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Abstract

The most general Lagrangian for a model with two U(1) gauge symme-
tries contains a renormalizable operator which mixes their gauge kinetic terms.
Such kinetic mixing can be generated at arbitrarily high scales but will not
be suppressed by large masses. In models whose supersymmetry (SUSY)-
breaking hidden sectors contain U(1) gauge factors, we show that such terms
will generically arise and communicate SUSY-breaking to the visible sector
through mixing with hypercharge. In the context of the usual supergravity-
or gauge-mediated communication scenarios with D-terms of order the funda-
mental scale of SUSY-breaking, this effect can destabilize the gauge hierarchy.
Even in models for which kinetic mixing is suppressed or the D-terms are ar-
ranged to be small, this effect is a potentially large correction to the soft scalar
masses and therefore introduces a new measurable low-energy parameter. We
calculate the size of kinetic mixing both in field theory and in string theory,
and argue that appreciable kinetic mixing is a generic feature of string models.
We conclude that the possibility of kinetic mixing effects cannot be ignored
in model-building and in phenomenological studies of the low-energy SUSY
spectra.
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1 Introduction

Modern models of supersymmetry (SUSY)-breaking in the minimal supersym-
metric Standard Model (MSSM) always involve the division of the full theory into
a so-called “hidden” sector and the usual “visible”, or MSSM, sector. This avoids
the problem that arises if SUSY is broken in a sector with tree-level couplings to
the MSSM, namely the existence of experimentally excluded sum rules on the MSSM
sparticle masses [1]. Given the reasonable expectation that SUSY should be broken
by non-trivial dynamics in the infrared, the hidden sector must contain a non-abelian
gauge group G, and in this case “hidden” implies that there exist no tree-level inter-
actions which couple states charged under G with those charged under the MSSM.
In particular, there must not exist fields in the effective Lagrangian (below the scale
of SUSY-breaking) which are charged under both gauge groups simultaneously.

Given that SUSY-breaking is generated by hidden-sector dynamics, the most per-
tinent issue for MSSM phenomenology is the nature of the communication mechanism
from the hidden to MSSM sector. The simplest known mechanism is supergravity
(SUGRA), which couples the hidden to the visible sector through operators which are
Planck-scale suppressed. One assumes that SUSY is broken at some high scale (typ-
ically Λ2 ∼ MZMPl), so that the SUSY-breaking mass scale which is communicated
to the visible sector by SUGRA is Λ2/MPl ∼ MZ [2].

Recently another class of models has received attention. These models communi-
cate SUSY-breaking through a cascade of gauge interactions, some of which are those
of the MSSM and some those of the hidden sector. Here the SUSY-breaking scale
communicated to the visible sector is suppressed by loop factors compared to the scale
of SUSY-breaking in the hidden sector, typically taken to be ∼ 100 TeV [3, 4, 5].

In either case, it is imperative for the consistency of the model that there not exist
operators which couple the larger hidden-sector SUSY-breaking scale to the visible
sector without the appropriate loop or MPl suppressions. Such an operator would
pull the weak scale up to the SUSY-breaking scale in the hidden sector, thereby
destabilizing the gauge hierarchy.

It has been known for some time that there can exist operators in the effective
Lagrangian which perform just such an unwanted task. In the cases usually studied,
such operators have the form of tadpoles. Since tadpoles of chiral superfields involve
only gauge singlets, it has been noted that the existence of such singlets can have
potentially disastrous consequences [6].

In this paper we will consider a new communication mechanism for SUSY-breaking
which has the potential to destabilize any model with a U(1) gauge factor in the
hidden sector whose D-terms are of order the fundamental SUSY-breaking scale
Λ2. This communication is provided by a renormalizable operator which is often
overlooked, namely the mixing of two separate U(1) gauge kinetic functions. Because
this operator is renormalizable, it may be generated by physics at scales far above
the SUSY-breaking scale itself, without any suppression by the large mass scale.
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Furthermore, we will argue that this operator is generated at one loop in generic field
theory models, and is expected to occur quite naturally in realistic string models.
It can therefore easily dominate over both SUGRA-mediated and gauge-mediated
(GM) soft scalar mass terms. Even in models for which this not the case, it is still
quite possible that this new contribution significantly corrects the usual soft scalar
masses generated by SUGRA or GM without destroying the gauge hierarchy.

This paper is organized as follows. In Sect. 2, we discuss the consequences of
kinetic mixing for supersymmetric theories. In Sect. 3, we then discuss the sources
of kinetic mixing, show how to calculate kinetic mixing effects in string theory, and
estimate typical sizes that may be expected within the context of both field theory
and string theory. Finally, in Sect. 4, we present our conclusions.

