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Abstract 

In recent years, a number of novel agents
have been investigated that target specific
molecular pathways in non-small cell lung can-
cer (NSCLC). A great deal of effort has been
focused on identifying specific markers that
predict treatment response, given that a tai-
lored approach would maximize both the ther-
apeutic index and the cost-effectiveness. The
epidermal growth factor receptor (EGFR) path-
way has emerged as a key regulator of cancer
cell proliferation and invasion, and several
specific EGFR inhibitors have been examined.
Gefitinib and erlotinib are selective EGFR tyro-
sine kinase inhibitors (EGFR-TKIs), demon-
strating good results in selected cases both in
terms of objective response rate and of overall
survival. At present, EGFR gene mutations are
the best positive predictive factors for TKI
therapy, and a number of other potential bio-
markers are being investigated as additional
positive or negative predictors of response.
The correct selection of patients that could
benefit from these innovative therapies, based
on an accurate molecular characterization, is
mandatory to provide the best clinical manage-
ment. Currently, the main factor limiting the
characterization of metastatic NSCLC patients
is the small quantity of tumor cells available
for molecular analysis. In this paper we provide
an overview of the most important molecular
predictive markers for EGFR-TKIs therapy in
NSCLC patients, and focus attention on biolog-
ical samples suitable for analysis and alterna-
tive sampling approaches such as plasma- or
serum-derived DNA.

Introduction

The epidermal growth factor receptor
(EGFR) signaling pathway has emerged as a
key signal transduction pathway in promoting
cancer cell proliferation and tumor invasion.
EGFR is normally found on the surface of
epithelial cells and its overexpression is com-
monly observed in several malignancies

including lung cancer.1,2 The tyrosine kinase
domain of EGFR consists of an N- and a C-lobe,
with ATP binding to the cleft formed between
these two lobes. Activation by specific ligands
or mutations leads to homodimer and het-
erodimer formation (with other members of
the ERBB protein family). Dimerization conse-
quently stimulates intrinsic EGFR tyrosine
kinase activity and triggers autophosphoryla-
tion of specific tyrosine residues within the
cytoplasmic regulatory domain.3 Several signal
transducers are then activated that initiate
multiple signaling pathways, including mito-
gen-activated protein kinase (MAPK), phos-
phatidylinositol 3-kinase/AKT, and the signal
transducer and activator of transcription
(STAT) 3 and STAT5 pathways. All these events
trigger an increase in cell proliferation, migra-
tion, metastatization, angiogenesis, and eva-
sion of apoptosis (Figure 1). 
Inhibition of the EGFR pathway with tyro-

sine kinase inhibitors (TKIs) has proven to be
an effective treatment strategy for advanced
non-small cell lung cancer (NSCLC).4-6 TKIs are
a class of drugs that act on the EGFR ATP-bind-
ing site, leading to the reversible blocking of
downstream signaling pathway activation. In
view of results reported by the IPASS study,7

gefitinib (IRESSA, AstraZeneca Pharma -
ceuticals, Wilmington, DE, USA) was the first
TKI approved by the European Medicines
Agency (EMEA) for all lines of therapy in
adults with locally advanced or metastatic
NSCLC with activating EGFR tyrosine kinase
mutations. Erlotinib was the next TKI to be
developed (TARCEVA, Genentech, Inc, South
San Francisco, and OSI Pharmaceuticals, Inc,
Melville, NY, USA), receiving FDA approval for
salvage use in unselected patients with locally
advanced or metastatic NSCLC who had pro-
gressed after standard chemotherapy. Despite
the fact that these drugs act specifically on
EGFR, there is no direct correlation between
receptor expression and therapeutic drug effi-
cacy. Indeed, many EGFR-positive tumors do
not respond to EGFR TKI therapy, while a large
number of EGFR-negative tumors have been
reported to respond.8-11 Moreover, although
EGFR mutation status is the best predictor of
response to TKIs, many NSCLC EGFR mutated
patients do not respond.12 For this reason, a
number of alternative predictive markers are
currently under investigation. 
In this review we focus on the most promis-

ing predictive markers for EGFR-TKIs, and dis-
cuss how this knowledge could help to improve
treatment approaches. We also consider the
correlation between primary tumor and
metastatic lesion alterations, and discuss
other biological samples suitable for the study
of predictive markers, with particular attention
on those obtained from non-invasive proce-
dures such as plasma or serum-derived DNA.

