, r).

The rate of droplet growth, ṙ, is determined (follow-
ing Sedunov 1974; Cotton and Anthes 1989) from

2DS L r L ]qs sṙ 5 G 5 1 1 5 1 1 , (2.2)
2Gr r c R T r c ]Tw p y a p

where D is the vapor diffusion coefficient; S 5 ry 2
rs is the absolute supersaturation; rw, ra, ry , and rs are
the densities of water, air, vapor, and saturated vapor,
respectively; cp is the specific heat capacity; G is the
psychrometric correction to the growth rate associated

with the latent heat of condensation; L is the latent heat
of condensation; Ry is the gas constant of water vapor;
and qs is the saturated specific humidity. Equation (2.2)
neglects for simplicity the solute (Raoult), kinetic (ac-
comodation coefficient), and curvature (Kelvin) effects,
but these effects can be easily incorporated.

The equation for supersaturation S in the parcel can
be derived from the heat balance equation and the con-
tinuity equation for water vapor (see, e.g., Khvoros-
tyanov 1995; Khvorostyanov and Sassen 1998):

dT L
5 2g w 1 « 1 Qd c raddt c rp a

]r ](r u )y y i5 2 2 « , (2.3)c]t ]xi

where gd 5 g/cp is the dry adiabatic lapse rate, w the
vertical velocity, Qrad the radiative temperature change,
and «c the condensation rate, which can be written using
(2.2) as

` `dm(r)
2« 5 f (r) 5 4pr r ṙf (r) drc E w Edt0 0

S
5 , (2.4)

Gtf

where m is the mass of the drop. Here t f is the char-
acteristic condensation time that coincides with the su-
persaturation absorption time (called also phase relax-
ation time) analyzed by Squires (1952), Twomey (1959),
Buikov (1963), Sedunov (1965, 1974), Mazin (1968),
Austin et al. (1985), and many others and related to the
droplet concentration N and mean radius r

`

21t 5 (4pDNr ) , N 5 f (r) drf E
0

`

r 5 rf (r) dr. (2.5)E
0

Here we present a modified version of the supersat-
uration equation in terms of the characteristic times that
is more convenient for the further analysis. Starting from
the equation dS/dt 5 dry /dt 2 (drs/dT)(dT/dt), incor-
porating (2.3)–(2.5) and using also the mass continuity
equation, the hydrostatic equation, and the Clausius–
Clapeyron equation, we obtain the supersaturation equa-
tion:

dS S
5 2G« 1 Aw 5 2 1 Aw (2.6)c ef efdt tf

cp
A 5 Gr (g 2 g ), (2.7)a d sL

where gs is the saturated adiabatic lapse rate and wef is an
effective vertical velocity (defined below). In the ab-
sence of the second term on the right-hand side of (2.6),



3988 VOLUME 56J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

the solution to (2.6) would be S(t) 5 S(0) exp(2t/t f ),
thus the time t f determines the e-folding decrease of
the initial supersaturation (note that it coincides with
the characteristic condensation time defined above) and
the first term on the right-hand side of (2.6) characterizes
the rate of supersaturation absorption.

We have introduced in (2.6) an effective vertical ve-
locity wef 5 w 1 wrad, where wrad is the radiative-ef-
fective vertical velocity related to the radiative temper-
ature change Qrad (K s21),

G 2 1 1
w 5 2k Q , k 5 ø . (2.8)rad rad rad rad G(g 2 g ) gdd s

The advantage of introducing wrad is that it allows direct
comparison of the dynamical and radiative sources of
supersaturation generation. The maximum values Qrad

; 21023 K s21 (23.6 K h21 or 286 K day21) and 22
3 1023 K s21 (27.2 K h21) typical of Arctic stratus
(Curry 1986), correspond to wrad ; 10–20 cm s21 in the
upper cloud layer. Thus the magnitude of the radiative-
effective velocity can be comparable to the turbulent
updrafts and is substantially larger than the synoptic-
scale regular (mean) updraft velocity, providing the
main source of condensation, instability, and turbulent
kinetic energy production.

Equation (2.6) shows clearly that the rate of change
of supersaturation is determined by the sources of su-
persaturation (updraft and radiative cooling) and the
sink of supersaturation associated with condensation
and inversely proportional to the phase relaxation time
t f . If quasi-stationary conditions are assumed in (2.6)
(dS/dt 5 0, corresponding to the low-frequency ap-
proximation), the solution for equilibrium supersatura-
tion, Sq, and for the relative S̃q 5 Sq/rs is

c (g 2 g )p d s
S 5 Aw t 5 Gr w (2.9)q ef f a efL4pDNr

c (g 2 g ) Gp d sS̃ 5 w . (2.9a)q efL 4pDNr qs

b. Stochastic equations

The kinetic equation (2.1), the droplet growth equa-
tion (2.2), and the supersaturation equation (2.6) close
the system of equations required to determine the evo-
lution of the dropsize distribution if the velocity, tem-
perature, and humidity fields are specified. To account
for turbulence and other fluctuations, we represent all
quantities as sums of mean (denoted by overbar) and
fluctuating (denoted by prime) values:

u 5 u 1 u9, f 5 f 1 f 9,

S 5 S 1 S9, ṙ 5 r 1 r9, (2.10)

where the mean refers to an ensemble average. Substi-
tuting (2.10) into (2.1) and averaging using the Reynolds

procedure, we derive an equation for the drop size spec-
tra that is averaged over the ensemble of realizations

