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Abstract
Background/Aims: Published studies indicated that the MTHFR gene polymorphisms C677T 
and A1298C are associated with congenital heart disease (CHD) risk in children, but obtained 
inconsistent results. Our study aims to reach a more accurate association between these two 
polymorphisms and CHD risk. Methods: Eligible studies were obtained by screening the 
PubMed, Embase, China National Knowledge Infrastructure, Wan Fang and VIP databases based 
on designed searching strategy. The odds ratio (OR) and 95% confidence interval (CI) were 
calculated. Moreover, a trial sequential analysis was introduced to confirm the positive results 
and an RNA secondary structure analysis was also applied to discover the potential molecular 
mechanism. Results: Based on thirty-two published articles, involving 6988 congenital heart 
disease subjects and 7579 healthy controls, the pooled results from the C677T polymorphism 
in the fetal population showed increased risks in allelic model (OR=1.32, 95%CI=1.14-1.53), 
recessive model (OR=1.69, 95%CI=1.25-2.30), dominant model (OR=1.35, 95%CI=1.11-
1.64), heterozygote model (OR=1.20, 95%CI=1.01-1.41) and homozygote model (OR=1.75, 
95%CI=1.31-2.33). An increased risk was only detected in the A1298C polymorphism in the 
overall fetal popalation in a recessive model (OR=1.42, 95%CI=1.10-1.84). In the subgroup 
stratified by region, sample size, genotyping method and source of controls, the increased 
risks were widely observed in both the C677T and A1298C polymorphisms with CHD risk. 
Furthermore, trial sequential analysis confirmed our positive results, and the RNA secondary 
structure analysis detected the changes in the RNA secondary structure caused by the 
mutant 677T allele and 1298C allele. Conclusion: In summary, we found that the MTHFR 
C677T polymorphism is associated with a significant increased risk in congenital heart disease 
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in the fetal population. Moreover, an increased risk in the CC genotype of MTHFR A1298C 
polymorphism was observed, but the protective role of the 1298C allele needs further study.

Introduction

Congenital heart disease (CHD) is the most frequently occurring congenital disorder 
in newborns and the most common type of structural malformation of the heart and 
lager blood vessels [1, 2]. The aetiology of CHD is unclear and CHD is multifactorial in its 
derivation. Different related genes interacting with each other or with environmental factors 
may contribute to development of CHD [3]. Folate plays a crucial role in the ontogeny of 
the cardiovascular system [4]. Insufficient folic acid and a high level of homocysteine (Hcy) 
caused by a defective folic acid pathway are described as risk factors for CHD [5]. Therefore, 
common polymorphisms of folate-metabolizing enzymes have gained great attention.

The MTHFR gene, located on 1p36.3, encodes the vital enzyme involved in the folate/
homocysteine metabolic pathway. Its transcription product is a 77 kDa protein, that catalyses 
the reduction of 5, 10-methylenetetrahydrofolate to 5-methytetrahydrofolate, which as 
a methyl donor induces Hcy remethylation to methionine [6]. Two common functional 
polymorphisms in the MTHFR gene are widely studied. The first one is the MTHFR C677T 
mutation at exon 4, which results in the conversion of the amino acid alanine to valine at 
position 226 in the protein [6]. The other mutation (MTHFR A1298C) is located at exon 7, 
within the presumptive regulatory domain, and results in a glutamate-to-alanine change 
with decreased enzyme activity in vitro [7].

Associations between these two MTHFR gene polymorphisms and CHD risk were firstly 
analyzed by Wenstrom et al. [8]., more and more studies were conducted to perfect this work 
in the recent years. However, previous case-control reports or meta-analyses have drawn 
inconsistent results and many biases exist in these studies. Therefore, we performed an up-
dated meta-analysis to investigate the associations between MTHFR polymorphisms (C677T 
and A1298C) and the susceptibility to CHD. Moreover, a trial sequential analysis and a RNA 
secondary structure analysis were introduced in our meta-analysis to confirm our positive 
results and identify the potential possible mechanism respectively.

Materials and Methods

Based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) checklist 
[9], we organized our update meta-analysis. Ethical approval was not necessary for the type of the study 
(meta-analysis) [10].

Identification of related Studies
A literature search was conducted by the first two investigators in the PubMed, Embase, China National 

Knowledge Infrastructure, Wan Fang and VIP databases before August 2017 without a language limitation. 
The terms “MTHFR,” “methylenetetrahydrofolate reductase,” “congenital heart disease,” “CHD,” “ventricular 
septal defect,” “atrial septal defect,” “tetralogy of Fallot,” “patent ductus arteriosus,” “polymorphism,” 
“variant,” “mutant,” and “polymorphisms” were used. The data that we failed to retrieve during the electronic 
search were obtained by reviewing the citations or contacting the corresponding author of the potential 
eligible articles.

Inclusion and Exclusion criteria
The included studies needed to meet the following inclusion criteria: (1) studies of the association 

between the MTHFR gene polymorphisms and congenital heart disease; (2) case-control study or cohort 
design in fetal population; and (3) detailed genotype data could be acquired to calculate the odds ratios 
(ORs), and 95% confidence intervals (CIs); The exclusion criteria were as follows: (1) duplication of 
previous publications; (2) comment, review and editorial; (3) study without detailed genotype data or 
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without a control group to conduct the Hardy-Weinberg equilibrium test; and (4) study departure from 
Hardy Weinberg equilibrium. The selection of the studies was achieved by two investigators independently. 
Any dispute was solved by a discussion with the corresponding author or group debates between all the 
authors.

Data Extraction
From each study, the following data were independently extracted by the first two investigators using a 

standardized form: first author’s last name; year of publication; study country; region; genotyping methods; 
source of controls; number of cases and controls; genotype frequency in the cases and controls for the 
MTHFR gene; and results of the Hardy-Weinberg equilibrium test. Disagreements were resolved through a 
group discussion between authors.