2 Supersymmetric Kinetic Mixing

It was realized many years ago [7] that in a theory with two U(1) gauge fac-
tors, there can appear in the Lagrangian a term which is consistent with all gauge
symmetries and which mixes the two U(1)’s. In the basis in which the interaction
terms have the canonical form, the pure gauge part of the Lagrangian for an arbitrary
U(1)a × U(1)b theory can be written

Lgauge = − 1

4
F µν

(a)F(a)µν −
1

4
F µν

(b) F(b)µν +
χ

2
F µν

(a)F(b)µν . (2.1)

(Throughout this analysis we will work to leading order in χ for simplicity.) In a
supersymmetric theory, such a Lagrangian generalizes to∗

Lgauge =
1

32

∫

d2θ {WaWa + WbWb − 2χWaWb} (2.2)

where Wa and Wb are the chiral gauge field strength superfields for the two gauge

symmetries: W = D
2
DV for the vector superfield V . In principle, both U(1)’s

could lie in the hidden sector, or both in the visible, but we will primarily interest
ourselves with the case in which U(1)a is in the visible sector while U(1)b is in the
SUSY-breaking hidden sector. Hypercharge is an example of such a U(1)a.

To bring the pure gauge portion of the Lagrangian to canonical form, one can
shift the visible-sector gauge field:

V µ
a → V ′µ

a = V µ
a − χV µ

b (2.3)

which implies that Wa → W ′
a = Wa−χWb. This particular choice of basis is dictated

by the assumption that U(1)b will break once some hidden-sector field with non-zero

∗ After completing this work we became aware of Ref. [8] in which the existence of the operator
WaWb was briefly mentioned.
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charge receives a vacuum expectation value. In this basis, the gauge Lagrangian is
diagonal:

Lgauge =
1

32

∫

d2θ {W ′
aW

′
a + WbWb} . (2.4)

However, the same shift must also be performed in the interaction piece:

Lint =
∫

d4θ
{

ϕ†
ie

2gaVaϕi + Φ†
ie

2gbVbΦi

}

=
∫

d4θ
{

ϕ†
ie

2gaV ′

a+2gaχVbϕi + Φ†
ie

2gbVbΦi

}

(2.5)

where the final term is in the basis in which the kinetic terms are diagonal. Here we
denote by ϕi those chiral superfields charged under only U(1)a (the visible sector),
and by Φi those charged under only U(1)b (the hidden sector).

Eq. (2.5) implies a number of new interactions between the visible and hidden
sectors. First, the visible-sector states obtain hidden charges proportional to their
visible-sector charges and couplings:

Dµ
b = ∂µ + i(gbQb + gaχQa)V

µ
b . (2.6)

Second, the visible-sector fields and their superpartners now couple to the gauginos
of the hidden sector:

L = i
√

2 gaQaχϕ†
i ϕ̃iλb + h.c. (2.7)

Third and finally, upon solving for the D-terms via their equations of motion, one
finds:

D′
a = −ga

∑

i

Qai|ϕi|2

Db = −gb

∑

i

Qbi|Φi|2 − χ ga

∑

i

Qai|ϕi|2 . (2.8)

The scalar potential is then given by V = 1
2
D′

aD
′
a + 1

2
DbDb. Also note that in the

presence of a Fayet-Iliopoulos term ξ
∫

d4θ V for U(1)b, we have Db → Db + ξ.
Several points are immediately apparent. First, SUSY-breaking has been commu-

nicated to the visible sector via Db, and there arise new kinetic mixing contributions
to the soft masses of visible-sector scalars:

(m2
i )KM = ga χ Qai 〈Db〉 . (2.9)

These contributions are in addition to any other induced soft masses, e.g.:

m2
i = (m2

i )GM + (m2
i )SUGRA + (m2

i )KM + gaQai 〈Da〉 , (2.10)

where the last term is the usual visible-sector D-term. In the MSSM, we have

gaQai 〈Da〉 = M2
Z cos 2β

(

Qi cos2 θW − Yi

)

(2.11)

4



where Q is ordinary electric charge, Y is the hypercharge, and tanβ = 〈Hu〉 / 〈Hd〉.
A reorganization of Eq. (2.10) then leads to

(m2
i )KM + gaQai 〈Da〉 = gaQai (〈Da〉 + χ 〈Db〉)

= M2
Z cos 2β

[

Qi cos2 θW − Yi

(

1 +
η

cos 2β

)]

(2.12)

where the final equality holds in the MSSM, and where we have defined

η ≡ χ 〈Db〉
M2

Z

. (2.13)