] f ] ]
1 (u f ) 1 ( ṙ f )i]t ]x ]ri

] ]
5 2 u9 f 9 2 ṙ9 f 9 1 J . (2.11)i]x ]ri

Henceforth we shall omit the bars over the mean val-
ues, other than for the covariance terms. The nucleation
term J can be calculated by appropriate averaging of
the CCN activity spectra (e.g., Twomey 1959; Sedunov
1974; Khvorostyanov and Curry 1999b); the detailed
consideration of J is beyond the scope of this paper.
Note that the averaging here can be understood also in
the context of averaging over the grid scale of a large
eddy simulation (LES) model, time, or grid-volume av-
eraging, with the corresponding requirements on the av-
eraging procedure (see Cotton and Anthes 1989, chapter
3).

In the case of the grid-volume average with the scale
Lx, the average value of any variable is

Lx

c 5 (1/L ) c dx.x E
0

For typical LES models or 1-Hz aircraft sampling dis-
tance, Lx ; 50–100 m. Averaging over this spatial scale
implies filtering only of the highest frequencies of mo-
tion up to vmax ; 1 Hz, while the peak of the turbulent
energy may lie near the values of vmax (e.g., Curry et
al. 1988). Hence, the average quantities defined above
still contain turbulent fluctuations at longer wavelengths
with v , vmax, and correlations still exist between the
average values and fluctuations denoted by primes (see
Cotton and Anthes 1989, section 3.6). This should be
kept in mind when defining the ‘‘mean’’ supersaturation
S , mean vertical velocity w ef , and their relation. In this
case, mean values implies grid averages.

The right-hand side of (2.11) is ascribed a stochastic
meaning, since u and ṙ (which depends on supersatu-
ration fluctuations) vary randomly. We represent the
fluctuations f 9 in a form analogous to the Prandtl mixing
length concept with a generalization to the 4D phase
space (xj, r):

] f ]
f 9 5 2l9 2 l9 f . (2.12)j r]x ]rj

The first term on the right-hand side of (2.12) corre-
sponds to the mixing of a conservative passive scalar,
where is the Prandtl mixing pathlength. The secondl9j
term arises from the nonconservativeness of f, and the
Prandtl mixing length concept is extended to the r di-
mension in the phase space following Voloshchuk and
Sedunov (1977).

If t f K t L (the low-frequency regime), then the fluc-
tuations of ṙ9 can be determined from the Maxwellian
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growth rate equation. Fluctuations in droplet growth rate
can be determined as

DS9
ṙ9 5 . (2.13)

Gr rw

If the fluctuations S9 are determined from (2.9), we have

c (g 2 g )p d sS9 5 Aw9 t 5 Gr w9 . (2.14)ef f a efL 4pDNr

Substituting (2.9), (2.12), (2.13), (2.14), into (2.11)
would yield the previous forms of stochastic kinetic
equation (as discussed in the introduction) that are valid
in the low-frequency regime, with the additional as-
sumption that both mean supersaturation and its fluc-
tuations are proportional to the corresponding vertical
velocity. The assumption of low frequency is implicit
in (2.14) because fluctuations of supersaturation are cor-
related exactly with the fluctuations of vertical velocity.

c. Supersaturation fluctuations

As noted in the introduction, the basic assumption
used previously in derivations of the stochastic kinetic
equation, that S and S9 are both related to the respective
components of the vertical velocity, leads to the size
distribution of Gaussian type that is too narrow in com-
parison to the observations. Thus we hypothesize and
seek alternative relationships to (2.13), (2.14) that are
not based on the assumption of proportionality of fluc-
tuations of growth rate and vertical velocity and account
for the different growth rates in fluctuations than in
regular (low frequency) growth.

Supersaturation fluctuations can be associated with
turbulent fluctuations in temperature and humidity,
which may or may not be associated with vertical ve-
locity. There is a hierarchy of spatial scales of turbulent
motions in the cloud, with the larger eddy sizes having
a greater coherence with supersaturation. Additional su-
persaturation fluctuations may occur on the drop mi-
croscale that are unrelated to vertical velocity fluctua-
tions but might be induced by other turbulent fluctua-
tions such as those caused by the mixing of the cloudy
parcels with different properties that act to break the
link between vertical velocity and supersaturation.

Suppose a supersaturation fluctuation S9 arises in a
cloudy parcel due to a turbulent fluctuation. Vapor be-
gins to flow to the droplets and unless the equilibrium
is attained in the volume VL in the vicinity of each
droplet, there will be a nonstationary vapor concentra-
tion field ry i(r). To calculate these vapor fields, we need
to solve a complex system of many diffusion equations
for ry i(r) from all drops that influence each other in
order to calculate a self-consistent vapor field formed
by the superposition of the overlapping fields from in-
dividual drops (Sedunov 1974; Srivastava 1989). The
exact solution to this complicated diffusion problem has

not been found; thus various approximate methods are
used.

