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Abstract
Background/Aims: We previously documented the presence of Telocytes (TCs) in liver and 
further indicated the potential roles of TCs in liver regeneration after hepatectomy. Pregnancy-
induced liver growth, other than liver regeneration after hepatectomy, is a physiological 
hepatic adaption to meet the enhanced nutritional and metabolic demands. However, the 
possible roles of TCs in pregnancy-induced liver growth remain unknown. Methods: Pregnant 
mice were sacrificed at different time points (pregnancy day 0.5, 4.5, 8.5, 10.5, 12.5, 14.5, 
16.5, and 18.5). The liver weight was used to evaluate the liver growth during pregnancy. 
Hepatocytes proliferation was determined by albumin and 5-ethynyl-2'- deoxyuridine (EdU) 
double immunostaining while TCs were counted by double immunolabeling for CD34/
PDGFR-α. Results: Pregnancy-induced liver growth was preceded by increased proliferation 
of hepatocytes at pregnancy day 4.5, 8.5, 14.5 and 16.5. Furthermore, the number of TCs 
in liver detected by double immunolabeling for CD34/PDGFR-α was significantly increased 
at pregnancy day 4.5 and day 14.5, that was coincident with the occurrence of two peaks 
of hepatic cell proliferation during pregnancy. Conclusion: Our results suggest a possible 
relationship between TCs and hepatocyte proliferation in pregnancy-induced liver growth. 
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Introduction

Liver has an extraordinary ability to regenerate after injury and surgical resection, 
principally mediated by the proliferation of remaining hepatocytes and the differentiation 
of liver stem cells [1–3]. However, liver regenerative capacity can be grievously altered 
upon severe and chronic liver injury [4–6], and is negatively affected by aging [7–9]. Other 
than liver regeneration after injury and resection, pregnancy-induced liver growth is a 
physiological hepatic adaption to meet the enhanced nutritional and metabolic demands 
for developing placenta and fetus [10–13]. It has previously been shown that pregnancy is 
able to increase liver regenerative capacity in aged liver, suggesting its potential therapeutic 
value in liver failure [14]. However, the mechanisms underlying maternal hepatic adaptions 
to pregnancy are poorly elucidated.

Telocytes (TCs), a novel type of interstitial cell population firstly identified by Popescu’s 
group, are characterized by a small cell body and extremely long prolongations named 
telopodes (Tps) with alternating thin segments (podomers) and dilated segments (podoms) 
[15] (see http://www.telocytes.com). FIB-SEM tomography, the most advanced and powerful 
technique to visualize cells confirmed the existence of TCs [16]. Since their identification 
in 2010, TCs have been found in various mammalian organs and tissues and contribute to 
form a complex interstitial network for the maintenance of tissue homeostasis, such as heart 
[17-21], lung [22-24], placenta [25], pancreas [26, 27], skin [28, 29], skeletal muscle [30-
32], uterus [33-38], urinary system [39-41], and others [42-55]. Furthermore, increasing 
evidence has demonstrated the presence of TCs within stem cell niches [23, 29, 31, 49, 
56, 57] and indicated the potential involvement of TCs in tissue regeneration/repair after 
injury [32, 38, 58-64]. Our group has recently identified the presence of TCs in liver [54], 
and further demonstrated a close relationship between TCs and the cells (hepatocytes/stem 
cells) essentially involved in liver regeneration using a murine model of partial hepatectomy 
[65]. The aim of the present study was to likewise investigate the possible roles of TCs in 
hepatic adaptions to pregnancy.

Materials and Methods

Animals
Eight-week-old female C57BL/6 mice, purchased from Shanghai SLAC Laboratory Animal Center, were 

maintained in a temperature-controlled room on a 12 h light/dark cycle, with ad libitum access to food and 
water. Mice were mated and the presence of a copulatory plug in the vagina was considered as gestation day 
0.5. Pregnant mice were then designed to be sacrificed at different time points (pregnancy day 0.5, 4.5, 8.5, 
10.5, 12.5, 14.5, 16.5, and 18.5) (n=8 per group). The liver weight was measured to evaluate liver growth 
during pregnancy. Frozen liver sections were used for immunofluroscent  staining. This study was approved 
by the local ethical committees and all animal experiments were conducted under the guidelines on the use 
and care of laboratory animals for biomedical research published by National Institutes of Health (No. 85-
23, revised 1996).