Thus η is the parameter which signals the importance of kinetic mixing effects.
There are three distinct cases to consider, depending on whether in Eq. (2.12)

we have η ≫ 1, η ∼ 1, or η ≪ 1. If η ≫ 1, then kinetic mixing is the dominant
messenger of SUSY-breaking, leading to two related disasters. First, the hierarchy
is destabilized, with the scalar masses being pulled far above MZ to the hidden-
sector SUSY-breaking scale. Second, since U(1)a anomaly cancellation requires that
both signs of U(1)a charge exist, at least one state must receive negative mass-
squared, thereby breaking the symmetries under which it transforms. For the case
of hypercharge, this is obvious, since the states of the MSSM carry both signs of
Y . Thus kinetic mixing with Y cannot be the primary means for communicating
SUSY-breaking to the visible world.

If η ∼ 1, then kinetic mixing provides a measurable correction to the soft scalar
masses. It is noteworthy that these corrections are flavor-independent and do not
directly produce additional flavor-changing neutral current (FCNC) effects. Extract-
ing such contributions from the usual SUGRA and/or GM soft masses is likely to be
quite involved. For example, there are no simple soft mass sum rules which directly
measure η without reference to the original (η = 0) soft masses. Typical relations
are of the form:

m2
ẽL

+ m2
ν̃ = 2(m2

L̃
)η=0 − 1

2
M2

Z(cos 2β + η) (2.14)

where (m2
L̃
)η=0 needs to be given by a theory which in turn is presumably calibrated

by other observables.
The third and final case, with η ≪ 1, is trivial. Here the effects of kinetic mixing

are small either because χ itself is very small, or because the hidden-sector Db-term
is much less than the intrinsic SUSY-breaking scale itself. An interesting example
with 〈Db〉 ∼ MZ is provided by models in which SUSY-breaking is communicated to
the visible world by a U(1)X whose anomalies are cancelled via the Green-Schwarz
mechanism [9]. In such models, kinetic mixing in the D-terms provides only a small
correction to the masses of the MSSM particles unless χ ∼ O(1). (We will argue in
the next section that such large values of χ are indeed possible.) Also note that one
must still verify that loops of U(1)X gauginos coupled to the MSSM particles do not
induce large masses proportional to the F -components in the hidden sector.
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How small must χ be in the generic case in order to avoid either destabilizing
a model, or at least providing large corrections to it (i.e., to avoid η >∼ 1)? As an
example, let us consider two standard cases in which we again identify U(1)a with the
U(1) of hypercharge: that of SUGRA-mediated SUSY-breaking in which we assume
〈Db〉 ∼ Λ2 ∼ MZMPl, and that of gauge-mediated (GM) SUSY-breaking in which we
assume 〈Db〉 ∼ (αY /4π)−2M2

Z ∼ (100 TeV)2. In these two cases, stability of the weak
scale puts upper bounds on χ:

|χ| <∼
{

(MZ/MPl)/gY ∼ 10−16 (SUGRA)
(αY /4π)2/gY ∼ 10−6 (GM) .

(2.15)

Since χ is dimensionless and no new symmetries necessarily arise as χ → 0, such
small values of χ are unnatural from the point of view of ’t Hooft and require either
some conspiracy or some new symmetry of the theory. This second possibility will
be further explored in the next section.

3 Kinetic Mixing in Field Theory and String Theory

Having argued that non-zero χ can lead to large corrections to the soft scalar
masses, we now consider the typical magnitude of χ which one would expect to be
generated both in field theory and in string theory.

3.1 Expected magnitude of kinetic mixing in field theory

Let us first consider the generation of χ in an effective field theory context. Kinetic
mixing can be generated at one loop when there exist states which are simultaneously
charged under both U(1) gauge factors. Consider a chiral superfield of mass m
with charges Qa and Qb under the two U(1) gauge factors. Such a chiral superfield
contributes to the two-point polarization diagram of Fig. 1:

Πµν
ab (µ) =

gagb

16π2
QaQb log

(

m2

µ2

)

[

kµkν − k2gµν
]

. (3.1)

In the effective Lagrangian, this generates the operator 1
2
F (a)

µν F (b)µν with coefficient [7]

χ(µ) = − gagb

16π2
QaQb log

(

m2

µ2

)

. (3.2)

In general, at scales µ far from m, it is necessary to resum the large logarithms using
the renormalization group equations (RGE’s):

dga

dt
=

1

16π2
g3

abaa

dgb

dt
=

1

16π2
gb

(

g2
b bbb − 2gagbχbab

)

dχ

dt
=

1

16π2

(

g2
aχbaa + g2

bχbbb − 2gagbbab

)