Many models of condensation growth were consid-
ered over the last two decades that may help to break
the link between S9 and w9. The common feature of
several of them is that they predict the local growth of
supersaturation fluctuations in proportion to the droplet
radius, S9 ; r. Srivastava (1989) introduced the concept
of a microscopic supersaturation fluctuations, which can
vary from drop to drop due to randomness in the droplet
spatial distribution; the main part of this microscopic
supersaturation S9 is proportional to the droplet radius.

The inhomogeneous mixing theory of Baker and La-
tham (1979) and Baker et al. (1984), based on the cham-
ber mixing experiments by Latham and Reed (1977),
predicts the local increase of supersaturation in the vi-
cinity of the larger drops that are less affected by mixing
with entrained dry air, because the newly activated
smaller droplets (that form later in the areas of complete
evaporation) cannot compete as effectively for the avail-
able water vapor. Thus the effective supersaturation in
the inhomogeneous mixing theory also increases with
the drop radius.

Further evidence for the proportionality S9 ; r for
small timescales comes from the detailed calculations
of droplet growth that account for the kinetic correction
(Fukuta and Walter 1970) and the concept of the mod-
ified diffusion coefficient, Dm(r), which accounts for this
correction (Pruppacher and Klett 1997, p. 506). Cal-
culations of droplet growth show that the magnitude of
the kinetic correction depends on time and drop mass.
Over short time periods comparable to t f (10–20 s), the
kinetic correction causes a strong suppression of the
growth of the smaller droplets. The value of Dm(r) ;
r increases almost linearly with radius for small droplets
(Pruppacher and Klett 1997, Table 13.1). Over periods
much longer than ;20 s, the kinetic correction becomes
negligible and Maxwellian growth occurs. We per-
formed similar calculations of supersaturation during
relaxation (;3–10 s) with account for the curvature and
kinetic corrections with various accomodation coeffi-
cients (0.04–1), which also showed that the effective
supersaturation, S9(r, t), increases with radius such that
it can be roughly approximated by a linear dependence,
S9(r, t) ; a(t)r. The slope a(t) decreases with time; thus
the dependence of S9 on r weakens and the usual Max-
wellian growth takes place for the larger times. Thus
accounting for the kinetic and curvature corrections
leads to the quasi-kinetic regime of growth for short
timescales comparable to the phase relaxation time t f

and the diffusion regime during long timescales.
Since we do not account explicitly here for the above

curvature and kinetic corrections, activation, and other
effects that lead to the dependence S9 ; r (i.e., sup-
pression of the growth of smaller droplets), we consider
an approximate model of condensational growth in su-
persaturation fluctuations. We characterize the average
rate of supersaturation absorption, , by the ith dropṠ9i
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from its vicinity, VL ; N21, by using the local relaxation
time t fi 5 (4pDNri)21 as a scaling time, similar to the
total relaxation time for the ensemble of drops (2.5).
Then can be written approximately asṠ9i

ø S9/t fi 5 S9(4pDNri),Ṡ9i (2.16)

so that the rate of absorption of supersaturation fluc-
tuation by a drop increases with increasing radius. Now,
the supersaturation absorbed by the ith drop duringS9i
the entire period of relaxation in the ensemble of the
drops is proportional to the total relaxation time, t f .
Using (2.16) and (2.5) we can determine

t 4pDNr rf i i˙ ˙S9 5 S9t 5 S9 5 S9 5 S9 . (2.17)i i f t 4pDNr rfi

So, the effective microscale supersaturation in (2.17) is
approximated during relaxation as a linear function of
drop radius. Incorporation of (2.17) into (2.13) for ṙ9i
yields the desired result

DS9 D
ṙ9 5 5 fS9 f 5 . (2.18)

Gr r Gr rw w

The physical meaning of (2.16)–(2.18) is that due to
suppressed growth of the smaller drops, the effective
relaxation rate of supersaturation is faster for the larger
droplets, so during relaxation the larger droplets absorb
the larger fraction of the initial supersaturation fluctu-
ation S9. Equation (2.18) shows that fluctuation of the
growth rate described by this model is independent of
radius, which is equivalent to kinetic regime in fluc-
tuations. Another important feature of (2.18) is that we
do not assume here S9 ; w9 as in previous theories, but
simply consider S9 as a stochastic variable.

Support for our model of microscale condensation is
provided by several previous studies, as discussed
above. After substituting into (2.13) the effective dif-
fusivity Dm(r) ; r, which can approximate the results
by Fukuta and Walter (1970) and Pruppacher and Klett
(1997, Table 13.1), we also arrive at a formulation (2.18)
of ṙ9 that is independent of radius.

From (2.18), we can infer that the droplet spectrum
during Dt in the kinetic regime would be displaced as
a whole by Dr 5 Dt, whereby the displacement iswS90
independent of radius and the shape of the spectrum is
preserved. The possibility of such a spectral shift was
noted by Baker et al. (1984) when analyzing the con-
sequences of the Broadwell–Breidenthal (1982) model.