Statistical analysis
The Hardy–Weinberg equilibrium (HWE) was evaluated for each study by a Chi-square test in 

the control group, and P < 0.05 was considered a significant departure from HWE. The odds ratio (OR) 
and 95% confidence intervals (CIs) were calculated among five genetic models (allelic model (C677T: C 
versus T; A1298C: A versus C), recessive model (C677T: TT versus TC+CC; A1298C: CC versus CA+AA), 
dominant model (C677T: TT+TC versus CC; A1298C: CC+CA versus AA), heterozygote model (C677T: TC 
versus CC; A1298C: CA versus AA), and homozygote model (C677T: TT versus CC; A1298C: CC versus AA), 
respectively). Heterogeneity was evaluated by the Q statistic (significance level of P < 0.1) and I2 statistic 
(greater than 50% as evidence of significant inconsistency). A sensitivity analysis was performed to detect 
the heterogeneity by omitting one study in each turn. Additionally, subgroup analyses were stratified by 
region, sample size, genotyping method and source of controls. The publication bias was assessed with 
a Begg’s funnel plot and an Egg’s test. Review Manager, Version 5.3 (The Nordic Cochrane Centre, The 
Cochrane Collaboration; Copenhagen, Denmark) and STATA 12.0 (STATA Corp, LP) was used for all the 
analyses. Multiple comparisons were adjusted by the Bonferroni method and the false discovery rate (FDR) 
was calculated [11]. The statistically significant level was determined by a Z-test with P value less than 0.05.

Trial sequential analysis (TSA)
TSA (The Copenhagen Trial Unit, Center for Clinical Intervention Research, Denmark) is a methodology 

that combines an information size calculation (cumulated sample sizes of all included trials) to reduce type 
I errors and type II errors for a meta-analysis with the threshold of statistical significance (http://www.
ctu.dk/tsa). Therefore, we introduced TSA into our meta-analysis, and the required information size was 
calculated in adhere to an overall type I error of 5%, a power of 90% and a relative risk reduction (RRR) 
assumption of 10%.

RNA secondary structure analysis
The RNAfold WebServer is one of the core programs of the Vienna RNA package (http://rna.tbi.univie.

ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi) [12], which can be used to predict secondary structures of single 
stranded RNA or RNA sequences by computing the minimum free energy (MFE) of single sequences based 
on the dynamic programming algorithm originally proposed by Zuker and Stiegler [13]. Therefore, we input 
the RNA sequence of the MTHFR C677T and A1298C polymorphisms into the RNAfold WebServer to analyse 
the potential secondary structure modification caused by the mutant allele.

Results

Characteristics of the Included Studies
One hundred and fifty-one articles were obtained by the online and manual search. 

After removing duplicates, screening the title and abstract and reading the full-text articles, 
forty-two articles were included in the qualitative synthesis, and then, nine articles were 
excluded for departure from the Hardy Weinberg Equilibrium. Finally, a total of thirty-three 
published articles [4, 14-45] involving 6988 cases and 7579 controls, were included in this 
meta-analysis (Fig. 1).
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The characteristics of all the included articles are summarized in Table 1. For the C677T 
variant, thirty-two studies are included with 4848 cases and 5524 controls, and twelve 
studies with 2140 cases and 2055 controls, were included for the A1298C variant.

Results of the meta-analysis of the associations between MTHFR polymorphisms and 
congenital heart disease risk.
Table 2 shows the pooled results of this meta-analysis and the heterogeneity of the 

MTHFR gene polymorphisms and congenital heart disease risk.
For the C677T polymorphism, 

significant associations were observed in all 
the genetic models in the overall population 
but with high heterogeneity as follows: 
T versus C (OR=1.32, 95%CI=1.14-1.53, 
P=0.0003); TT+TC versus CC (OR=1.35, 
95%CI=1.11-1.64, P=0.002); TT VS TC+CC 
(OR=1.69, 95%CI=1.25-2.30, P=0.000); TC 
VS CC (OR=1.20, 95%CI=1.01-1.41, P=0.03); 
and TT VS CC (OR=1.75, 95%CI=1.31-
2.33, P=0.000) (Fig. 2). However, when 
an adjusted p value test was conducted, 
the heterozygote model (TC VS CC) was a 
false positive. In addition, for the A1298C 
polymorphism, a significant association was 
only found in the recessive genetic model in 
the overall population (CC versus CA+AA: 
OR=1.42, 95%CI=1.10-1.84, P=0.008) (Fig. 
3).

Fig. 1. Flowchart of literature search in our meta-
analysis.
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Table 1. Characteristic of included studies of MTHFR C677T and A1298C polymorphisms associated with 
congenital heart disease. HB=Hospital Based; PB=Population Based; PCR-RFLP = polymerase chain reac-
tion-restriction fragment length polymorphism; PCR-TAQMAN = polymerase chain reaction with Taqman 
probe. ; PCR-ABD = polymerase chain reaction using Assay by Design (ABD) kits from Applied Biosystems 
(Carlsbad, CA, USA): PCR-MassaArray Assay= Polymerase Chain Reaction with MassArray Assay. PCR-SSCP 
= Polymerase Chain Reaction-Single Strand Conformation Polymorphism; PCR-SNaPShot = polymerse chain 
reaction with SNaPShot; PCR-GeXP = Polymerse Chain Reaction with GeXP. HWE = Hardy-Weinberg equilib-
rium; * P value for Hardy–Weinberg equilibrium test in controls

 

 

  

        Genotyping Controls     Case Control   

First author Year Country Region method Source case control CC CT TT CC CT TT HWE 

MTHFR C677T Polymorphism 
            

Junker [14] 2001 Germany Middle Europe PCR-SSCP HB 114  228  51  42  21  129  78  21  0.075  

Yan [16] 2003 China East Asian PCR-RFLP HB 187  103  32  97  58  22  57  24  0.277  

Storti [15] 2003 Italy South Europe PCR-SSCP HB 103  200  28  55  20  52  108  40  0.235  

Shaw [19] 2005 American North America PCR-TAQMAN PB 153  434  69  68  16  180  202  52  0.684  

Li [18] 2005 China East Asian PCR-RFLP HB 187  102  32  94  61  20  57  25  0.224  