(3.3)
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a
µ

V a
µ

VbV
ν

b
νV

(a) (b)

Figure 1: (a) The one-loop diagram which contributes to kinetic mixing in field theory, and
(b) its generalization to string theory.

where bab ≡ QaQb for the single superfield. For two or more superfields, we take bab ≡
∑

i Q
(i)
a Q

(i)
b . Note that these RGE’s hold only in the limit χ ≪ 1; expressions valid

for all χ can be found in Refs. [10, 11]. As shown in Ref. [10], large values of χ (i.e.,
0.1 <∼ χ <∼ 1) can quite easily be generated by such renormalization group running in
realistic models, thereby changing the low-energy phenomenology substantially.

In hidden-sector models, QaQb is by definition zero for the states below the SUSY-
breaking scale. Thus, at one loop, non-zero values of χ are not generated in the
effective field theory below this scale. Nonetheless it is entirely possible that non-
zero χ can be generated as a threshold effect in the full theory at scales far above the
SUSY-breaking scale, a region about which one has in principle very little knowledge.
In the low-energy theory, such a value would not be suppressed by powers of the high
mass scale.

In order to estimate the typical size of such an effect, let us consider a toy model
with two chiral superfields of charges (Qa, Qb) and (Qa,−Qb) and masses m and m′

respectively. Their joint contribution to χ has the form:

χ = − gagb

16π2
QaQb log

(

m2

m′2

)

. (3.4)

At scales far below m and m′, this constitutes a threshold correction. For
m − m′ ∼ m, charges of O(1), and gauge couplings in the range 1/60 ≃
αY (MZ) <∼ {αa, αb} <∼ αY (MGUT) ≃ 1/25, this leads to a contribution to χ of typical
magnitude

10−2 <∼ χ <∼ 10−3 . (3.5)

This is only mildly dependent on the mass scale of the states through the running of
the couplings. Given the bounds in Eq. (2.15), this clearly constitutes a large effect.

One may wonder if it is possible to prevent the appearance of kinetic mixing by
requiring some property of the spectrum. Indeed there are two possibilities.

Clearly, if one or both of the U(1) gauge factors sits within an unbroken non-
abelian gauge symmetry, then kinetic mixing is not possible. However, one could
suppose that the spectrum of matter states fills out unsplit non-abelian multiplets
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despite having broken off a U(1) gauge factor from the full non-abelian gauge sym-
metry. While such a spectrum would indeed provide for an exact cancellation of
kinetic mixing because of the tracelessness of the U(1) generators on the non-abelian
multiplets, the presumed mass degeneracy of the states within such multiplets is not
stable against radiative corrections and therefore non-zero kinetic mixing is generated
after all. We will see in the next section that this is exactly the situation in certain
string models.

Another possibility is to forbid non-zero χ by imposing a discrete symmetry. Such
a symmetry would be a cousin of charge conjugation which acts non-trivially on only
the hidden U(1). In particular, consider embedding U(1)b at large scales into a non-
abelian group G in which there exists a G-transformation Γ that inverts U(1)b. Let us
suppose that when G breaks, it leaves, in addition to U(1)b, Γ as an unbroken discrete
gauge symmetry. In the low-energy theory, Γ acts on U(1)b (but not on the theory as
a whole) as a charge conjugation. In this case the states charged under U(1)b appear
in degenerate conjugate pairs, and no χ can be induced. Equivalently, the kinetic
mixing operator itself is forbidden by the symmetry. It is worth noting that the types
of symmetries which can forbid the existence of a Fayet-Iliopoulos term are exactly
of this form. It is also very interesting that such a symmetry necessarily implies
the existence of stable “Alice strings” with their delocalized charged excitations [12].
Examples of such models include the SU(6)×U(1) SUSY-breaking model in Ref. [5]
and the visible-sector left-right model of Ref. [13].

Apart from this one exception, we will now argue that the “ultimate” high-scale
theory, namely string theory, naturally leads to a generation of χ 6= 0.

3.2 Kinetic mixing in string theory: General formalism

Since realistic string models often have gauge groups containing many U(1) gauge
factors as well as infinite towers of massive (Planck-scale) string states, such theories
serve as an ideal laboratory for estimating the magnitude of kinetic mixing effects.
First, we shall show how kinetic mixing effects can be calculated in string theory.
Then, we shall discuss the typical sizes that string theory predicts for such effects.