EdU and Albumin double labelled staining
Mice were intraperitoneally injetected with 50 mg/kg of 5-ethynyl-2’-deoxyuridine (EdU) 1 h before 

sacrificed. The frozen sections (6 um) were fixed with 4% paraformaldehyde for 30 min after washed 
with PBS, and then incubated with Albumin primary antibody (1:100, BS6520, Bioworld) in diluted by 
PBS containing 0.25% Triton X-100 overnight at 4°C. After that, sections were incubated with anti-rabbit 
Rhodamine-conjugated secondary antibody (1:200, Sc-362262, Santa Cruz) for 1 h at room temperature. 
After wash with PBS, staining with anti-EdU working solution was performed at room temperature for 30 
min according to the manual of a EdU detection kit (Click-iT Plus EdU Alexa Fluor 647 Imaging Kit, Life 
Technology). Finnally, sections were stained with DAPI (Prolong® Gold, Life Technology) and observed 
under a confocal laser scanning microscope (LSM 710, Carl Zeiss MicroImaging GmbH). The results were 
expressed as EdU and Albumin double positive cell number per mm2. 
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Immunofluorescent staining for CD34/PDGFR-α
Double immunolabeling for CD34/PDGFR-α, considered as the specific markers for TCs, was used 

for detection of TCs in the present study 66. Briefly, 6 μm-thick frozen liver sections were fixed in 4% 
paraformaldehyde for 15 min, washed with PBS for three times, pre-incubated in PBS supplemented with 
10% goat serum for 1 h, and then incubated overnight at 4°C with rabbit polyclonal anti-PDGFR-α (Abcam, 
ab61219) and rat monoclonal anti-CD34 (Abcam, ab8158) primary antibodies diluted by 1:100 in PBS with 
0.25% Triton X-100. After that, sections were exposed for 1 h to goat anti-rat labeled with FITC (Santa Cruz, 
sc-2011) and goat anti-rabbit labeled with rhodamine (Santa Cruz, sc-362262) secondary antibodies diluted 
by 1:200 in the same buffer. Finally, sections were stained with DAPI (ProLong® Gold, Life technology). The 
images were analyzed with confocal laser scanning microscope (LSM 710, Carl Zeiss MicroImaging GmbH, 
Germany) under an amplification of 400×.

EdU and CD34 double labelled staining
EdU and CD34 double labelled staining was used to determine the proliferative TCs. In brief, 6 μm-

thick frozen liver sections were fixed in 4% paraformaldehyde for 15 min, washed with PBS for three times, 
pre-incubated in PBS supplemented with 10% goat serum for 1 h, and then incubated overnight at 4°C 
with rat monoclonal anti-CD34 (Abcam, ab8158) primary antibodies diluted by 1:100 in PBS with 0.25% 
Triton X-100. After that, sections were exposed for 1 h to goat anti-rat labeled with FITC (Santa Cruz, sc-
2011) secondary antibodies diluted by 1:200 in the same buffer. After wash with PBS, staining with anti-EdU 
working solution was performed at room temperature for 30 min according to the manual of a EdU detection 
kit (Click-iT Plus EdU Alexa Fluor 647 Imaging Kit, Life Technology). Finally, sections were stained with DAPI 
(ProLong® Gold, Life technology). The images were analyzed with confocal laser scanning microscope (LSM 
710, Carl Zeiss MicroImaging GmbH, Germany) under an amplification of 400×.

Statistical analysis
Data are expressed as mean ± SEM. All analyses were performed using SPSS 19.0. Statistical significance 

was determined with one-way ANOVA test followed by two-tailed Student’s t test. Significance is defined as 
P-value less than 0.05.

Results

Liver weight continued to increase which appeared significant from pregnancy day 10.5 
as compared to day 0.5 in pregnant mice (Fig. 1), indicating that pregnancy induces liver 
growth. 

EdU and Albumin double immunostaining was conducted to investigate the proliferative 
effect of pregnancy-induced liver growth. As compared to pregnancy day 0.5, EdU positive 
hepatocytes number per mm2 of liver tissues was significantly increased in early stage (day 
4.5 and 8.5) and late stage (day 14.5 and 16.5) of pregnancy (Fig. 2).

Fig. 1. Liver growth during pregnancy. Liver weight 
during pregnancy. *, p<0.05 vs. pregnancy day 0.5. 
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As labeled by double immunofluorescent staining for CD34 and PDGFR-α, the number of 
CD34/PDGFR-α positive cells (TCs) per mm2 of liver tissues was significantly increased at 
pregnancy day 4.5 and 14.5 (Fig. 3A and B), which was in accordance with the time points 
when high level of hepatocytes proliferation rate occurred during pregnancy. However, as 

Fig. 2. Pregnancy-induced liver growth preceded via increased hepatocytes  proliferation. Quantitative 
analysis of Albumin and 5-ethynyl-2'- deoxyuridine (EdU) double positive cells in liver tissues (left panel) 
showed significant increase of EdU positive hepatocytes number per mm2 in early stage (day 4.5 and 8.5) 
and late stage (day 14.5 and 16.5) of pregnancy. Representative images of Albumin (red) and EdU (yellow) 
double positive cells, counterstained with DAPI (blue) for nuclei at pregnancy day 0.5 and 14.5 were shown 
in the right panel. Original magnification 400 ×; Scale bar = 20 μm. *,P<0.05 vs. pregnancy day 0.5.