Predictors of response to
tyrosine kinase inhibitors 

Epidermal growth factor receptor
overexpression
EGFR protein expression, evaluated by

immunohistochemistry (IHC), was the first
putative predictive marker to be retrospectively
explored in EGFR-TKI-treated NSCLC patients.
Several studies have reported no correlation
between EGFR levels and response to gefitinib or
erlotinib.8-11 Conversely, two other studies have
suggested that EGFR IHC assessment could help
to identify a subset of patients achieving sur-
vival improvement.13-15 In the BR21 trial, individ-
uals with high EGFR expression were associated
with response to erlotinib (P=0.03). The uni-
variate analysis showed a significant overall sur-
vival (OS) advantage of erlotinib compared with
placebo in IHC-positive patients (HR, 0.68 (95%
CI, 0.49-0.95); P=0.02), but not in IHC-negative
cases (HR, 0.93 (95% CI, 0.63-1.36); P=0.70).
However, the multivariate analysis did not reveal
any correlation between EGFR expression and
survival.13,16 These conflicting results, together
with the availability of many different commer-
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cial anti-EGFR antibodies, indicate that IHC may
not be the best method to determine a patient’s
eligibility to receive EGFR TKI therapy. 

Epidermal growth factor receptor
copy number
High EGFR gene copy number (amplifica-

tion or high polisomy), using fluorescent in
situ hybridization (FISH), has been detected in
approximately 30% of NSCLC patients, and is
usually associated with poor clinical outcome.17

Furthermore, significant survival benefits
have been observed in EGFR FISH-positive
patients treated with EGFR-TKIs in both phase
II14,17 and phase III13,15 trials. In the ISEL trial, a
double-blind randomized phase III study evalu-
ating the efficacy of gefitinib in 1,692 individ-
uals with locally advanced or metastatic
NSCLC, high EGFR copy number was associat-
ed with a significantly longer OS than low copy
number (P=0.045). Moreover, high EGFR copy
number patients treated with gefitinib were
associated with a 39% lower risk of death than
those receiving placebo.15 Response rates (RR)
and time to progression (TTP) were also
improved in high EGFR copy number patients
treated with EGFR-TKI, although these results
have not been demonstrated in other pub-
lished studies (Table 1). In contrast, in the
study by Crinò et al.,28 individuals receiving
gefitinib, with EGFR FISH-positive tumors,
appeared to have poorer outcomes than those
with EGFR-FISH-negative tumors. Moreover,
individuals who were EGFR-FISH-positive ben-
efited more from vinorelbine than from gefi-
tinib, although the latter showed an improved
toxicity profile.

Somatic epidermal growth factor
receptor mutations 
In 2004, three different research groups

showed that EGFR TK domain mutations are
associated with the response of NSCLC
patients to gefitinib29-31 or erlotinib.31 Somatic
mutations were more frequently observed in
patients with features known to be associated
with TKI sensitivity, such as female gender,
adenocarcinoma histology, Asian ethnicity, and
no smoking history (“never smokers”).
Following these initial observations, the
majority of EGFR mutations have been report-

ed to be found in the first four TK domain
exons32-37 (Figure 2). The most common EGFR-
sensitizing mutations, accounting for 85-90%
of all those found in NSCLC, include the exon
19 deletion (loss of codons 746-750, ELREA
amino acid sequence) and the exon 21 L858R
substitution. Both mutations have been shown
to enhance EGFR kinase activity and activate
its downstream signaling, playing a pivotal role
in NSCLC cell survival.30,38 EGFR-TKIs are
thought to neutralize the excessive survival
signals that cancer cells are “addicted to”,
leading to dramatic apoptosis.38,39 Moreover,
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Table 1. Clinical parameters of patients treated with  tyrosine kinase inhibitors as a function of epidermal growth factor receptor alter-
ations.