Lee [17] 2005 China East Asian PCR-SSCP HB 213  195  110  89  14  114  68  13  0.513  

Zhu [21] 2006 China East Asian PCR-RFLP PB 56  103  7  22  27  22  57  24  0.277  

van Beynum [20] 2006 Netherlands North Europe PCR-SSCP PB 165  220  79  66  20  98  104  18  0.184  

Liu [23] 2007 China East Asian PCR-RFLP HB 132  107  30  68  34  46  48  13  0.930  

Galdieri [22] 2007 Brazil South America PCR-SSCP HB 58  38  30  21  7  18  14  6  0.263  

van Driel [24] 2008 Netherlands North Europe PCR-TAQMAN PB 229  251  99  103  27  119  107  25  0.895  

Li [25] 2009 China East Asian PCR-RFLP HB 144  168  26  52  66  49  84  35  0.928  

Xu [27] 2010 China East Asian PCR-SSCP HB 502  527  162  244  96  151  261  115  0.911  

Kuehl [26] 2010 American North America PCR-TAQMAN PB 55  290  12  33  10  134  124  32  0.682  

Obermann-Borst [28] 2011 Netherlands North Europe PCR-TAQMAN PB 139  183  64  66  9  92  76  15  0.900  

Zhou [31] 2012 China East Asian PCR-SSCP HB 136  277  23  60  53  88  126  63  0.168  

Li [30] 2012 China East Asian PCR-RFLP HB 144  168  26  52  66  49  84  35  0.928  

Gong [29] 2012 China East Asian PCR-MassArray Assay HB 244  136  45  123  76  43  72  21  0.309  

Li [33] 2013 China East Asian PCR-RFLP HB 144  168  26  52  66  49  84  35  0.928  

Jing [32] 2013 China East Asian PCR-RFLP HB 104  208  46  42  16  39  114  55  0.139  

WangLN [35] 2013 China East Asian PCR-SSCP HB 236  277  33  92  111  88  126  63  0.168  

WangBJ [34] 2013 China East Asian PCR-SNaPShot HB 160  188  59  76  25  53  100  35  0.312  

Christensen [4] 2013 Canada North America PCR-RFLP HB 157  69  68  61  28  35  26  8  0.360  

Xu [36] 2013 China East Asian PCR-SSCP HB 105  105  23  54  28  46  40  19  0.059  

Sahiner [38] 2014 Turkey West Asian PCR-SSCP HB 136  93  69  53  14  47  39  7  0.779  

Chao [44] 2014 China East Asian PCR-RFLP HB 17  34  10  5  2  19  12  3  0.586  

Sayin [45] 2015 Turkey West Asian PCR-RFLP HB 75  95  40  33  2  43  44  8  0.484  

Li [41] 2015 China East Asian PCR-SSCP HB 150  150  31  78  41  59  66  25  0.376  

Koshy [40] 2015 Indian South Asian PCR-RFLP HB 96  90  95  1  0  83  7  0  0.701  

Jiang [39] 2015 China East Asian PCR-RFLP HB 100  100  38  46  16  41  48  11  0.583  

Feng [42] 2016 China East Asian PCR-GeXP HB 260  49  21  114  125  6  22  21  0.949  

Wang [43] 2016 China East Asian PCR-RFLP HB 147  168  14  73  60  49  84  35  0.928  

               MTHFR A1298C Polymorphism 
            

Storti [15] 2003 Italy South Europe PCR-SSCP HB 103  200  45  47  11  101  86  13  0.347  

Galdieri [22] 2007 Brazil South America PCR-SSCP HB 57  38  35  21  1  19  16  3  0.884  

van Driel [24] 2008 Netherlands North Europe PCR-TAQMAN PB 229  251  112  90  27  97  129  25  0.057  

Xu [27] 2010 China East Asian PCR-SSCP HB 502  527  316  168  18  326  185  16  0.091  

Obermann-Borst [28] 2011 Netherlands North Europe PCR-TAQMAN PB 139  183  69  57  13  75  90  18  0.227  

WangBJ [34] 2013 China East Asian PCR-SNaPShot HB 170  188  115  45  10  133  47  8  0.155  

Christensen [4] 2013 Canada North America PCR-RFLP HB 157  69  78  67  12  38  26  5  0.849  

Sahiner [38] 2014 Turkey West Asian PCR-SSCP HB 137  93  45  68  24  31  54  8  0.223  

Huang [37] 2014 China East Asian PCR-MassArray Assay HB 170  208  111  56  3  146  56  6  0.823  

Sayin [45] 2015 Turkey West Asian PCR-RFLP HB 69  99  20  36  13  51  37  11  0.288  

Li [41] 2015 China East Asian PCR-SSCP HB 150  150  114  36  0  131  19  0  0.408  

Feng [42] 2016 China East Asian PCR-GeXP HB 257  49  194  51  12  35  14  0  0.243  
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Subgroup analysis
To excavate the potential associations and underlying heterogeneity source from the 

pooled results, a subgroup analysis was performed and four subgroups (Region, Sample size, 
Genotyping method and source of controls) were stratified (Table 3).

In the subgroup analysis of Region, significant associations were found for these two 
polymorphisms. In the Middle Europe subgroup, the allelic genetic model (OR=1.63, 95% 

Table 2. Pooled ORs and 95%CIs of the relationship between MTHFR polymorphisms and congenital heart 
disease risk. CI= confidence interval.a P value for between-study heterogeneity based on Q test;Bon= p value 
in Bonferroni test; FDR= false discovery rate. Significant results are marked in bold

 

 

  
Allelic genetic model Dominant genetic model Recessive genetic model  Heterozygote genetic model Homozygote genetic model 

Subgroup N OR[95%CI

] 

P* I2 OR[95%CI] P* I2 OR[95%CI] P* I2 OR[95%CI] P* I2 OR[95%CI] P* I2 

MTHFR C677T 

Polymorphism 
                

Region 
                

Middle Europe 1 1.63 [1.16, 

2.30] 

