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We let Ω(r) be the axially symmetric bounded domains which satisfy some suitable con-
ditions, then the ground-state solutions of the semilinear elliptic equation in Ω(r) are
nonaxially symmetric and concentrative on one side. Furthermore, we prove the neces-
sary and sufficient condition for the symmetry of ground-state solutions.

1. Introduction

Let N ≥ 2 and 2 < p < 2∗, where 2∗ = 2N/(N − 2) for N ≥ 3 and 2∗ = ∞ for N = 2.
Consider the semilinear elliptic equation

−∆u+u= |u|p−2u in Ω,

u= 0 on ∂Ω,
(1.1)

where Ω is a domain in RN . When Ω is a bounded domain in RN being convex in the
zi direction and symmetric with respect to the hyperplane {zi = 0}, the famous theorem
by Gidas, Ni, and Nirenberg [6] (or see Han and Lin [7]): if u is a positive solution of
(1.1) belonging to C2(Ω)∩C(Ω), then u is axial symmetric in zi. However, the axially
symmetry of positive solution generally fails if Ω is not convex in the zi direction. For
instance, Dancer [5], Byeon [2, 3], and Jimbo [8] proved that (1.1) in axially symmetric
dumbbell-type domain has nonaxially symmetric positive solutions. Wang and Wu [13]
and Wu [15] showed the same result in a finite strip with hole. In this paper, we want to
show that the symmetry and concentration behavior of ground-state solutions in axially
symmetric bounded domains Ω(r) (will be defined later), where the domains Ω(r) are
different from those of Dancer [5], Byeon [2, 3], Jimbo [8], and are extensions of Wang
and Wu [13] and Wu [15]. The definition of ground-state solution of (1.1) is stated as
follows. Consider the energy functionals a, b, and J in H1

0 (Ω),

a(u)=
∫
Ω

(|∇u|2 +u2), b(u)=
∫
Ω
|u|p, J(u)= 1

2
a(u)− 1

p
b(u). (1.2)

Copyright © 2004 Hindawi Publishing Corporation
Abstract and Applied Analysis 2004:12 (2004) 1019–1030
2000 Mathematics Subject Classification: 35J20, 35J25, 35J60
URL: http://dx.doi.org/10.1155/S1085337504404023

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/193483407?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1155/S1085337504404023


1020 Symmetry and concentration behavior

It is well known that the solutions of (1.1) are the critical points of the energy func-
tional J . Consider the minimax problem

αΓ(Ω)= inf
γ∈Γ(Ω)

max
t∈[0,1]

J
(
γ(t)

)
, (1.3)

where

Γ(Ω)= {γ ∈ C([0,1],H1
0 (Ω)

) | γ(0)= 0,γ(1)= e}, (1.4)

J(e) = 0 and e �= 0. We call a non zero critical point u of J in H1
0 (Ω) with J(u) = αΓ(Ω)

a ground-state solution. It follows easily from the mountain pass theorem of Ambrosetti
and Rabinowitz [1] that such a ground-state exists. We remark that the ground-state
solutions of (1.1) can also be obtained by the Nehari minimization problem

α0(Ω)= inf
v∈M0(Ω)

J(v), (1.5)

where M0(Ω)= {u∈H1
0 (Ω)\{0}|a(u)= b(u)}. Note that M0(Ω) contains every nonzero

solution of (1.1) and αΓ(Ω)= α0(Ω) (see Willem [14] and Wang [12]).
Now, we consider the following assumptions of an axially symmetric unbounded do-

main Ω. For the generic point z = (x, y)∈RN−1×R,

(Ω1) Ω is a y-symmetric (axially symmetric) domain of RN , that is, (x, y)∈Ω if and
only if (x,−y)∈Ω;

(Ω2) Ω is separated by a y-symmetric bounded domain D, that is, there exist two dis-
joint subdomains Ω1 and Ω2 of Ω such that

(x, y)∈Ω2 if and only if (x,−y)∈Ω1,

Ω \ D =Ω1∪Ω2;
(1.6)

(Ω3) equation (1.1) in Ω does not admit any solution u ∈ H1
0 (Ω) such that J(u) =

α0(Ω).