Ref. EGFR gene gain° EGFR mut Gene gain/ mut
correlation

EGFR RR% TTP (mos) OS (mos) EGFR mut/ RR% TTP (mos) OS (mos)
gene gain/ gene gain/ gene gain/ gene gain/ total pts (%) mut/wt mut/wt mut/wt
total pts (%) no gain no gain no gain

Takano, 200520 29/66 (44%) 72/38 9.4/2.6 - 39/66 (59%) 82/11 12.6/1.7 20.4/6.9 YES (P<0.001)
Bell, 200521 7/90  (8%) 29/15 - - 14/79 (18%) 46/10 3.8/1.9 ND NO
Sone, 200722 26/54 (48%) 30.8/21.4 ND ND 17/59 (29%) 59/14 7.3/1.8 18.9/6.4 NO
Cappuzzo, 200723 25/36 (69%) 68/9.1 7.6/2.7 NR/7.4 24/37 (65%) 63/23 3.8/3.1 NR/11.1 YES (P<0.005)

74/9.1+

Hirsch, 200615 114/370 (31%) 16.4/3.2 4.5/2.4 8.3/4.3 26/215 (12%) 37.5/2.6 Not Not YES (P<0.05)
evaluable evaluable

Hirsch, 200724 59/183 (32%) 33/6 9/3 18/8 43/157 (27%) 39/7 3/3 13/11 YES (P<0.05)
Miller, 200812 24/76 (32%) 43/13 9/2 25/16 18/81 (22%) 83/7 13/2 23/17 -
Ahn, 200825 36/88 (40.9%) 41.7/17.3 5.8/1.8 NR/10.1 25/92 (27%) 58/16 8.6/2.5 NR/10.8 YES (P<0.05)
Dongiovanni, 200826 17/43 (40%) 79/7 14.1/2.3 15.7/5.2 9/43 (21%) 100/12 14.9/2.4 16.4/5.0 YES 
Schneider, 200827 49/208 (24%) 17.1/5.8 5.7/2.3* 8.6/6.1 6/92  (7%) 50/2.9 12.9/2.3* 16.8/5* -
EGFR: epidermal growth factor receptor; RR: response rate; TTP: time to progression: OS: overall survival; pts: patients; ND: no differences; NR: not reached; mut: mutant; wt: wild type. °Evaluated by FISH (except
for references 12, 25) ; +refers to no smokers; *interpolated by survival curves.

Figure 1. Epide -
rmal growth fac-
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stream pathways. 
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activating EGFR mutations have also been
shown to enhance gefitinib affinity by increas-
ing its activity.40 Point mutations in exon 18
(G719A/C) occur in about 5% of cases, are
associated with oncogenic potential in both
cell culture and transgenic mouse studies,32,36,41

and are also correlated with moderate TKI sen-
sitivity.41,42 A large number of studies have
reported a significantly higher overall
response rate (ORR >80%), OS and time to
progression (TTP) in patients with activating
EGFR mutations compared to wild-type individ-
uals (ORR <10%) (Table 1). 

EGFR kinase domain mutations have also
been associated with acquired resistance to
EGFR TKI, approximately 50% of cases being
explained by the presence of a secondary
mutation involving the methionine to threo-
nine substitution in codon 790 (T790M) of
exon 20.44-46 However, although the presence of
T790M does not preclude a response to EGFR
TKI, it is associated with significantly shorter
progression free survival (PFS) compared to
wild-type patients (7.7 vs. 16.5; P<0.001).47

Recently, a novel, irreversible covalent pyrimi-
dine inhibitor that is specific for T790M has
shown promising results, underlining the
importance of the strategy to identify new
classes of mutant-selective kinase inhibitors.48

Other less common mutations conferring mod-
est resistance to EGFR-TKIs include the D761Y
substitution and insertions in exon 20.49,50

Somatic mutations have frequently been corre-
lated with high EGFR copy number, but sup-
porting data on this point are still discordant
(Table 1).

KRAS mutations
ERBB signaling pathways include down-

stream GTPases encoded by RAS genes. It has
been estimated that 15-30% of lung adenocar-
cinomas contain activating mutations in the
RAS family member, KRAS, most of which are
found in codons 12 and 13 in exon 2.51,52 As a
rule, EGFR and KRAS mutations are mutually
exclusive, and, furthermore, it has been sug-
gested that activation of either the EGFR or
RAS signaling pathways has similar effects on
lung tumorigenesis.34 Moreover, EGFR muta-
tions are common in tumors from patients who
have smoked less than 100 cigarettes in their
lifetime (“never smokers”),26 while KRAS
mutations more frequently occur in individu-
als with a history of substantial cigarette use.53

The presence of KRAS mutations is associat-
ed with resistance to EGFR-TKI treatment,54-56

probably due to the fact that constitutive acti-
vation of the pathway by mutated KRAS neu-
tralizes the inhibitory effects exerted by EGFR
inhibition. However, a recent report by
Jackman et al.57 demonstrated no apparent dif-
ference in survival between KRAS
mutant/EGFR wild-type and KRAS wild-
type/EGFR wild-type NSCLC patients.
Furthermore, considering the mutually exclu-
sive nature of KRAS and EGFR mutations, the
presence of a KRAS mutation merely indicates
the absence of an EGFR mutation, the main
predictor of sensitivity. Taking these consider-
ations into account, the clinical usefulness of
KRAS mutations as a selective marker for
EGFR-TKI sensitivity in NSCLC appears to be
limited.