Hence, we have developed a model of condensation
in a turbulent medium that is naturally separated by
scales: 1) the usual Maxwellian diffusion regime con-
trols condensational growth for longer timescales as for
the regular condensation by using (2.1) for ṙ [with use
of calculated values of supersaturation or equilibrium
supersaturation Sq (2.9) for the steady state]; and 2)
droplet growth occurs in the kinetic regime (2.17),
(2.18) for small timescales in fluctuations. Therefore
fluctuations in supersaturation, S9, and growth rate, ṙ9,

have a stochastic meaning, but they are not proportional
to the vertical velocity fluctuation w9 as in the low-
frequency approximation. This model therefore breaks
the link between the fluctuations in S9 (or growth rate)
and w9.

By integrating (2.18) over the duration of a single
fluctuation (;t f ), an expression for is derived thatl9r
determines an analog of Prandtl’s mixing length in radii
space:

t t

l 5 ṙ9 dt9 5 f S9(t9) dt9. (2.19)r E E
0 0

As (2.19) is independent of radius, (2.12) for f 9 then
becomes

] f ] f
f 9 5 2l9 2 l9 . (2.20)j r]x ]rj

Equations (2.17)–(2.20) allow evaluation of the co-
variances in the kinetic equation (2.11), which is done
in the next section.

3. Evaluation of correlation functions

In this section, we use concepts from the statistical
theory of turbulence (e.g., Monin and Yaglom 1967) to
evaluate the correlation functions f 9 and ṙ9 f 9 inu9i
(2.11). We assume that the velocity fluctuation vectors

, the supersaturation , and mixing lengths areu9 S9 l9j j j

random quantities, which we represent as expansions in
form of Fourier–Stieltjes integrals:

` `

ivt ivtu9(t) 5 e du9(v) S9(t) 5 e dS9(v)j E E
2` 2`

t t `

ivt1l9(t) 5 u9(t ) dt 5 dt e du9(v),j E j 1 1 E 1 E j

0 0 2`

(3.1)

where v is the frequency of turbulent spectrum, and the
symbol t1 is used hereafter to denote the time variable
of integration but not the fluctuation and superscript i is

21.Ï
The complex amplitudes (v), dS9(v) have an an-du9j

alytic continuation into the region v , 0, with (2v)du9j
5 *(v) and are normalized to the Dirac delta func-du9j
tion, d(v), and a spectral function Fij(v) (following
Monin and Yaglom 1967):

du9(v)du9*(v9) 5 F (v)d(v 2 v9)dvdv9i j ij

`1
2ivtF (v) 5 e B (t) dt. (3.2)ij E ij2p 0

Assuming stationary, locally homogeneous, isotropic
turbulence, we can also define (following Monin and
Yaglom 1967) the velocity correlation function Bij and
the turbulence diffusion coefficient tensor kij,
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`

iv (t2t )1B (t 2 t ) 5 e F (v) dvij 1 E ij

2`

`

5 cos[v(t 2 t )][2F (v)] dvE 1 ij

0

`

k 5 B (t) dt, (3.3)ij E ij

0

where t 5 t 2 t1, and Fij(v) is related to the frequently
used spectral density Eif (v) defined at positive v . 0 as
2Fij(v) 5 Eij(v).

The covariance is readily determined from (3.1)l9u9i j

to be
t ` `

ivt 2iv9t1l9u9 5 dt e e du9(v) du*(v9)i j E 1 E E i j

0 2` 2`

t

5 dt B (t 2 t ). (3.4)E 1 ij 1

0

a. Supersaturation as a nonconservative variable

Determination of covariances involving supersatu-
ration is complicated by the fact that supersaturation is
nonconservative because of turbulent fluctuations of
temperature and humidity, and of phase changes when
S ± 0. Nonconservativeness of supersaturation requires
introduction of nonconservative covariances and tur-
bulence coefficients.

Separating fluctuations from the average quantities in
the supersaturation equation (2.6), we can write

dS9 S9
5 2 1 Au9. (3.5)3dt tf

By substituting (3.1) into (3.5), we can determine a
spectral analog of the supersaturation equation:

` `1
ivt ivte (iv) dS9(v) 5 2 e dS9(v)E Etf2` 2`

`

ivt1 A e du9(v), (3.6a)E 3

2`

A
dS9(v) 5 du9(v), (3.6b)3i(v 2 iv )p

where vp 5 5 4pDNr is the imaginary part of the21t f

frequency, which can be called the ‘‘supersaturation re-
laxation frequency.’’ The complex frequency in the de-
nominator of (3.6b) with imaginary part vp . 0 reflects
the nonconservativeness of the supersaturation and is

written in the form similar to that in electrodynamics
for the wave propagation in an absorbing media.