Now, we give some examples. The infinite strip with hole: Ω′ = Ar\ω, where Ar =
BN−1(0;r)×R andω ⊂ Ar is a y-symmetric bounded domain, andΩ′′ = {(x, y)∈RN−1×
R||x|2 < |y|+ 1}. Clearly, Ω′ and Ω′′ satisfy (Ω1) and (Ω2). Furthermore, by Lien, Tzeng,
and Wang [9, Lemma 2.5], if Ω is a ball-up domain in RN , then (1.1) in Ω does not admit
any solution u ∈ H1

0 (Ω) such that J(u) = α0(Ω). Thus, the domain Ω′′ satisfies (Ω3).
Moreover, along the same line of the proof of Lien, Tzeng, and Wang [9, Lemma 2.5], we
obtain α0(Ω′) = α0(Ar). By Lemma 2.8, the domain Ω′ satisfies (Ω3) (or see Wang [12,
Example 2.13 and Proposition 2.14]).

Let Ω(r)=Ω∩BN (0;r) be a y-symmetric bounded domain and let Ω+
t = {(x, y)∈Ω |

y > t} and Ω−
t = {(x, y)∈Ω | y < t}, then our first main result is the following theorem.

Theorem 1.1. Suppose that Ω satisfies (Ω1), (Ω2), and (Ω3). Then, for each ε > 0 and
l ≥ 0 there exists an r̃(ε, l) > 0 such that for r > r̃(ε, l), if v is a ground-state solution of (1.1)
in Ω(r), then either

∫
Ω+
l
|v|p < ε or

∫
Ω−l
|v|p < ε.
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Note that, if we take ε = (p/(p− 2))α0(Ω) and l = 0, then there exists an r0 > 0 such
that for r > r0, every ground-state solution of (1.1) in Ω(r) is not y-symmetric. Then, we
have the following result.

Corollary 1.2. Let ε = (p/(p− 2))α0(Ω) and l = 0, then there exists an r0 > 0 such that
for r > r0, (1.1) in Ω(r) has at least three positive solutions of which one is y-symmetric and
the other two are not y-symmetric.

By Theorem 1.1, for each ε > 0 and l ≥ 0 there exists an m0 ∈N such that for each m≥
m0, (1.1) in Ω(m) has a ground-state solution vm that satisfies

∫
Ω+
l
|vm|p < ε or

∫
Ω−−l
|vm|p <

ε. Then, we have the following results.

Theorem 1.3. (i) The sequence {vm} is a (PS)α0(Ω)-sequence in H1
0 (Ω) for J ;

(ii) vm⇀ 0 weakly in Lp(Ω) and in H1
0 (Ω) as m→∞.

By Theorem 1.1, the ground-state solutions of (1.1) in Ω(r) are not y-symmetric for
large r. In this motivation, we consider the positive ground-state solutions of the follow-
ing equation:

−∆u+u= f (u) in Θ,

u= 0 on ∂Θ,
(1.7)

where Θ is a y-symmetric bounded domain and the nonlinear term f is usually assumed
to satisfy the following conditions:

( f 1) f (−t)=− f (t) and f (t)= o(|t|) near t = 0;
( f 2) there exist two constants θ ∈ (0,1/2) and C0 > 0 such that 0 < F(u)≡ ∫ u0 f (s)ds≤

θu f (u) for all u≥ C0;
( f 3) | f (t)| ≤ C|t|q for some 1 < q < (N + 2)/(N − 2) if N > 2, 1 < q <∞ if N = 2 and

for large t;
( f 4) ∂2 f /∂t2(t)≥ 0 for t �= 0.

f (t)= |t|p−2t is a typical example. Under the conditions ( f 1) through ( f 3), the def-
inition of ground-state solutions of (1.7) is similar to the minimax problem (1.3). Here,
we modify the proof of Chern and Lin [4] to get the following results.