We begin, however, with few preliminary remarks concerning generic properties
of string spectra. Unlike the case in field theory, the tree-level string spectrum con-
sists of states whose masses are quantized in units of the Planck mass. Only the
states of lowest energy (the massless states) are observable. Furthermore, in string
theory, the freedom to alter or redefine the charges of states is extremely limited,
for one must satisfy a number of worldsheet consistency constraints stemming from
worldsheet conformal invariance, modular invariance, and worldsheet supersymme-
try. One therefore seeks to construct a particular string theory (or “string model”)
which satisfies all of these constraints and which is also “realistic” — i.e., whose
massless states are those of the MSSM or its extensions coupled to N = 1 supergrav-
ity. Indeed, once a particular string model is constructed that satisfies all of these
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constraints, its entire spectrum of massless and massive string states is completely
fixed, and their quantum numbers cannot be altered. Thus string theories provide
a very rigid structure in which certain phenomenological properties such as kinetic
mixing may be meaningfully tested.

With this in mind, our goal is to repeat the one-loop field-theoretic calculation
discussed above, only now in a string-theoretic context. Certain parts of this calcu-
lation are straightforward. As illustrated in Fig. 1, the string generalization of the
field-theoretic vacuum polarization diagram is a torus amplitude with two vertex op-
erators inserted on the worldsheet (corresponding to the gauge bosons of the U(1)a

and U(1)b gauge factors). All of the string states (both massless and massive) propa-
gate in the torus and thereby contribute to this one-loop diagram. However, in order
to evaluate this diagram in a fully consistent way in string theory, we must perform
this calculation in a non-trivial background which satisfies the string equations of
motion and which, in particular, takes into account not only the contributions from
the gauge interactions but also their gravitational back-reaction in the presence of a
suitable regulator [14, 15]. Indeed, a priori, both gauge and gravitational terms con-
tribute in generating a non-zero value of χ in the string-derived low-energy effective
Lagrangian L in Eq. (2.1).

Such string calculations have previously been performed in the case that the two
inserted gauge bosons come from the same U(1)a gauge factor; in such cases the
result describes the coefficient of the corresponding F (a)

µν F (a)µν factor in L, and is
relevant for the study of the so-called “heavy string threshold contributions” to the
corresponding gauge coupling ga [14, 15, 16]. Recall that in such cases, the effect
of this one-loop torus amplitude is to correct the gauge coupling ga(µ) at a scale µ
according to

1

g2
a(µ)

= ka

1

g2
X

+
ba

16π2
ln

M2
X

µ2
+

1

16π2
∆a . (3.6)

Here MX and gX are the unification scale and coupling (here to be identified with
the string scale and coupling), while ka is the U(1)a normalization factor. This
normalization factor is analogous to the string Kač-Moody level which appears for
non-abelian gauge groups [17], and is defined analogously as the coefficient of the
double-pole term in the worldsheet operator-product expansion (OPE) of the U(1)a

current Ja with itself:

Ja(z) Ja(w) =
ka/2

(z − w)2
+ regular . (3.7)

For example, in the case of hypercharge U(1)Y , the MSSM predicts kY = 5/3. Finally,
the threshold correction ∆a in Eq. (3.6) is defined as

∆a ≡ ka Y +
∫

F

d2τ

Im τ

[

Ba(τ) − ba

]

. (3.8)
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Here Y is a so-called “universal term” which receives contributions from both grav-
itational back-reaction and universal gauge oscillators [18, 15]; the integral over the
complex parameter τ in the modular region F represents a summation over con-
formally inequivalent tori; ba is the one-loop beta-function coefficient (calculated by
considering only the massless string spectrum); and Ba(τ) represents a supertrace
over all string states with arbitrary left- and right-moving spacetime masses ML and
MR:

Ba(τ) ≡ Str
{(

1

12
− QH

2
)

Qa
2 qα′M2

R qα′M2

L

}

, q ≡ e2πiτ . (3.9)

Here Qa is the gauge charge operator for the gauge group factor U(1)a, α′ is the Regge
slope, and QH is the spacetime helicity operator. In this context, recall that in field
theory, the one-loop β-function coefficient can be written as ba = Str [(1/12− h2)Q2

a]
where h is the helicity operator (with h = 0 for scalars, ±1/2 for fermions, and
±1 for vectors). Likewise, in Eq. (3.9), QH is the analogous helicity operator for
states of arbitrarily high spin. Since we are working in the context of string theories
with spacetime supersymmetry, we can omit the factor of 1/12 in Eq. (3.9) since its
contribution is proportional to Str1 = 0.