MET
MET is a high affinity tyrosine kinase recep-

tor for hepatocyte growth factor (HGF).
Interaction with its ligand has been shown to
induce autophosphorylation at multiple tyro-
sine residues, activating downstream path-
ways involved in cell growth, motility, survival,
invasion and metastasis.58 MET amplification
has been observed in about 10-20% of NSCLC
cases and is associated with shorter sur-
vival.59,60 Moreover, high MET copy number
seems to correlate with shorter time to treat-
ment failure in patients with gefitinib-sensi-
tive activating EGFR mutations,61 although
these results have not been confirmed in other
studies.62 An increase in MET gene copy num-
ber is also reported to be a mechanism of
acquired EGFR-TKI resistance, by driving
ERBB3-dependent activation of PI3K, allowing
tumor cells to bypass the activated mutant
EGFR pathway.63,64 Furthermore, the acquired
resistance due to MET amplification seems to
occur independently of the T790M alteration.65

For these reasons, combination therapies with
MET and EGFR kinase inhibitors should be
considered for patients whose tumors have
become resistant to gefitinib or erlotinib.62,65

EML4-ALK
The EML4-ALK fusion oncogene is one of

the most recently identified molecular targets
for the treatment of NSCLC. Consisting of a
chimeric tyrosine kinase, the N-terminal of
echinodermal microtubule associated protein-
like 4 (EML4) is fused to the intracellular
kinase domain of anaplastic lymphoma kinase
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Figure 2. Schematic figure of EGFR mutations reported in NSCLC. The principal mutations are located in exons 18-21,  in the tyrosine
kinase domain. Mutations associated with sensitivity and resistance are represented in green and orange, respectively. In frame deletions
of exon 19 and the exon 21 point mutation (L858R) are the most frequent alterations, accounting for 85-90% of EGFR mutations.
Nucleotide substitutions in exon 18, in particular G719C and G719S  account for a further 5% of EGFR mutations, and alterations in
exon 20 for another 5%.
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(ALK),66 and the resulting fusion protein has
shown oncogenic activity in both in vitro and
in vivo models.67,68 The frequency of this
rearrangement is very low in NSCLC patients,
about 6.7%, and is more common in young,
never/light smokers with adenocarcinoma. In
addition, the presence of EML4-ALK is strongly
associated with resistance to EGFR-TKIs and
sensitivity to ALK inhibitors.69 Promising
results have been achieved in a phase I study
using the oral ALK inhibitor PF02341066 with
FISH-detected ALK rearrangements, represent-
ing a new therapeutic target for this molecu-
larly-defined subset of NSCLC patients.70

p-AKT
AKT, a downstream mediator of phos-

phatidylinositol 3-kinase (PI3K), is a signal
transduction protein that plays a central role in
tumorigenesis.71 Moreover its overexpression
has been shown to confer resistance to
chemotherapy and radiation.72 AKT is activated
by PI3K, and it can be dysregulated because of
frequent inactivation of the phosphatase and
tensin homolog deleted on chromosome 10
(PTEN) tumor suppressor gene, which nega-
tively regulates PI3K levels.73 Phosphorylated-
AKT has been reported to be expressed in lung
cancers and it is correlated with a better
response to gefitinib, EGFR gene gain and pro-
tein expression.14,74 In other studies, p-AKT
expression has not shown a correlation with a
better outcome of patients to EGFR-TKI.15

Conversely, PTEN loss, and subsequent p-AKT
activation, has been associated with EGFR-
TKIs resistance, by decreasing cell apoptosis.75