If we assume in (3.6b) that v K vp (low-frequency
approximation), the amplitude dS9(v) becomes propor-
tional to the vertical velocity du9(v) at all frequencies,
and we come to the previous formulations of stochastic
theory by Levin and Sedunov (1966), Voloshchuk and
Sedunov (1977), and Manton (1979). Thus our approach
generalizes the previous theories by use of (3.6b), which
breaks the links between supersaturation and vertical
velocity. In deriving (3.6) we assumed for simplicity
that t f 5 are constant; all subsequent manipulations21vp

can be readily generalized to allow for fluctuations of
t f [e.g., Voloshchuk and Sedunov (1977) for the low-
frequency regime; Cooper (1989)]; however, as was not-
ed in section 2c, assumption of t f ø const is a good
approximation when considering supersaturation relax-
ation on the microscale over timescales t ; t f .

b. Covariances with supersaturation

By incorporating (3.6), (3.1), and (3.2), we obtain the
following expression for the correlation function S9 :u9j

S9(t)u9(t )j 1

` ` A
ivt 2iv9t15 e e du9(v) du9*(v9)E E 3 ji(v 2 iv )p2` 2`

n5 d (A /v )B (t 2 t , t ),i3 p ij 1 f (3.7)

where we introduced the correlation function of velocity
with supersaturation as a nonconservative substance (in-
dex ‘‘n’’) with a characteristic ‘‘nonconservativeness’’
time t f 5 :21vp

` vpn ivtB (t, t ) 5 e F (v) dv (3.8a)ij f E iji(v 2 iv )p2`

` [v 1 v tanvt]p
5 cosvt[2F (v)] dv. (3.8b)E ij21 1 (v /v )p0

The first term in subintegral function of (3.8b) deter-
mines the nonconservative effects and the rest coincides
with the expansion of the conservative function (3.3).
We can derive analogously the turbulence diffusion co-
efficient tensor for a nonconservative substance,

`

n nk (t ) 5 B (t, t ) dt. (3.9)ij f E ij f

0

Following an approach analogous to the derivation of
(3.7), we can obtain an expression for the supersatu-
ration autocorrelation function

` ` 2A
ivt iv9t 2 nn1S9(t)S9(t ) 5 e e du9(v) du9*(v9) 5 (A /v ) d d B (t 2 t , t ), (3.10)1 E E 3 3 p i3 j3 ij 1 f(iv 1 v )(2iv 1 v )p p2` 2`
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where we introduce the autocorrelation function of a
nonconservative substance and the corresponding tur-
bulence coefficient:

` 2vpnn ivtB (t, t ) 5 e F (v) dvij f E ij2 2(v 1 v )p2`

` 2 cosvt
5 F (v) dvE ij21 1 (v /v )p0

`

nn nnk (t ) 5 B (t, t ) dt. (3.11)ij f E ij f

0

c. Covariances with drop size distribution function

For the general case of arbitrary relations between t f

and t L, making use of (2.19), (2.20), (3.4), and (3.8),
we obtain for the correlation function f 9 in (2.11)u9i

t ] f (t )1u9 f 9 5 2 dt B (t 2 t )i E 1 ij 1[ ]xj0

] f (t )1n1 B (t 2 t , t )d G , (3.12)ij 1 f j3 ]]r

where we have introduced the parameter G,

c cD g 2 g r g 2 gp pd s a d sG 5 wAt 5 r 5 . (3.13)f a 2r r L 4pDNr r L 4pNrw w

From (2.19), (2.20), (3.7), and (3.10), we obtain for ṙ9f9

ṙ9 f 9 5 wS9 f 9

t ] f (t ) ] f (t )1 15 2w dt S9(t)u9(t ) 1 wS9(t)S9(t )E 1 j 1 1[ ]]x ]rj0

t ] f (t )1n5 2 dt Gd B (t 2 t , t )E 1 i3 ij 1 f[ ]r0

] f (t )12 nn1 G d d B (t 2 t , t ) .i3 j3 ij 1 f ]]r

(3.14)

Equations (3.12) and (3.14) are integrated following
Stepanov (1975). The main contribution to the integrals
comes from the region t 2 t1 ; t L, because the cor-
relation functions decrease rapidly beyond this interval.
During the time period t 2 t1 ; t L, the distribution
function f varies much slower than the correlation func-
tions and we can remove ] f /]x and ] f /]r from the in-
tegrals and simplify (3.12) and (3.14) to

t] f
u9 f 9 5 2 dt B (t 2 t )i E 1 ij 1]xj 0

t] f
n2 d G dt B (t 2 t , t ) and (3.15)j3 E 1 ij 1 f]r 0

t] f
nṙ9 f 9 5 2d G dt B (t 2 t , t )i3 E 1 ij 1 f]xj 0

t] f
2 nn2 d d G dt B (t 2 t , t ). (3.16)i3 j3 E 1 ij 1 f]r 0

The integrals in (3.15) and (3.16) can then be eval-
uated from t 5 0 to ` since the integrated functions
decrease rapidly with time beyond t L. We can write
(3.15) and (3.16) by including the definitions of the
turbulence coefficients (3.3), (3.9), and (3.11) as

] f ] f
nu9 f 9 5 2k 2 d k (t )G (3.17)i ij j3 ij f]x ]rj

] f ] f
n nn 2ṙ9 f 9 5 2d k (t )G 2 d d k (t )G . (3.18)i3 ij f i3 j3 ij f]x ]rj

For high-frequency turbulence, only the first term of the
expression for f 9 on the right-hand side of (3.17) andu9i
(3.18) remain since the nonconservative turbulence co-
efficients vanish. In the low-frequency approximation v
K vp (t L k t f ), the term vp/[i(v 2 ivp)] in (3.8a)
tends to unity and the supersaturation-velocity corre-
lation function reduces to (3.3), so 5 Bij, and 5n nB kij ij

kij. It follows also from (3.11) that 5 Bij, 5 kij;nn nnB kij ij

that is, nonconservative effects (dependence of the cor-
relation functions and turbulence coefficients on the su-
persaturation relaxation time) vanish in the low-fre-
quency regime. In the high-frequency approximation v
k vp (t f k t L), we find from (3.7)–(3.11) that 5nBij