Given these results, it is relatively straightforward to generalize the calculation to
the case when the two vertex-operator insertions correspond to different U(1) gauge
factors. Taking χ = 0 at the unification scale at tree level, one then finds that the
string spectrum naturally generates a non-vanishing value for χ at one loop given by

{

χ

gagb

}

(µ) =
bab

16π2
ln

M2
X

µ2
+

1

16π2
∆ab . (3.10)

Note that according to the RGE’s in Eq. (3.3), it is the combination χ/gagb which
runs analogously to the usual gauge couplings 1/g2

a. Thus we see that Eq. (3.10) is
indeed the string analogue of the field-theoretic expression given in Eq. (3.2). The
first term in Eq. (3.10) represents the contribution from the massless string states,
with bab serving as their “mixed” beta-function coefficient

bab = − Strmassless QH
2
Qa Qb , (3.11)

while the second term in Eq. (3.10) is the kinetic mixing threshold correction due to
the infinite tower of massive string states. This threshold correction is defined as

∆ab = kabY +
∫

F

d2τ

Im τ

[

Bab(τ) − bab

]

. (3.12)

Here Y is the same universal term that appears in the above gauge coupling calcu-
lation, and kab is defined analogously to Eq. (3.7) via the OPE between the U(1)
currents Ja and Jb:

Ja(z) Jb(w) =
kab/2

(z − w)2
+ regular . (3.13)

10



Note that kaa = ka. Likewise, Bab(τ) is the kinetic mixing supertrace

Bab(τ) ≡ − Str QH
2
Qa Qb qα′M2

R qα′M2

L . (3.14)

Thus, since ∆ab contributes as a threshold correction due to purely massive string
states, it is this object which is our primary focus.

As indicated in Eq. (3.12), ∆ab generally contains two separate contributions.
However, while the second term in Eq. (3.12) is highly model-dependent, the first
term kabY is universal and thus can be evaluated in a general setting. Indeed, even
though Y generally receives contributions from both gravitational back-reaction and
gauge oscillators, calculating such contributions is unnecessary in the present case
because taking χ = 0 at tree level is tantamount to requiring that U(1)a and U(1)b

be orthogonal gauge gauge factors in our string model. This in turn implies that
OPE’s between their currents should vanish, or that kab = 0. This can also be seen
by writing our two U(1) gauge factors as linear combinations of the 22 elementary
U(1) worldsheet currents Ji (i = 1, ..., 22) of the heterotic string,

U(1)a =
22
∑

i=1

a
(a)
i Ji , U(1)b =

22
∑

i=1

a
(b)
i Ji , (3.15)

for it is then straightforward to show that the one-loop universal contributions are
all proportional to

kab ≡ 2
∑

i

a
(a)
i a

(b)
i . (3.16)

Indeed, since it is known [17] that ka = 2
∑

i[a
(a)
i ]2, we see that once again we have

the relation kaa = ka. However, orthogonality of the U(1)a and U(1)b gauge factors
explicitly means that ~a(a) · ~a(b) = 0. This again implies that kab = 0.

Thus, we conclude that only the second term in Eq. (3.12) can contribute to
one-loop kinetic mixing effects in string theory.

3.3 Kinetic mixing in string theory: Expected magnitude

Given these results, we now wish to determine the expected size of the kinetic
mixing parameter χ in string theory. In other words, given two orthogonal U(1) gauge
factors in a given string model, how large a mixing contribution ∆ab will typically be
generated by summing over the contributions of all of the massive string states?

In order to estimate the size of such effects, one can calculate ∆ab for different
orthogonal U(1) gauge factors in a variety of four-dimensional string models. In
general, for string models with moduli of order one, it turns out that one typically
obtains quite sizable results, with ∆ab lying in the range

10−1 <∼ |∆ab| <∼ 10+1 ; (3.17)

moreover, in generic models with larger moduli, |∆ab| increases dramatically. We
stress that the results in Eq. (3.17) indeed record the contributions from only the
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massive string states, for any undesired kinetic mixings due to massless string states
are explicitly removed from the integrand of Eq. (3.12) through the subtraction of
the mixed beta-function coefficient bab. Thus, a priori , Eq. (3.17) sets the scale for
the expected contributions to kinetic mixing from the massive states in string theory.
This in turn implies that at the weak scale, we have

3gb × 10−4 <∼ χ(MZ) <∼ 3gb × 10−2 . (3.18)

Here we have interpreted U(1)a as hypercharge, and have used Eq. (3.10) to translate
from ∆ab to χ. As can be seen from comparison with Eq. (2.15), this is a very large
effect which has the potential to destabilize the supersymmetric gauge hierarchy.