0.005

0  

N

A 

1.61 [1.02, 

2.53] 

0.040

0  

N

A 

1.23 [0.63, 2.38] 0.550

0  

N

A 

1.36 [0.83, 

2.24] 

0.220

0  

N

A 

2.53 [1.27, 

5.02] 

0.008

0  

N

A East Asian 20 1.48 [1.21, 

1.81] 

0.000

2  

87  1.55 [1.17, 

2.04] 

0.002

0  

82  2.29 [1.63, 3.23] 0.000

0  

88  1.29 [1.02, 

1.63] 

0.030

0  

70  2.10 [1.43, 

3.08] 

0.000

2  

84  

South Europe 1 0.97 [0.69, 

1.35] 

0.840

0  

N

A 

0.94 [0.55, 

1.61] 

0.820

0  

N

A 

0.62 [0.34, 1.14] 0.120

0  

N

A 

0.95 [0.54, 

1.66] 

0.850

0  

N

A 

0.93 [0.46, 

1.88] 

0.840

0  

N

A North America 3 1.30 [0.81, 

2.10] 

0.270

0  

80  1.46 [0.72, 

2.96] 

0.290

0  

81  0.81 [0.17, 3.83] 0.790

0  

92  1.40 [0.71, 

2.76] 

0.340

0  

77  1.63 [0.68, 

3.92] 

0.280

0  

72  

South America 1 0.83 [0.45, 

1.54] 

0.560

0  

N

A 

0.84 [0.37, 

1.91] 

0.680

0  

N

A 

1.33 [0.42, 4.21] 0.630

0  

N

A 

0.90 [0.37, 

2.20] 

0.820

0  

N

A 

0.70 [0.20, 

2.41] 

0.570

0  

N

A North Europe 3 1.08 [0.91, 

1.29] 

0.390

0  

0  1.07 [0.85, 

1.35] 

0.540

0  

0  1.08 [0.73, 1.60] 0.690

0  

0  1.04 [0.79, 

1.37] 

0.760

0  

21  1.21 [0.81, 

1.83] 

0.350

0  

0  

West Asian 2 0.89 [0.60, 

1.32] 

0.550

0  

37  0.87 [0.58, 

1.29] 

0.480

0  

0  0.83 [0.10, 6.95] 0.870

0  

81  0.87 [0.58, 

1.32] 

0.750

0  

0  0.69 [0.14, 

3.33] 

0.640

0  

65  

South Asian 1 0.13 [0.02, 

1.06] 

0.060

0  

N

A 

0.12 [0.02, 

1.04] 

0.050

0  

N

A 

Not estimable NA N

A 

0.12 [0.02, 

1.04] 

0.050

0  

N

A 

Not estimable NA N

A Sample Size 
                

 ≤300 13 1.32 [1.08, 

1.60] 

0.006

0  

59  1.35 [1.01, 

1.80] 

0.040

0  

58  2.41 [1.81, 3.21] 0.000

0  

40  1.24 [0.95, 

1.63] 

0.110

0  

47  1.91 [1.36, 

2.67] 

0.000

2  

38  

＞300 19 1.34 [1.10, 

1.64] 

0.004

0  

88  1.36 [1.06, 

1.76] 

0.020

0  

83  1.49 [0.98, 2.26] 0.070

0  

92  1.18 [0.96, 

1.45] 

0.130

0  

70  1.73 [1.17, 

2.56] 

0.006

0  

86  

Genotyping 

method 
                

PCR-RFLP 14 1.36 [1.03, 

1.80] 

0.030

0  

85  1.20 [0.84, 

1.72] 

0.300

0  

75  2.26 [1.51, 3.39] 0.000

1  

80  1.07 [0.77, 

1.47] 

0.690

0  

67  1.95 [1.16, 

3.29] 

0.010

0  

81  

PCR-SSCP 11 1.34 [1.06, 

1.71] 

0.020

0  

85  1.25 [0.94, 

1.66] 

0.120

0  

75  1.48 [1.07, 2.06] 0.020

0  

72  1.18 [0.91, 

1.52] 

0.210

0  

65  1.77 [1.13, 

2.79] 

0.010

0  

81  

PCR-TAQMAN 4 1.17 [0.88, 

1.56] 

0.270

0  

69  1.29 [0.85, 

1.95] 

0.230

0  

71  0.58 [0.30, 1.10] 0.100

0  

71  1.29 [0.86, 

1.92] 

0.210

0  

66  1.27 [0.71, 

2.27] 

0.420

0  

59  

PCR-MassArray 

Assay 

1 1.79 [1.33, 

2.42] 

0.000

1  

N

A 

2.04 [1.26, 

3.32] 

0.004

0  

N

A 

5.26 [3.12, 8.86] 0.000

0  

N

A 

1.63 [0.98, 

2.72] 

0.060

0  

N

A 

3.46 [1.83, 

6.55] 

0.000

1  

N

A PCR-SNaPShot 1 0.79 [0.58, 

1.07] 

0.120

0  

N

A 

2.86 [1.83, 

4.48] 

0.000

0  

N

A 

0.85 [0.48, 1.49] 0.560

0  

N

A 

1.95 [1.20, 

3.15] 

0.007

0  

N

A 

0.64 [0.34, 

1.21] 

0.170

0  

N

A PCR-GeXP 1 1.24 [0.79, 

1.96] 

0.360

0  

N

A 

3.91 [2.06, 

7.44] 

0.000

1  

N

A 

11.46 [6.91, 

19.03] 

0.000

0  

N

A 

1.48 [0.54, 

4.09] 

0.450

0  

N

A 

1.70 [0.61, 

4.71] 

0.310

0  

N

A Source of 

Controls 
                

PB 6 1.22 [0.96, 

1.56] 

0.100

0  

68  1.22 [0.89, 

1.68] 

0.210

0  

62  0.82 [0.45, 1.49] 0.510

0  

78  1.15 [0.85, 

1.58] 

0.370

0  

57  1.46 [0.92, 

2.34] 

0.110

0  

55  

HB 26 1.34 [1.12, 

1.59] 