Theorem 1.4. Let v ∈ C2(Θ)∩C(Θ) be a positive ground-state solutions of (1.7) in Θ.
Then, there exists a z0∈{y=0}∩Θ such that (∂v/∂y)(z0)=0 if and only if v is y-symmetric.

Corollary 1.5. If v is a positive ground-state solution of (1.1) in Ω(r) as in Corollary 1.2
and zc is a critical point of v, then zc /∈ {y = 0}∩Ω. In particular, either (∂v/∂y)(z) < 0 or
(∂v/∂y)(z) > 0 for all z ∈ {y = 0}∩Ω.

2. Preliminaries

We define the y-symmetric domains and y-symmetric functions as follows.

Definition 2.1. (i) Ω is y-symmetric provided that z = (x, y)∈Ω if and only if (x,−y)∈
Ω;

(ii) let Ω be a y-symmetric domain in RN . A function u : Ω→R is y-symmetric (axi-
ally symmetric) if u(x, y)= u(x,−y) for (x, y)∈Ω.
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Throughout this paper, let Ω be a y-symmetric domain in RN , Hs(Ω) the H1- closure
of the space {u ∈ C∞0 (Ω) | u is y-symmetric} and let X(Ω) be either the whole space
H1

0 (Ω) or the y-symmetric Sobolev space Hs(Ω). Then, Hs(Ω) is a closed linear subspace
of H1

0 (Ω). Let H−1
s (Ω) be the dual space of Hs(Ω).

We define the Palais-Smale (PS) sequences, (PS)-values and (PS)-conditions in X(Ω)
for J as follows.

Definition 2.2. We define the following:

(i) for β ∈ R, a sequence {un} is a (PS)β-sequence in X(Ω) for J if J(un) = β + o(1)
and J ′(un)= o(1) strongly in X−1(Ω) as n→∞;

(ii) β ∈R is a (PS)-value in X(Ω) for J if there is a (PS)β-sequence in X(Ω) for J ;
(iii) J satisfies the (PS)β-condition in X(Ω) if every (PS)β-sequence in X(Ω) for J con-

tains a convergent subsequence.

By Willem [14], for any β ∈R, a (PS)β-sequence in X(Ω) for J is bounded. Moreover,
a (PS)-value β should be nonnegative.

Lemma 2.3. Let β ∈ R and {un} be a (PS)β-sequence in X(Ω) for J , then there exists a
positive number c(β) such that ‖un‖H1 ≤ c(β) for large n. Furthermore,

a
(
un
)= b(un)+ o(1)= 2p

p− 2
β+ o(1) (2.1)

and β ≥ 0. Moreover, c(β) can be chosen so that c(β)→ 0 as β→ 0.

Now, we consider the Nehari minimization problem

αX(Ω)= inf
u∈M(Ω)

J(u), (2.2)

where M(Ω) = {u ∈ X(Ω)\{0} | a(u) = b(u)}. Note that M(Ω) contains every nonzero
solution of (1.1) in Ω, αX(Ω) > 0 and if u0 ∈M(Ω) achieves αX(Ω), then u0 is a positive
(or negative) solution of (1.1) in Ω (see [13, 14]). Moreover, we have the following useful
lemma, whose proof can be found in [13, Lemma 7].

Lemma 2.4. Let {un} be in X(Ω). Then, {un} is a (PS)αX (Ω)-sequence in X(Ω) for J if and
only if J(un)= αX(Ω) + o(1) and a(un)= b(un) + o(1).

We denote

(i) αX(Ω) by α0(Ω) for X(Ω)=H1
0 (Ω) and αX(Ω) by αs(Ω) for X(Ω)=Hs(Ω),

(ii) M(Ω) by M0(Ω) for X(Ω)=H1
0 (Ω) and M(Ω) by Ms(Ω) for X(Ω)=Hs(Ω).

Remark 2.5. By the principle of symmetric criticality (see [11]), we have every (PS)β-
sequence in X(Ω) for J is a (PS)β-sequence in H1

0 (Ω) for J .

