# SYMMETRY AND CONCENTRATION BEHAVIOR OF GROUND STATE IN AXIALLY SYMMETRIC DOMAINS

TSUNG-FANG WU

Received 9 October 2003

We let  $\Omega(r)$  be the axially symmetric bounded domains which satisfy some suitable conditions, then the ground-state solutions of the semilinear elliptic equation in  $\Omega(r)$  are nonaxially symmetric and concentrative on one side. Furthermore, we prove the necessary and sufficient condition for the symmetry of ground-state solutions.

## 1. Introduction

Let  $N \ge 2$  and  $2 , where <math>2^* = 2N/(N-2)$  for  $N \ge 3$  and  $2^* = \infty$  for N = 2. Consider the semilinear elliptic equation

$$-\Delta u + u = |u|^{p-2} u \quad \text{in } \Omega,$$
  
$$u = 0 \quad \text{on } \partial \Omega,$$
 (1.1)

where  $\Omega$  is a domain in  $\mathbb{R}^N$ . When  $\Omega$  is a bounded domain in  $\mathbb{R}^N$  being convex in the  $z_i$  direction and symmetric with respect to the hyperplane  $\{z_i = 0\}$ , the famous theorem by Gidas, Ni, and Nirenberg [6] (or see Han and Lin [7]): if u is a positive solution of (1.1) belonging to  $C^2(\Omega) \cap C(\overline{\Omega})$ , then u is axial symmetric in  $z_i$ . However, the axially symmetry of positive solution generally fails if  $\Omega$  is not convex in the  $z_i$  direction. For instance, Dancer [5], Byeon [2, 3], and Jimbo [8] proved that (1.1) in axially symmetric dumbbell-type domain has nonaxially symmetric positive solutions. Wang and Wu [13] and Wu [15] showed the same result in a finite strip with hole. In this paper, we want to show that the symmetry and concentration behavior of ground-state solutions in axially symmetric bounded domains  $\Omega(r)$  (will be defined later), where the domains  $\Omega(r)$  are different from those of Dancer [5], Byeon [2, 3], Jimbo [8], and are extensions of Wang and Wu [13] and Wu [15]. The definition of ground-state solution of (1.1) is stated as follows. Consider the energy functionals a, b, and J in  $H_0^1(\Omega)$ ,

$$a(u) = \int_{\Omega} (|\nabla u|^2 + u^2), \qquad b(u) = \int_{\Omega} |u|^p, \qquad J(u) = \frac{1}{2}a(u) - \frac{1}{p}b(u). \tag{1.2}$$

Copyright © 2004 Hindawi Publishing Corporation Abstract and Applied Analysis 2004:12 (2004) 1019–1030 2000 Mathematics Subject Classification: 35J20, 35J25, 35J60 URL: http://dx.doi.org/10.1155/S1085337504404023

It is well known that the solutions of (1.1) are the critical points of the energy functional *J*. Consider the minimax problem

$$\alpha_{\Gamma}(\Omega) = \inf_{\gamma \in \Gamma(\Omega)} \max_{t \in [0,1]} J(\gamma(t)), \qquad (1.3)$$

where

$$\Gamma(\Omega) = \{ \gamma \in C([0,1], H_0^1(\Omega)) \mid \gamma(0) = 0, \gamma(1) = e \},$$
(1.4)

J(e) = 0 and  $e \neq 0$ . We call a non zero critical point u of J in  $H_0^1(\Omega)$  with  $J(u) = \alpha_{\Gamma}(\Omega)$  a ground-state solution. It follows easily from the mountain pass theorem of Ambrosetti and Rabinowitz [1] that such a ground-state exists. We remark that the ground-state solutions of (1.1) can also be obtained by the Nehari minimization problem

$$\alpha_0(\Omega) = \inf_{\nu \in \mathbf{M}_0(\Omega)} J(\nu), \tag{1.5}$$

where  $\mathbf{M}_0(\Omega) = \{u \in H_0^1(\Omega) \setminus \{0\} | a(u) = b(u)\}$ . Note that  $\mathbf{M}_0(\Omega)$  contains every nonzero solution of (1.1) and  $\alpha_{\Gamma}(\Omega) = \alpha_0(\Omega)$  (see Willem [14] and Wang [12]).

Now, we consider the following assumptions of an axially symmetric unbounded domain  $\Omega$ . For the generic point  $z = (x, y) \in \mathbb{R}^{N-1} \times \mathbb{R}$ ,

- ( $\Omega$ 1)  $\Omega$  is a *y*-symmetric (axially symmetric) domain of  $\mathbb{R}^N$ , that is,  $(x, y) \in \Omega$  if and only if  $(x, -y) \in \Omega$ ;
- ( $\Omega 2$ )  $\Omega$  is separated by a *y*-symmetric bounded domain *D*, that is, there exist two disjoint subdomains  $\Omega_1$  and  $\Omega_2$  of  $\Omega$  such that

$$(x, y) \in \Omega_2 \text{ if and only if } (x, -y) \in \Omega_1,$$
  
$$\Omega \setminus \overline{D} = \Omega_1 \cup \Omega_2; \qquad (1.6)$$

(Ω3) equation (1.1) in Ω does not admit any solution  $u \in H_0^1(\Omega)$  such that  $J(u) = \alpha_0(\Omega)$ .