0.001

0  

85  1.37 [1.08, 

1.73] 

0.009

0  

79  2.03 [1.47, 2.80] 0.000

1  

87  1.20 [0.99, 

1.46] 

0.070

0  

65  1.81 [1.29, 

2.53] 

0.000

6  

82  

                 
MTHFR A1298C Polymorphism 

               
Region 

                
South Europe 1 1.30 [0.90, 

1.86] 

0.160

0  

N

A 

1.31 [0.82, 

2.12] 

0.260

0  

N

A 

0.95 [0.40, 2.22] 0.900

0  

N

A 

1.23 [0.74, 

2.02] 

0.420

0  

N

A 

1.90 [0.79, 

4.56] 

0.150

0  

N

A South America 1 0.62 [0.32, 

1.22] 

0.170

0  

N

A 

0.63 [0.27, 

1.44] 

0.270

0  

N

A 

0.34 [0.03, 3.36] 0.360

0  

N

A 

0.71 [0.30, 

1.68] 

0.440

0  

N

A 

0.18 [0.02, 

1.86] 

0.150

0  

N

A North Europe 2 0.82 [0.67, 

1.01] 

0.070

0  

0  0.68 [0.51, 

0.90] 

0.006

0  

0  1.04 [0.66, 1.65] 0.850

0  

0  0.64 [0.47, 

0.86] 

0.003

0  

0  0.88 [0.54, 

1.42] 

0.590

0  

0  

East Asian 5 1.13 [0.93, 

1.39] 

0.220

0  

26  1.17 [0.88, 

1.56] 

0.280

0  

45  1.31 [0.54, 3.19] 0.560

0  

55  1.13 [0.83, 

1.55] 

0.430

0  

55  1.20 [0.72, 

2.00] 

0.490

0  

0  

West Asian 2 1.50 [0.96, 

2.35] 

0.070

0  

56  1.61 [0.64, 

4.01] 

0.310

0  

78  2.32 [0.95, 5.70] 0.070

0  

54  1.44 [0.52, 

4.04] 

0.490

0  

81  2.48 [1.28, 

4.81] 

0.007

0  

0  

Sample Size 
                

 ≤300 5 1.31 [0.93, 

1.86] 

0.130

0  

60  1.36 [0.87, 

2.12] 

0.180

0  

63  2.05 [1.02, 4.10] 0.040

0  

39  1.36 [0.86, 

2.15] 

0.190

0  

59  1.58 [0.71, 

3.50] 

0.260

0  

40  

＞300 7 0.99 [0.87, 

1.13] 

0.890

0  

8  0.94 [0.76, 

1.16] 

0.570

0  

40  1.09 [0.75, 1.57] 0.660

0  

20  0.90 [0.72, 

1.13] 

0.360

0  

47  1.11 [0.80, 

1.53] 

0.550

0  

0  

Genotyping 

method 
                

PCR-RFLP 2 1.49 [0.91, 

2.45] 

0.120

0  

59  1.67 [0.76, 

3.70] 

0.200

0  

75  1.84 [0.93, 3.62] 0.080

0  

0  1.72 [0.89, 

3.36] 

0.110

0  

53  1.96 [0.78, 

4.95] 

0.150

0  

38  

PCR-SSCP 5 1.15 [0.88, 

1.50] 

0.310

0  

56  1.13 [0.82, 

1.56] 

0.440

0  

52  1.37 [0.64, 2.95] 0.420

0  

60  1.10 [0.80, 

1.51] 

0.580

0  

49  1.40 [0.78, 

2.53] 

0.260

0  

32  

PCR-TAQMAN 2 0.82 [0.67, 

1.01] 

0.070

0  

0  0.68 [0.51, 

0.90] 

0.006

0  

0  1.04 [0.66, 1.65] 0.850

0  

0  0.64 [0.47, 

0.86] 

0.003

0  

0  0.88 [0.54, 

1.42] 

0.590

0  

0  

PCR-SNaPShot 1 1.17 [0.80, 

1.72] 

0.410

0  

N

A 

1.24 [0.70, 

2.19] 

0.460

0  

N

A 

1.33 [0.51, 3.45] 0.560

0  

N

A 

1.11 [0.69, 

1.79] 

0.680

0  

N

A 

1.45 [0.55, 

3.79] 

0.450

0  

N

A PCR-MassArray 

Assay 

1 1.14 [0.78, 

1.67] 

0.490

0  

N

A 

1.25 [0.81, 

1.93] 

0.310

0  

N

A 

0.51 [0.13, 2.07] 0.350

0  

N

A 

1.32 [0.84, 

2.05] 

0.230

0  

N

A 

0.66 [0.16, 

2.69] 

0.560

0  

N

A PCR-GeXP 1 1.03 [0.55, 

1.90] 

0.940

0  

N

A 

0.81 [0.41, 

1.61] 

0.550

0  

N

A 

26.22 [1.54, 

445.28] 

0.020

0  

N

A 

0.66 [0.33, 

1.31] 

0.230

0  

N

A 

4.56 [0.26, 

78.82] 

0.300

0  

N

A Source of 

Controls 
                

PB 2 0.82 [0.67, 

1.01] 

0.070

0  

0  0.68 [0.51, 

0.90] 

0.006

0  

0  1.04 [0.66, 1.65] 0.850

0  

0  0.64 [0.47, 

0.86] 

0.003

0  

0  0.88 [0.54, 

1.42] 

0.590

0  

0  

HB 10 1.19 [1.01, 

1.41] 

0.040

0  

38  1.20 [0.97, 

1.49] 

0.090

0  

44  1.49 [0.91, 2.43] 0.110

0  

47  1.16 [0.93, 

1.45] 

0.190

0  

45  1.50 [1.04, 

2.16] 

0.030

0  

73  
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Fig. 3. Pooled analysis of A1298C polymorphism and CHD risk in children population.

Figure 3. Pooled analysis of A1298C polymorphism and CHD risk in children population. 

 

Figure 4. Sensitivity analysis of C677T and A1298C polymorphism and CHD risk. 