Let Ω be any unbounded domain and ξ ∈ C∞([0,∞)) such that 0≤ ξ ≤ 1 and

ξ(t)=
0 for t ∈ [0,1],

1 for t ∈ [2,∞).
(2.3)
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Let

ξn(z)= ξ
(

2|z|
n

)
. (2.4)

Then, we have the following results whose proof can be found in [15].

Proposition 2.6. Equation (1.1) in Ω does not admit any solution u0 such that J(u0) =
αX(Ω) if and only if for each (PS)αX (Ω)-sequence {un} in X(Ω) for J , there exists a subse-
quence {un} such that {ξnun} is also a (PS)αX (Ω)-sequence in X(Ω) for J .

Proposition 2.7. J does not satisfy the (PS)αX (Ω)-condition inX(Ω) for J if and only if there
exists a (PS)αX (Ω)-sequence {un} in X(Ω) for J such that {ξnun} is also a (PS)αX (Ω)-sequence
in X(Ω) for J .

Let Ω1 � Ω2, clearly αX(Ω1)≥ αX(Ω2). Then, we have the following useful results.

Lemma 2.8. Let Ω1 � Ω2 and J : X(Ω2)→R be the energy functional. Suppose that αX(Ω1)
= αX(Ω2). Then, the following hold:

(i) equation (1.1) in Ω1 does not admit any solution u0 ∈ X(Ω1) such that J(u0) =
αX(Ω1);

(ii) J does not satisfy the (PS)αX (Ω2)-condition.

The proof is given by Wang and Wu [13, Lemma 13].
By the Rellich compact theorem, J satisfies the (PS)αX (Ω)-condition in X(Ω) if Ω is a

bounded domain.

Lemma 2.9. Let Ω be a bounded domain in RN . Then, the (PS)αX (Ω)-condition holds in
X(Ω) for J . Furthermore, (1.1) in Ω has a positive solution u0 such that J(u0)= αX(Ω).

3. Concentration behavior

We need the following results.

Lemma 3.1. Let Ω be an unbounded domain. Then,

αX
(
Ω(r)

)↘ αX(Ω) as r ↗∞. (3.1)

Proof. Since Ω(r) is a bounded domain for all r > 0, by Lemmas 2.8 and 2.9, we have
αX(Ω(r)) is monotone decreasing as r is monotone increasing and αX(Ω(r)) > αX(Ω).
Thus, there exists a d0 ≥ αX(Ω) such that

αX
(
Ω(r)

)↘ d0 as r ↗∞. (3.2)

Claim that d0 ≤ αX(Ω). Let {un} be a (PS)αX (Ω)-sequence in X(Ω) for J . By Lemma 2.3,
there exists a c > 0 such that∫

Ω

∣∣∇un∣∣2
+u2

n ≤ c,
∫
Ω

∣∣un∣∣p ≤ c (3.3)
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for all n ∈ N. Thus, for each n ∈ N, there exists a sequence {rn} such that rn > 0 with
rn ↗∞ as n→∞ and

∫
Ω∩{|z|≥rn}

∣∣∇un∣∣2
+u2

n <
1
n

,
∫
Ω∩{|z|≥rn}

∣∣un∣∣p < 1
n
. (3.4)

Now, define ηrn(z)= η(2|z|/rn), where η ∈ C∞c ([0,∞)) satisfies 0≤ η ≤ 1 and

η(t)=
1 for t ∈ [0,1],

0 for t ∈ [2,∞).
(3.5)

Then, ηrnun ∈ X(Ω). From (3.4), we obtain

a
(
ηrnun

)= a(un)+ o(1),

b
(
ηrnun

)= b(un)+ o(1).
(3.6)

By the routine computations, there exists a sequence {sn} ⊂ R+ such that a(snηrnun) =
b(snηrnun), sn = 1 + o(1) and

J
(
snηrnun

)= J(ηrnun)+ o(1)= αX(Ω) + o(1), (3.7)

that is, snηrnun ∈M(Ω(rn)) and J(snηrnun) ≥ αX(Ω(rn)) = d0 + o(1). Taking n→∞ , we
get αX(Ω)≥ d0. Therefore, αX(Ω)= d0. �

Let Ω+
t = {(x, y)∈Ω | y > t} and Ω−

t = {(x, y)∈Ω | y < t}. Then, we have the follow-
ing result.