However, one possible objection to this result is the fact that it is not sufficient
to demand mere orthogonality of the different U(1) gauge factors. Indeed, we are
interested in the case when these U(1) gauge factors are also presumably hidden from
each other. Of course, if two U(1) gauge factors are truly hidden from each other in
this way, then we have QaQb = 0 for each state in the string spectrum. This in turn
implies that all of the above terms vanish, and that no kinetic mixing is generated
at one loop. However, it turns out that imposing this condition is far too severe
in the context of string theory — we should really only require that the massless

(i.e., observable) string states satisfy QaQb = 0. Indeed, given a particular choice
of charge assignments for the massless states, the string self-consistency constraints
do not generally permit all massive string states to satisfy QaQb = 0. In such cases
we would then have bab = 0, but χ would still receive contributions from ∆ab as in
Eqs. (3.10) and (3.12).

Unfortunately, no realistic string models have been constructed for which QaQb =
0 for all states in the massless spectrum. Indeed, in string theory, it has become
traditional to refer to a gauge group as “hidden” merely if it does not couple to those
states in the massless spectrum which correspond to the Standard Model particles
— such hidden gauge symmetries can nevertheless couple to the extra states beyond
the Standard Model which also appear in the massless spectrum and which have
Standard Model quantum numbers. We will therefore refer to such groups as being
only “semi-hidden”. Thus, we see that in general, semi-hidden U(1) gauge group
factors can still give rise to mixed coefficients bab 6= 0. As indicated in the first
term of Eq. (3.10), this may serve as an additional string-theoretic source for kinetic
mixing. To be conservative, however, in what follows we shall focus only on the
remaining terms, namely the corrections ∆ab due to the massive string states.

In order to calculate ∆ab for the case when U(1)a and U(1)b are semi-hidden rela-
tive to each other, we have evaluated Eq. (3.12) within the context of various special
semi-realistic string models which have been constructed in the literature [19, 20, 21].
All of these string models have N = 1 supersymmetry, three chiral generations, and
phenomenologically interesting gauge groups such as SU(3) × SU(2) × U(1)Y and
SO(6) × SO(4). Moreover, they also give rise to semi-hidden gauge symmetries in-
cluding extra U(1) gauge factors. We thus seek to calculate the mixing that takes
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place in these models between the hypercharge U(1)Y and one of these extra semi-
hidden U(1) gauge factors. Indeed, such a calculation is completely analogous to the
gauge-coupling threshold correction calculations that were performed for these string
models in Ref. [22].

The result we obtain, however, is quite surprising: in each of those realistic string
models, it turns out that ∆ab in Eq. (3.12) vanishes exactly! This occurs in spite of
the fact that these models contain states (even massless states) which simultaneously
carry both hypercharge and semi-hidden U(1) charge. Indeed, even though such
states exist in these models, their contributions nevertheless cancel level-by-level
across the entire massless and massive string spectra.

It is easy to see why such cancellations arise in these particular models. In the
SO(6)×SO(4) string model [19], for example, this cancellation arises due to the field-
theoretic GUT mechanism discussed previously: the hypercharge U(1) generator is
embedded within the larger non-abelian group structure SO(6)×SO(4), and therefore
the trace over all multiplets cancels exactly (or equivalently, the kinetic mixing term
in the effective Lagrangian would not be invariant under the full non-abelian SO(6)×
SO(4) gauge symmetry, and thus cannot exist). A similar phenomenon arises even in
those string models [20, 21] whose low-energy gauge groups are already broken down
to SU(3) × SU(2) × U(1)Y at the Planck scale.

However, this cancellation is ultimately unstable against a variety of effects be-
yond tree level because the exact cancellation of ∆ab relies on the exact tree-level
degeneracy of the states at each mass level. Effects that can destroy this exact de-
generacy include GUT symmetry breaking, Dine-Seiberg-Witten shifts of the string
ground state (which are generally necessary in order to break anomalous U(1) gauge
symmetries and restore spacetime supersymmetry [23]), and low-energy supersym-
metry breaking. In fact, even if these effects do not destroy the degeneracy, renor-
malization group flow down to low energies inevitably will. For example, in the string
model of Ref. [20], the contribution to kinetic mixing from extra massless electroweak
doublet states beyond the MSSM is cancelled by those from extra Standard Model
singlets and color triplets. While it is noteworthy that such cancellations arise in the
first place, they are clearly unstable against radiative corrections. Thus, since such
cancellations are not protected by any symmetries, they must be viewed as accidental
artifacts of the tree-level spectrum.