 
Figure 5. Publication bias of C677T and A1298C polymorphism and CHD risk. 

 
Figure 6. Trial sequential analysis of C677T and A1298C polymorphism and CHD risk. 

 

Table 3. Subgroup analysis of the associations of MTHFR polymorphisms with congenital heart disease 
risk. OR=odd ratio; CI=Confidence Interval; HB=Hospital Based; PB=Population Based; # P value for Hardy–
Weinberg equilibrium test in controls; * P value for meta-analysis. PCR-RFLP = polymerase chain reaction-
restriction fragment length polymorphism. PCR-TAQMAN = polymerase chain reaction with Taqman 
probe; PCR-ABD = polymerase chain reaction using Assay by Design (ABD) kits from Applied Biosystems 
(Carlsbad, CA, USA): PCR-MassaArray Assay= Polymerase Chain Reaction with MassArray Assay. PCR-SSCP 
= Polymerase Chain Reaction-Single Strand Conformation Polymorphism; PCR-SNaPShot = polymerse chain 
reaction with SNaPShot; PCR-GeXP = Polymerse Chain Reaction with GeXP. Significant results are marked 
in bold

 

 

  

        Genotyping Controls     Case Control   

First author Year Country Region method Source case control CC CT TT CC CT TT HWE 

MTHFR C677T Polymorphism 
            

Junker [14] 2001 Germany Middle Europe PCR-SSCP HB 114  228  51  42  21  129  78  21  0.075  

Yan [16] 2003 China East Asian PCR-RFLP HB 187  103  32  97  58  22  57  24  0.277  

Storti [15] 2003 Italy South Europe PCR-SSCP HB 103  200  28  55  20  52  108  40  0.235  

Shaw [19] 2005 American North America PCR-TAQMAN PB 153  434  69  68  16  180  202  52  0.684  

Li [18] 2005 China East Asian PCR-RFLP HB 187  102  32  94  61  20  57  25  0.224  

Lee [17] 2005 China East Asian PCR-SSCP HB 213  195  110  89  14  114  68  13  0.513  

Zhu [21] 2006 China East Asian PCR-RFLP PB 56  103  7  22  27  22  57  24  0.277  

van Beynum [20] 2006 Netherlands North Europe PCR-SSCP PB 165  220  79  66  20  98  104  18  0.184  

Liu [23] 2007 China East Asian PCR-RFLP HB 132  107  30  68  34  46  48  13  0.930  

Galdieri [22] 2007 Brazil South America PCR-SSCP HB 58  38  30  21  7  18  14  6  0.263  

van Driel [24] 2008 Netherlands North Europe PCR-TAQMAN PB 229  251  99  103  27  119  107  25  0.895  

Li [25] 2009 China East Asian PCR-RFLP HB 144  168  26  52  66  49  84  35  0.928  

Xu [27] 2010 China East Asian PCR-SSCP HB 502  527  162  244  96  151  261  115  0.911  

Kuehl [26] 2010 American North America PCR-TAQMAN PB 55  290  12  33  10  134  124  32  0.682  

Obermann-Borst [28] 2011 Netherlands North Europe PCR-TAQMAN PB 139  183  64  66  9  92  76  15  0.900  

Zhou [31] 2012 China East Asian PCR-SSCP HB 136  277  23  60  53  88  126  63  0.168  

Li [30] 2012 China East Asian PCR-RFLP HB 144  168  26  52  66  49  84  35  0.928  

Gong [29] 2012 China East Asian PCR-MassArray Assay HB 244  136  45  123  76  43  72  21  0.309  

Li [33] 2013 China East Asian PCR-RFLP HB 144  168  26  52  66  49  84  35  0.928  

Jing [32] 2013 China East Asian PCR-RFLP HB 104  208  46  42  16  39  114  55  0.139  

WangLN [35] 2013 China East Asian PCR-SSCP HB 236  277  33  92  111  88  126  63  0.168  

WangBJ [34] 2013 China East Asian PCR-SNaPShot HB 160  188  59  76  25  53  100  35  0.312  

Christensen [4] 2013 Canada North America PCR-RFLP HB 157  69  68  61  28  35  26  8  0.360  

Xu [36] 2013 China East Asian PCR-SSCP HB 105  105  23  54  28  46  40  19  0.059  

Sahiner [38] 2014 Turkey West Asian PCR-SSCP HB 136  93  69  53  14  47  39  7  0.779  

Chao [44] 2014 China East Asian PCR-RFLP HB 17  34  10  5  2  19  12  3  0.586  

Sayin [45] 2015 Turkey West Asian PCR-RFLP HB 75  95  40  33  2  43  44  8  0.484  

Li [41] 2015 China East Asian PCR-SSCP HB 150  150  31  78  41  59  66  25  0.376  

Koshy [40] 2015 Indian South Asian PCR-RFLP HB 96  90  95  1  0  83  7  0  0.701  

Jiang [39] 2015 China East Asian PCR-RFLP HB 100  100  38  46  16  41  48  11  0.583  

Feng [42] 2016 China East Asian PCR-GeXP HB 260  49  21  114  125  6  22  21  0.949  

Wang [43] 2016 China East Asian PCR-RFLP HB 147  168  14  73  60  49  84  35  0.928  

               MTHFR A1298C Polymorphism 
            

Storti [15] 2003 Italy South Europe PCR-SSCP HB 103  200  45  47  11  101  86  13  0.347  

Galdieri [22] 2007 Brazil South America PCR-SSCP HB 57  38  35  21  1  19  16  3  0.884  

van Driel [24] 2008 Netherlands North Europe PCR-TAQMAN PB 229  251  112  90  27  97  129  25  0.057  

Xu [27] 2010 China East Asian PCR-SSCP HB 502  527  316  168  18  326  185  16  0.091  

Obermann-Borst [28] 2011 Netherlands North Europe PCR-TAQMAN PB 139  183  69  57  13  75  90  18  0.227  

WangBJ [34] 2013 China East Asian PCR-SNaPShot HB 170  188  115  45  10  133  47  8  0.155  