Lemma 3.2. Suppose that the domain Ω satisfies (Ω1), (Ω2), and (Ω3). Then, for each ε > 0
and l ≥ 0, there exists a δ(ε, l) > 0 such that if u ∈M0(Ω) and J(u) < α0(Ω) + δ(ε, l), then
either

∫
Ω+
l
|u|p < ε or

∫
Ω−−l
|u|p < ε.

Proof. If not, there exist c > 0, l0 ≥ 0, and {un} ⊂M0(Ω) such that J(un)= α0(Ω) + o(1),

∫
Ω+
l0

∣∣un∣∣p ≥ c, ∫
Ω−−l0

∣∣un∣∣p ≥ c. (3.8)

By Lemma 2.4, {un} is a (PS)α0(Ω)-sequence in H1
0 (Ω) for J . Now, Ω satisfies condi-

tion (Ω3). By Proposition 2.6, there exists a subsequence {un} such that {ξnun} is also
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a (PS)α0(Ω)-sequence in H1
0 (Ω) for J , where ξn is as in (2.4). Let vn = ξnun. We obtain

J
(
vn
)= α0(Ω) + o(1),

J ′
(
vn
)= o(1) in H−1(Ω).

(3.9)

Since Ω is a y-symmetric domain in RN separated by a bounded domain, there exists a
n0 > l0 such that vn = 0 in Ω(n0) for n > 2n0, and Ω\Ω(n0) =Ω1 ∪Ω2, where Ω1 =Ω+

n0

and Ω2 =Ω−−n0
. Moreover, vn = v1

n + v2
n, where

vin(z)=
vn(z) for z ∈Ωi

0 for z /∈Ωi
for i= 1,2. (3.10)

Then, vin ∈H1
0 (Ωi) and a(vin)= b(vin) + o(1). By (3.9), we obtain

J ′
(
vin
)= o(1) strongly in H−1(Ωi

)
for i= 1,2. (3.11)

Assume that

J
(
vin
)= ci + o(1) for i= 1,2. (3.12)

Since J(vn) = J(v1
n) + J(v2

n) = α0(Ω) + o(1), we have c1 + c2 = α0(Ω). Since ci are (PS)-
values in H1

0 (Ωi) for J , by Lemma 2.3, ci ≥ 0 and

c1

(
2p
p− 2

)
=
∫
Ω+
l0

∣∣v1
n

∣∣p + o(1)=
∫
Ω+
l0

∣∣un∣∣p + o(1),

c2

(
2p
p− 2

)
=
∫
Ω−−l0

∣∣v2
n

∣∣p + o(1)=
∫
Ω−−l0

∣∣un∣∣p + o(1).

(3.13)

By (3.8), we have ci > 0 for i= 1,2. We have that

α0(Ω)= c1 + c2 ≥ α0
(
Ω1
)

+α0
(
Ω2
)
, (3.14)

which contradicts the fact that α0(Ω)≤ α0(Ωi) for i= 1,2. �

Now, we begin to show the proof of Theorem 1.1. By Lemma 3.1, for each ε > 0 and
l ≥ 0, there exists a δ(ε, l) > 0 such that if u ∈ M0(Ω) and J(u) < α0(Ω) + δ(ε, l), then∫
Ω+
l
|u|p < ε or

∫
Ω−−l
|u|p < ε. Moreover, by Lemma 3.2, there exists an r̃ > 0 such that
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α0(Ω(r)) < α0(Ω) + δ(ε) for all r > r̃. Thus, if v is a ground-state solution of (1.1) in
H1

0 (Ω(r)) for r > r̃, then v ∈ M0(Ω(r)) ⊂ M0(Ω), J(v) < α0(Ω) + δ(ε) and either∫
Ω+
l
|v|p < ε or

∫
Ω−−l
|v|p < ε.