0, 5 0, 5 0, 5 0. In liquid clouds, the valuen nn nnk B kij ij ij

of t f ; 1–10 s (Sedunov 1974), while v ; 0.22131022

s21 and t L ; 100–600 s (e.g., Curry et al. 1988), which
is closer to the low-frequency approximation; hence the
high-frequency kinetic equation used now in most cloud
models with explicit microphysics is oversimplified. In
crystalline clouds such as cirrus or ‘‘diamond dust,’’ for
which this technique can be also applied, the concen-
tration of particles can be by 1–3 orders of magnitude
less than in liquid stratus, and the values of t f can be
10–180 min (Khvorostyanov and Sassen 1998), while
t L ; 5–15 min. Thus the values of t f and t L can be
comparable or the situation can be closer to the high-
frequency regime, which should influence kn, knn. In
particular, if the maximum in the turbulent spectrum is
located near v ; , and t f ; t L, then (3.8b) and21t L

(3.11) show that kn, knn ; 0.5k; these values will de-
crease with increasing t f . Equations (3.8) and (3.11)
allow calculations of the nonconservative correlation
functions and turbulent coefficients either with various
theoretical models of the turbulent spectra or directly
with the observed spectra with appropriate choice of the
limits in the integrals.

4. General kinetic equations of stochastic
condensation

Substituting Eqs. (3.17) and (3.18) into (2.11) and
assuming that the droplet growth rate ṙ is determined
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from (2.1), we obtain the general kinetic equation of
stochastic condensation:

] f ] ] bS
1 [(u 2 y (r)d ) f ] 1 fi i3 1 2]t ]x ]r ri

2] ] f ] ] f ] f
n n5 k 1 d k G 1 d k Gij j3 ij i3 ij]x ]x ]x ]r ]x ]ri j i i

2] f
nn 21 d d k G 1 J , (4.1)i3 j3 ij 2]r

where b 5 D/(Gra). Recall that all the quantities on the
left-hand side ( f, ui, w, S) indicate averaged values (in
the sense discussed in section 2b), and all fluctuations
are included on the right-hand side of the equation.

If the scale of averaging (e.g., over a grid box of a
numerical model) is chosen to be sufficiently large so
that the characteristic time of averaging is much larger
than t f , then the mean supersaturation S can be equal
to the equilibrium value Sq related in (2.9) to the mean
vertical velocity w ef. Note, however, that when using
this representation for S , the value of w ef should not be
understood as simply the mean (synoptic scale) vertical
velocity.

This w ef should represent an ‘‘effective’’ subgrid-av-
eraged vertical velocity. Since the grid-box average still
contain turbulent fluctuations of the larger scales (see
section 2b), and correlations still exist between smaller-
scale fluctuations (primes) and mean values (overbars),
the effective subgrid average w ef can be estimated from
the relation w ef · f ; w9 f 9 . Multiplying this relation by
(4/3)prwr3 and integrating over radii, we obtain a re-
lation w ef ; w9 /qL, which allows estimation of w efq9L
from the measurements of qL and the covariance of the
fluctuations of the vertical velocities and qL, w9 .q9L

Substituting the equilibrium value Sq (2.9) into (4.1),
we obtain

] f ] ] c
1 [(u 2 y (r)d ) f ] 1 w fi i3 ef1 2]t ]x ]r ri

2] ] f ] ] f ] f
n n5 k 1 d k G 1 d k Gij j3 ij i3 ij]x ]x ]x ]r ]x ]ri j i i

2] f
nn 21 d d k G 1 J ,i3 j3 ij 2]r

DAt cr (g 2 g )f pa d sc 5 5 D . (4.1a)
r G r L 4pDNrw w

The representation (4.1a) may be suitable for models
with grid boxes a few tens or hundred meters or larger
and/or for processes where the mean supersaturation is
close to the quasi-steady value, while the more complete
form (4.1) is preferable for models with finer resolution
(e.g., on the smaller scales of LES models), or for pro-

cesses or cloud layers where supersaturation is not qua-
si-steady. Note that the minimum scales of averaging
and conditions when S ø Sq can be determined probably
only with the use of the LES models with fine resolution
after detailed analysis of the entire supersaturation field.

To represent the kinetic equation in a more compact
form, we adopt a methodology from quantum field the-
ory that uses left and right operators. We introduce the
left operator ĤL and the right operator ĤR, such that

ĤLkij 5 , 5 kijĤR, ĤR 5 .n n nnˆk k H k kij ij L ij ij

(4.2)

The left operator ĤL acts to the right and the right op-
erator ĤR acts to the left. The operators convert the
conservative tensor, kij, into a nonconservative tensor, ,nkij

and commute with operators ]/]xi and ]/]r. Further, ĤL,R

are integral operators that convert the correlation func-
tion (3.3) into (3.8), (3.11).