Christensen [4] 2013 Canada North America PCR-RFLP HB 157  69  78  67  12  38  26  5  0.849  

Sahiner [38] 2014 Turkey West Asian PCR-SSCP HB 137  93  45  68  24  31  54  8  0.223  

Huang [37] 2014 China East Asian PCR-MassArray Assay HB 170  208  111  56  3  146  56  6  0.823  

Sayin [45] 2015 Turkey West Asian PCR-RFLP HB 69  99  20  36  13  51  37  11  0.288  

Li [41] 2015 China East Asian PCR-SSCP HB 150  150  114  36  0  131  19  0  0.408  

Feng [42] 2016 China East Asian PCR-GeXP HB 257  49  194  51  12  35  14  0  0.243  
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CI=1.16-2.30, P=0.005), dominant genetic model (TT+TC versus CC (OR=1.61, 95% CI=1.02-
2.53, P=0.04) and homozygote genetic model (OR=2.53, 95% CI=1.27-5.02, P=0.008) of the 
C677T polymorphism were associated with CHD risk. All five-genetic model of the C677T 
polymorphism in the East Asian were observed to be associated with CHD risk but also 
with high heterogeneity. For A1298C polymorphism, the dominant genetic model (OR=0.68, 
95% CI=0.51-0.90, P=0.006) and heterozygote genetic model (OR=0.64, 95%CI=0.47-0.86, 
P=0.003) in the North Europe subgroup and the homozygote genetic model (OR=2.48, 95% 
CI=1.28-4.81, P=0.007) in the West Asian subgroup were related to CHD risk.

In the subgroup analysis of Sample size, for the C677T polymorphism, wide significant 
associations with reduced heterogeneity were observed in the no more than 300 subgroup 
as follows: the allelic genetic model (OR=1.32, 95% CI=1.08-1.80, P=0.006); the dominant 
genetic model (OR=1.35, 95% CI=1.01-1.80, P=0.04); the recessive genetic model (OR=2.41, 
95% CI=1.81-3.21, P=0.000); and the homozygote genetic model (OR=1.91, 95% CI=1.36-
2.67, P=0.0002)). As for more than 300 subgroup, the allelic genetic model (OR=1.34, 95% 
CI=1.10-1.64, P=0.004), dominant genetic model (OR=1.36, 95% CI=1.06-1.76, P=0.02) and 
homozygote genetic model (OR=1.73, 95% CI=1.17-2.56, P=0.006) were associated with 
CHD risk. However, for the A1298C polymorphism, a significant association with reduced 
heterogeneity was only detected in the recessive genetic model (OR=2.05, 95% CI=1.02-
4.10, P=0.04) in the no more than 300 subgroup.

As for the subgroup analysis stratified by the genotyping method, extensive significant 
associations were found in the C677T polymorphism by PCR-RFLP for the allelic genetic 
model (OR=1.36, 95% CI=1.03-1.80, P=0.03), recessive genetic model (OR=2.26, 95% 
CI=1.51-3.39, P=0.0001), homozygote genetic model (OR=1.95, 95% CI=1.16-3.29, 
P=0.0001), by PCR-SSCP for the allelic genetic model (OR=1.34, 95% CI=1.06-1.71, P=0.02), 
recessive genetic model (OR=1.48, 95% CI=1.07-2.06, P=0.02), homozygote genetic model 

Fig. 5. Publication bias of C677T and A1298C polymorphism and CHD risk.
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(OR=1.77, 95% CI=1.13-2.79, P=0.01), by the PCR-MassArray Assay for the allelic genetic 
model (OR=2.05, 95% CI=1.02-4.10, P=0.04), dominant genetic model (OR=2.04, 95% 
CI=1.26-3.32, P=0.004), recessive genetic model (OR=5.26, 95% CI=3.12-8.86, P=0.000), 
and homozygote genetic model (OR=3.46, 95% CI=1.83-6.55, P=0.0001), by PCR-SNaPShot 
for the dominant genetic model (OR=2.86, 95% CI=1.83-4.48, P=0.000) and heterozygote 
genetic model (OR=1.95, 95%CI=1.20-3.15, P=0.04), by PCR-GeXP for the dominant genetic 
model (OR=3.91, 95% CI=2.06-7.44, P=0.0001), recessive genetic model (OR=11.46, 95% 
CI=6.91-19.03, P=0.000)). However, for A1298C polymorphism, significant associations 
were only observed by PCR-TAQMAN (dominant genetic model: OR=0.68, 95% CI=0.51-0.90, 
P=0.006; heterozygote genetic model: OR=0.64, 95% CI=0.47-0.86, P=0.003) and PCR-GeXP 
(recessive genetic model: OR=26.22, 95% CI=1.54-445.28, P=0.02).

In the subgroup analysis of the source of controls, for the C677T polymorphism, 
significant associations were only observed in the hospital based subgroup (Allelic genetic 
model: OR=1.34, 95% CI=1.12-1.59, P=0.001; dominant genetic model: OR=1.37, 95% 
CI=1.08-1.73, P=0.009; recessive genetic model: OR=2.03, 95% CI=1.47-2.80, P=0.0001; 

Fig. 6. Trial sequential analysis of C677T and A1298C polymorphism and CHD risk.
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Fig. 7. RNAfold Webserver analysis of C677T and A1298C polymorphism and CHD risk.
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homozygote genetic model: OR=1.81, 95% CI=1.29-2.53, P=0.0006). For the A1298C 
polymorphism, the heterozygote genetic model (OR=0.64, 95% CI=0.47-0.86, P=0.003) in 
the population based subgroup and the allelic genetic model (OR=1.19, 95% CI=1.01-1.41, 
P=0.04) and homozygote genetic model (OR=1.50, 95% CI=1.04-2.16, P=0.03) in the hospital 
based subgroup were associated with CHD risk.

Sensitivity analyses
The sensitivity analysis was conducted by sequentially omitting 1 individual study every 

time to weigh the influence of each study on the overall meta-analysis. No significant change 
in the heterogeneity was observed for these two polymorphisms (Fig. 4).