Now, we begin to show the proof of Theorem 1.3.
(i) By Lemma 3.1, we have J(vm)= α0(Ω(m))= α0(Ω) + o(1). Since vm ∈M0(Ω(m))⊂

M0(Ω), from Lemma 2.4 we can conclude that {vm} is a (PS)α0(Ω)-sequence in H1
0 (Ω)

for J .
(ii) Let v ∈ Lq(Ω), where 1/p+ 1/q = 1. Then, for each ε > 0 there exists an l > 0 such

that

∫
(Ω(l))c

|v|q < εq. (3.15)

By Theorem 1.1, there exists an m0 > l such that

∫
Ω(l)

∣∣vm∣∣q < εp ∀m>m0. (3.16)

Thus, for each ε > 0 there exists an m0 such that

∫
Ω
vmv =

∫
(Ω(l))c

vmv+
∫
Ω(l)

vmv ≤
(∫

(Ω(l))c

∣∣vm∣∣p
)1/p(∫

(Ω(l))c
|v|q

)1/q

+

(∫
Ω(l)

∣∣vm∣∣p
)1/p(∫

Ω(l)
|v|q

)1/q

≤ (c1 + c2
)
ε ∀m>m0,

(3.17)

where c1 = ((2p/(p− 2))α0(Ω)) and c2 = ‖v‖Lq . This implies that vm⇀ 0 weakly in Lp(Ω)
as m→∞. Since vm is a solution of (1.1) in Ω(m), we have

∫
Ω(m)

∇vm∇ϕ+ vmϕ=
∫
Ω(m)

∣∣vm∣∣p−2
vmϕ ∀ϕ∈H1

0

(
Ω(m)

)
. (3.18)

First, we need to show for each ε > 0 and ϕ∈ C1
c (S) there exists an m0 such that

∫
Ω(m)

∇vm∇ϕ+ vmϕ < ε ∀m>m0 (3.19)

for ϕ∈ C1
c (Ω). Let K = suppϕ, then K ⊂Ω is compact and there exists an m1 such that

K ⊂Ω(m) for allm≥m1. From Theorem 1.4, for each ε > 0 there exist l0 > 0 andm0 such
that ϕ∈H1

0 (Ω(m)),

∫
(Ω(l0))c

|ϕ|p = 0,
∫
Ω(l0)

∣∣vm∣∣p < ε(p−1)/p ∀m>m0. (3.20)



Tsung-Fang Wu 1027

We obtain ∫
Ω(m)

∣∣vm∣∣p−2
vmϕ=

∫
(Ω(l0))c

∣∣vm∣∣p−2
vmϕ+

∫
Ω(l0)

∣∣vm∣∣p−2
u1
mϕ

≤
(∫

(Ω(l0))c

∣∣vm∣∣p
)(p−1)/p(∫

(Ω(l0))c
|ϕ|p

)1/p

+

(∫
Ω(l0)

∣∣vm∣∣p
)(p−1)/p(∫

Ω(l0)
|ϕ|p

)1/p

≤ cε,

(3.21)

∫
Ω
∇vm∇ϕ+

∫
Ω
vmϕ=

∫
Ω(m)

∇vm∇ϕ+
∫
Ω(m)

vmϕ

=
∫
Ω(m)

∣∣vm∣∣p−2
vmϕ ∀m>m0.

(3.22)

We have that ∫
Ω
∇vm∇ϕ+

∫
Ω
vmϕ≤ cε ∀m>m0. (3.23)

Since α0(Ω(m+ 1)) < α0(Ω), there exists a C > 0 such that ‖vm‖H1 ≤ C. Thus, for each
ε > 0 and ψ ∈H1

0 (Ω), there exists a ϕ∈ C1
c (Ω) such that

‖ψ−ϕ‖H1 <
ε

C
. (3.24)

From (3.23) and (3.24), we can conclude that for each ε > 0 and ψ ∈H1
0 (Ω) there exists

an m0 > 0 such that 〈
vm,ψ

〉
H1 =

〈
vm,ψ −ϕ〉H1 +

〈
vm,ϕ

〉
H1

≤ C‖ψ −ϕ‖H1 +
〈
vm,ϕ

〉
H1

< ε+ cε for m>m0.