MicroRNAs
MicroRNAs (miRNAs) are a new class of

non-coding RNAs of 21-25 nucleotides impli-
cated in cancer biology. MiRNAs post-tran-
scriptionally regulate gene expression by bind-
ing to complementary sequences in the 3’
untranslated region (3’ UTR) of target mes-
senger RNAs (mRNAs),76 suppressing protein
translation and downregulating protein
expression.77 MiRNA deregulation is fast
becoming an important area of study in car-
cinogenesis because it can drastically influ-
ence cell physiology.78 Some miRNAs, for exam-
ple miR-21, have been shown to be more high-
ly expressed in patients with EGFR mutations
than in those without.79 It has been hypothe-
sized that aberrant miR-21 expression might
contribute to lung cancer development in
“never smokers” through EGFR signaling path-
way activation, and that miR-21 silencing
might enhance EGFR-TKI induced apoptosis.
In addition, miR-128b seems to be directly
implicated in EGFR regulation. In particular,
miR-128b loss of heterozygosity is frequently
found in tumors and correlates significantly
with clinical response and survival following

gefitinib treatment.80 The identification of
miRNA oncogene regulators could therefore
have far-reaching implications for lung cancer
treatment, including improved patient selec-
tion for targeted agents, and the development
of novel therapeutics and early disease bio-
markers.

Multivariate approaches
Some studies have tried to identify specific

gene expression profiles able to discriminate
between patients responsive or not to EGFR-
TKIs. It has been demonstrated that a gene
expression signature of 180 genes has suffi-
cient robustness and accuracy to predict sensi-
tivity, both in cell lines and in lung adenocarci-
nomas.81 Other studies have identified specific
serum proteomic profiles able to distinguish
between EGFR-TKI sensitive or resistant
patients.82,83 In the paper by Carbone et al., a
protein expression profile was identified that
is able to discriminate patients treated with
bevacizumab and erlotinib that have a good or
poor prognosis. Median OS of 61 and 24 weeks,
and median PFS of 36 and eight weeks, were
reported in the good and poor prognosis
groups, respectively.82 These studies have
highlighted the possibility of multiparametric
approaches, encompassing many members of
the EGFR signaling cascade. 

Correlation between primary
tumor and metastases 
alterations

Although there is a clear and consolidated
need to screen NSCLC patients for EGFR muta-
tions, the best type of biological sample for this
characterization has not yet been elucidated.
Recent experience in colorectal cancer has
established that KRAS mutations in the pri-
mary tumor and the metastatic lesions are
identical,84,85 simplifying patient characteriza-
tion for cetuximab treatment. Conversely, lung
cancer studies have demonstrated substantial
differences between primary and metastatic
sites. Moreover, the vast majority of studies
have only reported EGFR status in the primary
tumor even though the main targets of NSCLC
therapy are the metastases themselves.
Italiano et al.86 were the first group to question
the stability of EGFR expression during the
NSCLC metastatic process. EGFR status, con-
firmed by IHC and FISH, was found to vary sig-
nificantly between primary NSCLC and distant
metastasis. Subsequent studies have con-
firmed these results, in particular for lung can-
cer brain metastases.87,88 Further investigations
have extended this analysis to other down-
stream signaling pathway markers, such as
phosphorylated Akt and MAPK,89 ERCC1,

VEGFR and Ki67.90

There is no shortage of evidence supporting
the discordance in EGFR and KRAS mutations
between primary tumors and the correspon-
ding metastases.91-96 In the study by Schmid et
al. on 96 paired samples of primary lung ade-
nocarcinoma and corresponding locoregional
lymph node metastases, a correspondence of
EGFR and KRAS alterations in the two biologi-
cal samples was observed in 14% and 31% of
patients, respectively, demonstrating a sub-
stantial discordance between metastases and
primary tumor that may be important for the
selection of patients for EGFR-TKI therapy.95

Similarly, Monaco et al.96 demonstrated a sub-
stantial discordance in KRAS mutations
between the primary tumor and corresponding
synchronous or metachronous metastases,
with a concordance of 18%, whereas no EGFR
mutations were found.  The mechanism by
which metastases arise with different profiles
from the primary tumor is still unclear, but the
possibility of heterogeneous tumor popula-
tions, genetic drift, or clonal selection of tumor
clones, may exist. Ultimately, these results
advocate molecular testing for metastatic
lesions in addition to, or in lieu of the primary
tumors, in view of the fact that the main aim of
advanced NSCLC treatment is to attack the
metastatic cells. 