Publication bias
No publication bias was detected among the studies regarding the association between 

the C677T and A1298C polymorphism and congenital heart defect risk (Fig. 5).

Trial sequential analysis
According to the settings mentioned in the method section, we calculated the required 

information size for the MTHFR C677T and A1298C polymorphisms (Fig. 6). The number of 
patients included in the meta-analysis exceeded the required information size for the two 
polymorphisms, which indicated our positive results were confirmed by TSA.

RNA secondary structure analysis
We conducted an RNA secondary structure analysis of the MTHFR C677T and A1298C 

polymorphisms with the RNAfold Webserver. Fig. 7 shows the significant changes in the RNA 
structure under both the minimum free energy and the centroid secondary structure, which 
indicated the two variants might affect the stability of the RNA secondary structure.

Discussion

The methylenetetrahydrofolate reductase (MTHFR) is the crucial enzyme concatenating 
the folate pathway and homocysteine metabolism [46]. Low folate and high homocysteine 
are a closely related with the occurrence of congenital heart disease [5, 47], which indicates 
that single nucleotide polymorphisms (SNPs) in the MTHFR gene may be genetic risk factors 
for these disorders. The MTHFR C677T and A1298C SNPs are common and functional, with 
enough data for us to perform a subgroup analysis and a trial sequential analysis. Moreover, 
the mutant 677T and 1298C alleles are related to the decreased activity of the MTHFR 
enzyme [48]. Therefore, we chose these two polymorphisms to investigate their associations 
with CHD risk and significant increased risks were widely observed in both the overall and 
subgroup analyses.

An increased risk of CHD was detected in the MTHFR C677T polymorphism from the 
overall analysis. The putative risk allele-677T had a 32% increased risk of CHD risk against 
the C-allele. A 35% increase in CHD risk in the TT+TC genotypes was also detected. The 
TC and TT genotypes increased CHD risk by 20% and 75% compared to the CC genotype 
respectively. In addition, a 69% increased risk was also found in the TT genotypes compared 
to TC+CC genotypes. Moreover, the increased risk of the T allele, TT, TC and TT+TC genotypes 
was widely observed in the subgroup analysis stratified by region, sample size, genotyping 
method and source of controls. Furthermore, the TSA test confirmed our positive results. 
The extensive increased risk of the C677T polymorphism in CHD implied this polymorphism 
was a strong genetic risk factor for fetal heart defects.

As for the MTHFR A1298C polymorphism, the increased risk of the CC genotype was 
widely detected both from the pooled analysis and the subgroup analysis (West Asian 
subgroup, no more than 300 subgroup, PCR-GeXP subgroup and hospital-based subgroup), 
and the positive result was verified by TSA. Interesting results sprouted in the North Europe 
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and PCR-TAQMAN subgroup; a protective role for the CA+AA and CA genotypes was observed. 
Several studies also report the protective role of 1298C allele, and Hobbs et al. suggested 
three possible explanations for the phenomenon, including: (i) an unknown functional 
polymorphism in linkage disequilibrium with A1298C, (ii) error-free DNA synthesis with 
abundant purines and pyrimidines caused by the lower activity of the MTHFR enzyme, 
and (iii) the selective survival of the 1298A allele [49-51]. In summary, the CC genotype of 
the MTHFR A1298C polymorphism had an increased risk of CHD, but the protective role of 
1298C allele should be interpreted with caution.

Previous meta-analysises have also drawn a conclusion showing a significant association 
between the MTHFR polymorphism and CHD [52-57]. The differences between our analysis 
and the former analyses was the sample size and the exclusion of studies with departure 
from the Hardy-Weinberg equilibrium. We added new references to expand the sample 
size for better reaching the significant results. Moreover, studies with departure from the 
Hardy-Weinberg equilibrium were excluded for homogeneity in the control groups, which 
would make our results more reliable and stable. Additionally, a trial sequential analysis was 
conducted to strengthen our positive results. Furthermore, the MTHFR C677T polymorphism 
was highly associated with homocysteine concentrations in the large scale, methodologically 
independent genome-wide association study [58]. However, no genome-wide association 
study about the A1298C polymorphism is reported so far.

Reduced MTHFR enzyme activity decreases the synthesis of 5-methyl-tetrahydrofolate 
(the substrate vital for DNA synthase), interrupts the homocysteine remethylation 
to methionine (a decreased pool of which may affect DNA methylation), and induces 
hyperhomocysteinemia [45]. Hyperhomocysteinemia initiates apoptosis in neural crest 
cells and has embryotoxic effects in heart cells in animal models [59, 60]. Although the 
MTHFR C677T and A1298C polymorphisms both diminish MTHFR enzyme activity, they 
act in different ways. The 677T variant causes a thermolabile form of the enzyme and is 
associated with elevated homocysteine levels, but for 1298C, it reduced the enzyme activity 
by conformational changes of the enzyme that occur after S-adenosyl-methionine regulatory 
domain binding [61, 62]. Our RNA secondary structure analysis showed that the mutant 
677T and 1298C alleles changed the space conformation of the RNA secondary structure of 
the MTHFR gene and influenced the stability of this gene, which may be an explanation for 
the termolabile form of enzyme caused by the 677T allele and the conformational changes of 
the enzyme induced by the 1298C allele.

Several limitations were existed in this meta-analysis. First, only English and Chinese 
databases were searched in our study; a selection of the literature without other language 
may bias the results. Second, the individual patient heterogeneity and confounding factors 
might have distorted the analysis. Third, the sample size of the included studies was 
relatively small in some subgroups, especially for the A1298C polymorphism, which implied 
that part of our results should be explained with caution. In addition, the potential influence 
of maternal environment factors on these two polymorphisms is worthy of consideration.

Conclusion

The MTHFR C677T polymorphism was associated with a significant increase in 
congenital heart defect risk in the fetal population based on our analysis. Moreover, the 
increased risk in the CC genotype of the MTHFR A1298C polymorphism was observed, but 
the protective role of the 1298C allele needs further study.
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