(3.25)

This implies that vm⇀ 0 weakly in H1
0 (Ω).

4. Symmetry

Now, we begin to show the proof of Theorem 1.4. Let v be a ground-state solution of
(1.7) in Θ and let z∗ = (x,−y) be the reflection point of z = (x, y) with respect to the
hyperplane T := {y = 0}. First, we claim that either

v(z)≥ v(z∗) ∀z ∈Θ+ (4.1)

or

v(z)≤ v(z∗) ∀z ∈Θ+, (4.2)
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where Θ+ is one of half domain Θ\T . If not, then the following two sets

A+ =
{
z ∈Θ+ | v(z) > v

(
z∗
)}

, (4.3)

A− =
{
z ∈Θ+ | v(z) < v

(
z∗
)}

, (4.4)

are nonempty. Let w(z)= v(z)− v(z∗) for z ∈Θ+. Then, w satisfies

∆w−w+ fv
(
ζ(z)

)
w = 0, in Θ+,

w = 0, in ∂Θ+,
(4.5)

where ζ(z) is between v(z) and v(z∗). Let

A∗− =
{
z∗ | z ∈ A−

}
. (4.6)

For d > 0, we define a function

ud(z)=


w(z) if z ∈A+,

dw
(
z∗
)

if z ∈A∗−,

0 otherwise.

(4.7)

Since
∫
A+
wφ1 > 0 and

∫
A−wφ1 < 0, there exists a constant d0 > 0 such that

∫
Θ
ud0φ1 =

∫
A+

wφ1 +d0

∫
A−
wφ1 = 0, (4.8)

where φ1 is the first positive eigenfunction of the following eigenvalue problem:

(
∆− 1 + fv

(
ζ(z)

))
φ+ λφ= 0 in Θ,

φ = 0 on ∂Θ.
(4.9)

Let λ2 be the second eigenvalue of (4.9). Since v is a ground-state solution of (1.7), by the
same method of the proof of Theorem 2.11 in [10], we have λ2 is nonnegative. Moreover,
by (4.3)–(4.7), we have

∆ud −ud + fv
(
ζ(z)

)
ud > 0 for z ∈ A+,

∆ud −ud + fv
(
ζ(z)

)
ud < 0 for z ∈ A∗−,

∆ud −ud + fv
(
ζ(z)

)
ud = 0 otherwise.

(4.10)
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Therefore, from (4.8) and (4.10), we have

0 >
∫
Θ
−ud(z)

[
∆ud(z)−ud + fv

(
ζ(z)

)
ud(z)

]
dz

=
∫
Θ

[∣∣∇ud(z)
∣∣2

+u2
d − fv

(
ζ(z)

)
u2
d(z)

]
dz

≥ λ2

∫
Θ
u2
d(z)dz ≥ 0,

(4.11)

a contradiction. This proves inequalities (4.1) and (4.2). By (4.1) and (4.2), we may as-
sume w(z)≥ 0 for all z ∈Θ+, if w(z) > 0 for some z ∈Θ+. Since w satisfies (4.5), by using
the strong maximum principle, we have w > 0 in Θ+. Similarly, if w(z)≤ 0 and w(z) < 0
for some z ∈Θ+, we have w < 0 in Θ+. Suppose that w(z) > 0 for all z ∈Θ+. Then, from
(4.5) and applying the Hopf Lemma, we have

∂w

∂(−y)

(
z0
)=−2

∂v

∂y

(
z0
)
< 0. (4.12)

Similarly, if w(z) < 0 for all z ∈Θ+, we have (∂v/∂)y(z0) < 0, this contradicts the fact that
(∂v/∂)y(z0)= 0. Therefore,w(z)= 0 for all z ∈Θ+ or v(x, y)= v(x,−y) for all (x, y)∈Θ.
The converse is obvious.
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