Incorporating these operators into the right-hand side
of (4.1) and (4.1a), we obtain

] f ] ] bS
1 [(u 2 y (r)d ) f ] 1 fi i3 1 2]t ]x ]r ri

] ] ] ]ˆ ˆ5 1 d GH k 1 d GH f 1 J (4.3a)i3 L ij j3 R1 2 1 2]x ]r ]x ]ri j

] f ] ] c
1 [(u 2 y (r)d ) f ] 1 wfi i3 1 2]t ]x ]r ri

] ] ] ]ˆ ˆ5 1 d GH k 1 d GH f 1 J . (4.3b)i3 L ij j3 R1 2 1 2]x ]r ]x ]ri j

Equation (4.3a) does not use the condition S ; Sq, while
(4.3b) assumes that S ; Sq. The assumption of equilib-
rium supersaturation might be suitable for mesoscale
models with appropriate parameterization of subgrid
w ef. The assumption of equilibrium supersaturation is
not suitable for LES models.

For low-frequency turbulence ĤL,R 5 1, whereas for
high-frequency turbulence ĤL,R 5 0. The high-frequency
regime, for which generally S ± Sq, is thus represented
by

] f ] ] bS
1 [(u 2 y (r)d ) f ] 1 fi i3 1 2]t ]x ]r ri

] ]
5 k f 1 J . (4.4)ij]x ]xi j

This type of equation is used in most cloud models with
explicit microphysics and describes the broadening of
the size spectra due to vertical and horizontal turbulent
mixing between the cloud parcels or regions with dif-
ferent properties. The low-frequency regime with the
assumption S ø Sq, is represented by
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] f ] ] c
1 [(u 2 yd ) f ] 1 wfi i3 1 2]t ]x ]r ri

] ] ] ]
5 1 d G k 1 d G f 1 J . (4.5)i3 ij j31 2 1 2]x ]r ]x ]ri j

The term (]/]r)[(c/r)wf ] describes ‘‘advection’’ in the
space of radii with effective speed (c/r)w, inversely pro-
portional to the radius; thus this advection is faster for
the smaller droplets and this term alone causes narrow-
ing of the size spectra. Analogous to the term 2kij] f /]xi

which represents the turbulent flux of the droplets in the
usual space, the term 2kijG] f /]r represents the turbu-
lent flux in the space of radii. So the term kr 5 Gkij is
the effective diffusion coefficient in the space of radii,
and the parameter G is the scaling factor between the
diffusion coefficients in xi and r spaces (G ; 1029 to
1028). Since the derivative 2] f /]r , 0 for the radii less
than the modal radius, r , rm, the flux of droplets is
directed along the gradient toward the smaller radii to
the left of the mode, at r , rm, and vice versa, 2] f /]r
. 0 at r . rm, and the flux is directed to the larger
radii. So this ‘‘diffusion’’ in the space of radii tends to
smooth the gradients and broaden the size spectrum.
The resulting shape of the size spectra is determined by
the relative speed of the advection and diffusion in the
space of radii and in the usual space. If the effects of
advection dominate (e.g., in the vigorous updrafts but
with weak turbulence), the spectra may narrow even in
the presence of turbulence, which alone might be in-
sufficient to produce the broad spectra.

When written using the left and right operators, the
differences are clear between the new equation and the
earlier kinetic equations of stochastic condensation re-
viewed in the introduction. These earlier kinetic equa-
tions can be written using our notations after some sim-
plifications as

] f ] ] c
1 [(u 2 y (r)d ) f ] 1 wfi i3 1 2]t ]x ]r ri

] ] 1 ] ] 1
5 1 d c k 1 d c f . (4.6)i3 ij j31 2 1 2]x ]r r ]x ]r ri j

The new (4.3a) does not assume the quasi-state super-
saturation as did earlier kinetic equations. Although
(4.3b) assumes this approximation (but with another in-
terpretation of w ef), it additionally accounts for the non-
conservative character of supersaturation and can thus
be used in both the low- and high-frequency regimes
including the cases when S ; Sq, while the previous
equations of the type (4.6) are applicable only in the
low-frequency regime (ĤL,R 5 1) with S 5 Sq. Addi-
tionally, by virtue of using the microscopic supersatu-
ration fluctuation (2.17) instead of (2.14), the operator
G(]/]r) appears now in (4.3a, b) and leads to the so-
lutions of gamma distribution type (see Part II) while

the operator c(]/]r)(1/r) appears in (4.6) and leads to
Gaussian solutions.

In most cloud models with explicit microphysics, the
high-frequency form of the kinetic equation (4.4) is used
and only a few attempts have been made to use the more
complete kinetic equations in the low-frequency ap-
proximation (e.g., Vasilyeva et al. 1984). Incorporation
into cloud models of the more complete kinetic equa-
tions of stochastic condensation in the forms (4.3), (4.5),
or (4.6) requires development of efficient economical
numerical algorithms for solutions of equations with
cross-derivatives by coordinates and radii and the small
characteristic time- and spatial scales that determine the
condensation process.