Biological samples suitable for
molecular characterization

Another important point to consider in the
molecular characterization of NSCLC patients
is to provide sufficient sampling materials that
are not always available for inoperable stage
IIIB and IV tumors. Although frozen specimens
are the preferred source for EGFR and KRAS
analysis,97 mutation testing is regularly carried
out on Formalin-Fixed, Paraffin-Embedded
(FFPE) specimens obtained from surgery for
resectable tumors, and from biopsy for
advanced tumors. 
About one-third of primary NSCLC diag-

noses are performed on cytological samples,
and usually no other biopsy materials are avail-
able for molecular analyses. Effort has, there-
fore, been focused on detecting EGFR muta-
tions in cytological samples. Results from sev-
eral studies have shown that, after destaining
of cytological slides, extracted DNA is of suffi-
cient quality for analysis.98-100

Transesophageal ultrasound-guided fine
needle aspiration (EUS-FNA) has proven to be
a useful method for NSCLC staging and diag-
nosis.101 Recently, in our laboratory, we have
successfully used this methodology to obtain
fresh lymph node material suitable for DNA
extraction and EGFR analysis (P Ulivi et al.,
unpublished data, 2009). However, the macro-
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selection of tumor cells from fresh EUS-FNA
samples cannot be performed, and so the lack
of a mutation could indicate either a real
absence or an insufficient number of cells in
the starting material.
A non-invasive approach able to overcome

the scarcity of tumor material is the analysis of
DNA extracted from plasma/serum or from cir-
culating tumor cells (CTC). It has recently
been demonstrated that free-tumor derived
DNA levels in plasma or serum are significant-
ly higher in lung cancer patients compared to
healthy donors.102,103 This could be explained by
the presence of necrotic cells sloughed from
primary tumor or circulating tumor cells,
which possess the same genetic lesions.
Kimura et al. were the first group to report on

the detection of EGFR mutations in serum.104,105

In the 42 patients analyzed, EGFR mutations
were detected in 8 tumor samples and in 7
serum samples (one of the serum positive
cases was not mutated in the corresponding
tumor), demonstrating a high concordance
between tumor and serum.105 Subsequent stud-
ies have attempted to confirm these results in
larger case series.106-112 Indeed, using a range of
different methodologies, serum/plasma EGFR
mutations have been reported in over 70% of
patients in which the tumor tissue showed the
same mutation (Table 2).
However, in some of these studies, EGFR

mutations were found in the plasma but not in
the corresponding tumor tissue. In the study of
Bay et al.,109 consisting of 77 patients with pri-
mary tumor EGFR mutations, 63 reported iden-
tical alterations in the matched plasma.
Moreover, 7% of patients with plasma muta-
tions had no detectable alterations in the cor-
responding primary tumors and, similarly, 6%
of patients with tumor mutations had no
detectable EGFR alterations in the correspon-
ding plasma. The authors tried to explain this
apparent inconsistency in terms of the hetero-
geneity of genetic tumor abnormalities, in
which tumoral cells may or may not carry the
mutation. The lower tumor cell content in
some of the samples may also contribute to the
lack of detectable mutations in some tumor tis-
sues in which the corresponding plasma was

mutated. The only study reporting a low plasma
EGFR mutation frequency is that of
Maheswaran et al.,47 with a sensitivity in plas-
ma and CTC of 34% and 94%, respectively.
Plasma DNA analysis has also be used to mon-
itor patients during gefitinib treatment, for
example to characterize secondary mutations,
such as the T790M alteration.107 Nevertheless,
the scarcity of materials obtained from the pri-
mary tumor tissue of advanced-stage lung can-
cer patients and from biopsy or cytological
samples, highlights the potential clinical
importance of plasma/serum as a surrogate tis-
sue for genetic analysis.

Conclusions

To date, specific EGFR mutations are the
only alterations strongly correlated with tumor
response to EGFR-TKIs. Clearly, more studies
are necessary to investigate the potential role
of other promising predictive markers, such as
miRNA. The scarcity of tumor samples and the
poor correlation between primary and metasta-
tic lesions represent a major problem for the
molecular characterization of patients to
decide the best therapeutic strategy. In view of
the fact that the main goal of advanced NSCLC
therapy is to treat the metastasis, analysis
should be focused on the metastatic lesions.
Moreover, improvements in the analysis of bio-
logical fluids such as plasma or serum could
represent an important strategy to overcome
these problems.
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Ref. N.  EGFR-mutated tumors Biological material Methodology Mutations in paired samples (%)
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Maheswaran, 200847 18 Plasma SARMS 7/18 (39%)
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