Fig. 3. Detection for TCs in liver 
by double immunolabeling for 
CD34/PDGFR-α. A Representative 
images of CD34/PDGFR-α double 
immunolabeling in pregnant liver. 
CD34 (green) and PDGFR-α (red) 
double positive cells were pointed 
with arrows. Nuclei were coun-
terstained with DAPI (blue). Ori-
ginal magnification 400 ×; Scale 
bar = 20 μm. B Quantitative analy-
sis of CD34/PDGFR-α positive cell 
number per mm2 in pregnant liver. 
*, p<0.05 vs. pregnancy day 0.5.
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indicated by immunofluorescent staining for CD34 and EdU (Fig. 4), we did not observe 
significant difference among the time points we have checked, which might be due to the fact 
that the rate of proliferative TCs was extremely low or proliferative endothelial cells might 
cover up the true changes of proliferative TCs.

Discussion

The present study shows that pregnancy-induced liver growth preceded via increased 
proliferation of hepatocytes. Furthermore, the number of TCs in liver detected by double 
immunolabeling for CD34/PDGFR-α was significantly increased at pregnancy day 4.5 and 
day 14.5, that was coincident with the occurrence of two peaks of hepatocytes proliferation 
during pregnancy. These results suggest the potential involvements of TCs in hepatic 
proliferative adaptions to pregnancy.

To date, the mechanisms underlying hepatic adaptions to pregnancy are largely 
unknown [10, 11, 13, 14, 67-69]. In the present study, we demonstrated two peaks of 
hepatocytes proliferation occurring at early stages and late stages of pregnancy as shown 
by EdU and Albumin double immunostaining. The increased proliferation of hepatocytes 
related to pregnancy has previously been documented [13, 14, 67, 69], while the occurrence 
of two proliferative peaks of hepatocytes during pregnancy in the present study was firstly 
reported here. We hypothesized that the possible reasons may be related to different species 
(rat vs. mouse) [13], ages (old vs. young) [14], and animal models (pregnancy vs. ovariectomy 
or pseudopregnancy) [14, 67] applied in our study and in others. In addition, the metabolic 

Fig. 4. Detection for proliferative TCs 
in liver by immunolabeling for CD34/
EdU. A Representative images of CD34/
EdU immunolabeling in pregnant liver. 
Original magnification 400 ×; Scale 
bar = 20 μm. B Quantitative analysis of 
CD34/EdU positive cell number per mm2 
in pregnant liver. 
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and hormonal mechanisms underlying hepatocyte proliferation during pregnancy need to 
be further explored.

Previously, our group documented the presence of TCs in liver and further indicated 
the potential roles of TCs in liver regeneration after hepatectomy, probably by influencing 
hepatocyte proliferation and/or liver stem cell differentiation [65]. In the present study, we 
further demonstrated the increased number of CD34/PDGFR-α positive TCs in pregnant liver 
at the same time points (pregnancy day 4.5 and day 14.5) when the two proliferative peaks 
of hepatocytes appeared, suggesting a possible relationship between TCs and hepatocytes 
proliferation in pregnancy-induced liver growth. Increasing evidence has shown that TCs are 
critically implicated in tissue regeneration/repair by forming a complicated network with 
tissue/organ-specific cells, immunoreactive cells, other interstitial cells and stem cells, and 
thus actively contribute to intercellular signaling coordination either by minute intercellular 
junctions or by paracrine effect via ectovesicles [23, 29, 30, 56, 57, 59, 70]. However, the exact 
mechanisms how TCs might affect the proliferative capacity of hepatocytes in pregnancy-
induced liver growth remain to be further studied.

A major limitation of the present study is that the data presented here does not fully 
demonstrated a functional relation between TCs and hepatocyte proliferation in pregnancy-
induced liver growth. We have also conducted CD34 plus EdU immunostaining, however, no 
significant difference was observed among the time points we had checked. We speculated 
that this was due to the fact that the rate of proliferative TCs was extremely low because 
pregnancy-induced physiological liver growth was a weak physiological stimuli. Besides 
that, as CD34 is also a marker for endothelial cells, thus proliferative endothelial cells might 
cover up the true changes of proliferative TCs. It would be interesting to check the the 
rate of proliferative TCs using CD34/PDGFR-α/EdU three immunostainings in other liver 
regeneration models such as partial hepatectomy (PH) models. Nevertheless, considering the 
fact that pregnancy-induced liver growth preceded via increased proliferation of hepatocytes 
at pregnancy day 4.5, 8.5, 14.5 and 16.5 while the number of TCs in liver was significantly 
increased at pregnancy day 4.5 and day 14.5, we think that TCs proliferate first (or at least 
at the same time) compared with hepatocytes and therefore a possible relationship between 
TCs and hepatocyte proliferation in pregnancy-induced liver growth might exist.

In conclusion, the present study demonstrates an increase of CD34/PDGFR-α positive 
TCs in pregnant liver accompanied by high level of hepatocyte proliferation. Considering 
that liver regeneration capacity is usually far from ideal in certain circumstances like severe 
liver injury or surgical resection, understanding how TCs take effect in pregnancy-induced 
physiological liver growth might raise bright prospect for the treatment of liver failure.
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