5. Summary

A new look at the kinetic equations of stochastic con-
densation has been motivated by the increasing use of
explicit microphysics in cloud models and the gap that
presently exists between the theory of stochastic con-
densation and the practical needs of modeling. On one
hand, stochastic theory produced several versions of the
kinetic equations, which are rather general but perhaps
still with some deficiencies as their solutions were of
the Gaussian form, while a gamma distribution proves
a better representation of observations of drop size spec-
tra. On the other hand, because of the complexity of
numerically solving the stochastic kinetic equations,
most cloud models use a version of the kinetic equations
that is incomplete. Toward addressing these issues, we
have derived a new kinetic equation for stochastic con-
densation that is more suitable for the numerical models
and with some simplifications has an analytical solutions
of the gamma distribution type.

Relative to the earlier versions of kinetic equation of
stochastic condensation, we introduce two new features:
1) consideration of supersaturation as a nonconservative
substance with differentiation between the macroscale
and microscale supersaturation, and 2) consideration of
the supersaturation fluctuations of various frequencies
over the entire turbulent spectrum without the assump-
tion of proportionality of supersaturation and vertical
velocity. We consider supersaturation as a stochastic
field of a nonconservative scalar and relate it to the
velocity field by means of spectral expansions in Fou-
rier–Stieltjes integrals. Supersaturation fluctuations S9
are related to the vertical velocity fluctuations w9 using
the spectral analog of the supersaturation equation; thus
S9 are not proportional to w9, breaking the link between
the S9 and w9 and the reversibility of the condensation
process typical of the some previous stochastic theories
and the parcel models.

Following Srivastava (1989), we distinguish between
supersaturation on the microscale and the macroscale.
The supersaturation on the macroscale (i.e., generated
by the mean vertical velocities and radiation) is typically
treated as resulting in the Maxwellian diffusion growth
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of droplets. We showed that supersaturation variations
on the microscale give rise to a droplet growth rate that
is independent of drop radius. This regime is valid only
for high-frequency fluctuations; the dependence of the
effective microscale supersaturation on radius weakens
with time as the supersaturation relaxes, and the growth
rate transforms gradually into the Maxwellian diffu-
sional law for low-frequency fluctuations.

The kinetic equation derived in this paper can be
recommended for use in numerical cloud models with
explicit microphysics. To apply this equation beyond
the high-frequency regime will require economical nu-
merical algorithms for parabolic differential equations
with cross derivatives by space and droplet radius. The
splitting method can be effectively used for these pur-
poses (Marchuk 1974; Marchuk et al. 1986), which al-
lows reduction during each time step of the multidi-
mensional problem to the sequence of the one-dimen-
sional problems (substeps), and condensation growth
can be calculated at the final substep as a zero-dimen-
sional problem by evaluating the integrals of supersat-
uration over the time step.

The exact and approximate asymptotic analytical so-
lutions to this kinetic equation of the gamma-distribu-
tion type are obtained and analyzed in Part II of this
paper. These analytical solutions can provide an appro-
priate basis for parameterization of the cloud processes
in the bulk cloud models and the large-scale models.
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APPENDIX

List of Symbols

A Coefficient in supersaturation equation,
(2.7)

Bij(t 2 t9) Velocity correlation function
nB (t 2 t9)ij Nonconservative correlation function of ve-

locity and supersaturation
nnB (t 2 t9)ij Nonconservative autocorrelation function of

supersaturation
D Water vapor diffusion coefficient
c Coefficient of regular condensation, (4.1a)
cp Specific heat capacity
Fij Spectral function of turbulence
f Droplet size distribution function
G Parameter defined in (3.13)
ĤL, ĤR Left and right operators in (4.2)
J Source term on the rhs of kinetic equation
kij, kz Components of turbulence coefficient

(t f )nkij Nonconservative turbulence coefficient of
velocity and supersaturation

(t f )nnkij Nonconservative turbulence coefficient of
supersaturation

L Latent heat of condensation
l9j Prandtl’s mixing length
l9r Mixing length in space of radii
m Mass of a droplet
N Droplet concentration
p Indices of gamma distribution
Qrad Radiative temperature change
q, qs Specific humidity, saturation specific hu-

midity
qL Liquid water content
Ry Gas constant of water vapor
r, r Droplet radius, mean radius
ref Effective optical radius
ṙ Droplet growth rate
ṙ9 Fluctuations in growth rate
S Supersaturation
S9 Supersaturation fluctuations
Sq Quasi-steady-state supersaturation, (2.9)
S̃q Relative quasi-steady-state supersaturation,

(2.9a)
t Time
T Temperature
U, ui Vector and components of wind speed
y(r) Terminal velocity
w Vertical velocity
wrad Radiative-effective velocity, (2.8)
wef Effective velocity
x, y, z Coordinates
gd, gs Dry and moist adiabatic lapse rates
D̂ Operator of turbulent diffusion
G Psychrometric correction in equation for

growth rate
d(x) Dirac’s delta function
dij Kronecker’s symbol
«c Condensation rate
ry , rw, ra Densities of vapor, water, and air
sr Relative spectral dispersions
u(x) Heaviside step function
t f Supersaturation relaxation (absorption) time
t L Lagrangian turbulent time
v Turbulent frequency
vp Frequency of supersaturation relaxation
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