Given this situation, we would like to calculate the amount of kinetic mixing that
will be induced in these models by all of these effects. A priori, we would need to cal-
culate the exact spectrum of massless and massive string states after all of the above
effects have been included. We would then use this complete spectrum as an input
into Eq. (3.12), thereby iteratively calculating the true value of χ. Unfortunately,
such a calculation is beyond present capabilities.

However, one can estimate the mass splittings generated in the string spectrum
by each of the above effects. To be conservative, we will estimate the contributions
from the splittings of only the massive states; it is clear that splittings of the massless
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states would yield a very large effect. Our procedure will be as follows. For simplic-
ity, we assume that the contributions of the states in the tree-level spectrum cancel
pairwise in ∆ab. We can then use the results in Eq. (3.4), together with an esti-
mate of the splitting ∆m between m and m′, to determine the resulting contribution
to χ from each pair. Each of the effects which splits the pairs has a characteristic
scale associated with it. Mass splittings due to GUT symmetry breaking are typi-
cally ∆m ∼ 1016 GeV. In the case of vacuum shifting, while it is true that at least
one scalar field obtains a vacuum expectation value of approximately 1017 GeV, the
effects on the remaining states are typically suppressed due to discrete symmetries
which forbid low-dimension terms in the superpotential. Indeed, a typical mass scale
for such splittings has been argued [24] to be as low as 1011 GeV <∼ ∆m <∼ 1014 GeV.
Next, in the case of splittings induced by SUSY-breaking, the appropriate scale is
the fundamental scale of SUSY-breaking in the hidden sector, since by definition the
states are charged under the U(1)b which couples directly to the SUSY-breaking sec-
tor. In the supergravity case we have ∆m ∼ 1011 GeV, while in the gauge-mediated
case we have ∆m ∼ 104 GeV. Finally, in all three of the above cases, RGE flows gen-
erally produce additional splittings which will be of the same order as their respective
splitting scales ∆m.

The above ∆m splittings then produce the following estimates for χ:

|χ|
gbC

∼



















10−4 (GUT)
10−6 − 10−9 (vacuum shift)

10−9 (SUGRA)
10−16 (GM) .

(3.19)

In the above estimates, gb is the hidden-sector U(1)b coupling, while the quantity C
parametrizes the effect of the summation over all newly split pairs of states through-
out the string spectrum. As such, we estimate the combined effect of such a summa-
tion to be approximately

101 <∼ C <∼ 102 . (3.20)

We emphasize again that in this estimate, we are being conservative by ignoring the
effects of the splittings of massless string states which can also be sizable. We also
point out that the effects in Eq. (3.19) are not exclusive of each other; a given string
model will typically be subject to a simultaneous combination of these effects.

Thus, our conclusions regarding the size of kinetic mixing in string theory are as
follows. In general, the expected scale for kinetic mixing effects is given by Eq. (3.18).
However, in certain semi-realistic string models, there is an accidental cancellation
of kinetic mixing effects in the tree-level spectrum. In such cases, non-zero kinetic
mixing will then be generated by the effects considered above, and the resulting mag-
nitudes for kinetic mixing from each effect are given in Eq. (3.19). We see from these
results that there exists considerable variation in the possible amounts of kinetic mix-
ing. Nevertheless, as can be seen by comparing these results with those of Eq. (2.15),
they are all in the interesting range for low-energy phenomenology.
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4 Conclusions

We have demonstrated the existence of an important new mechanism for the
communication of supersymmetry breaking from a hidden sector to the visible sector.
This mechanism applies when there exists in the hidden sector a U(1) gauge symmetry
that is not isolated from SUSY-breaking, and it relies on a D-term interaction which
is induced by the supersymmetric generalization of kinetic mixing.

The new contributions to the soft squared masses for scalars are proportional to
hypercharge Y . In cases where the D-term of the hidden U(1) is larger than the weak
scale (in particular, of order the scale of fundamental SUSY-breaking), this leads to
phenomenologically disastrous consequences unless the mixing parameter χ is very
small. In particular, one must have |χ| <∼ 10−6 in the case of gauge-mediated models
with D-terms ∼ (100 TeV)2, and |χ| <∼ 10−16 in the case of supergravity-mediated
models with D-terms ∼ (1010 GeV)2.

We have argued that since χ is a renormalizable interaction, its value is sensitive
to physics at all mass scales. In particular, substantial values of χ can be generated
at arbitrarily high mass scales in both field theory and string theory contexts. We
have shown how to calculate the amount of kinetic mixing generated in string theory,
and found that estimates of the magnitude of χ in both field theory and string theory
often lead to values in excess of the above limits.

Thus we conclude that the kinetic mixing parameter χ should be considered as
a very natural additional measurable parameter describing the soft SUSY-breaking
spectrum.
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