Now, we give some examples. The infinite strip with hole:  $\Omega' = \mathbf{A}^r \setminus \omega$ , where  $\mathbf{A}^r = B^{N-1}(0;r) \times \mathbb{R}$  and  $\omega \subset \mathbf{A}^r$  is a *y*-symmetric bounded domain, and  $\Omega'' = \{(x, y) \in \mathbb{R}^{N-1} \times \mathbb{R} | |x|^2 < |y| + 1\}$ . Clearly,  $\Omega'$  and  $\Omega''$  satisfy ( $\Omega$ 1) and ( $\Omega$ 2). Furthermore, by Lien, Tzeng, and Wang [9, Lemma 2.5], if  $\Omega$  is a ball-up domain in  $\mathbb{R}^N$ , then (1.1) in  $\Omega$  does not admit any solution  $u \in H_0^1(\Omega)$  such that  $J(u) = \alpha_0(\Omega)$ . Thus, the domain  $\Omega''$  satisfies ( $\Omega$ 3). Moreover, along the same line of the proof of Lien, Tzeng, and Wang [9, Lemma 2.5], we obtain  $\alpha_0(\Omega') = \alpha_0(\mathbf{A}^r)$ . By Lemma 2.8, the domain  $\Omega'$  satisfies ( $\Omega$ 3) (or see Wang [12, Example 2.13 and Proposition 2.14]).

Let  $\Omega(r) = \Omega \cap B^N(0; r)$  be a *y*-symmetric bounded domain and let  $\Omega_t^+ = \{(x, y) \in \Omega \mid y > t\}$  and  $\Omega_t^- = \{(x, y) \in \Omega \mid y < t\}$ , then our first main result is the following theorem.

THEOREM 1.1. Suppose that  $\Omega$  satisfies ( $\Omega$ 1), ( $\Omega$ 2), and ( $\Omega$ 3). Then, for each  $\varepsilon > 0$  and  $l \ge 0$  there exists an  $\tilde{r}(\varepsilon, l) > 0$  such that for  $r > \tilde{r}(\varepsilon, l)$ , if v is a ground-state solution of (1.1) in  $\Omega(r)$ , then either  $\int_{\Omega_r^+} |v|^p < \varepsilon$  or  $\int_{\Omega_r^-} |v|^p < \varepsilon$ .

Note that, if we take  $\varepsilon = (p/(p-2))\alpha_0(\Omega)$  and l = 0, then there exists an  $r_0 > 0$  such that for  $r > r_0$ , every ground-state solution of (1.1) in  $\Omega(r)$  is not *y*-symmetric. Then, we have the following result.

COROLLARY 1.2. Let  $\varepsilon = (p/(p-2))\alpha_0(\Omega)$  and l = 0, then there exists an  $r_0 > 0$  such that for  $r > r_0$ , (1.1) in  $\Omega(r)$  has at least three positive solutions of which one is y-symmetric and the other two are not y-symmetric.

By Theorem 1.1, for each  $\varepsilon > 0$  and  $l \ge 0$  there exists an  $m_0 \in \mathbb{N}$  such that for each  $m \ge m_0$ , (1.1) in  $\Omega(m)$  has a ground-state solution  $\nu_m$  that satisfies  $\int_{\Omega_l^+} |\nu_m|^p < \varepsilon$  or  $\int_{\Omega_{-l}^-} |\nu_m|^p < \varepsilon$ . Then, we have the following results.

THEOREM 1.3. (i) The sequence  $\{v_m\}$  is a  $(PS)_{\alpha_0(\Omega)}$ -sequence in  $H_0^1(\Omega)$  for J; (ii)  $v_m \rightarrow 0$  weakly in  $L^p(\Omega)$  and in  $H_0^1(\Omega)$  as  $m \rightarrow \infty$ .

By Theorem 1.1, the ground-state solutions of (1.1) in  $\Omega(r)$  are not *y*-symmetric for large *r*. In this motivation, we consider the positive ground-state solutions of the following equation:

$$-\Delta u + u = f(u) \quad \text{in } \Theta,$$
  
$$u = 0 \quad \text{on } \partial \Theta,$$
 (1.7)

where  $\Theta$  is a *y*-symmetric bounded domain and the nonlinear term *f* is usually assumed to satisfy the following conditions:

- (*f*1) f(-t) = -f(t) and f(t) = o(|t|) near t = 0;
- (*f*2) there exist two constants  $\theta \in (0, 1/2)$  and  $C_0 > 0$  such that  $0 < F(u) \equiv \int_0^u f(s) ds \le \theta u f(u)$  for all  $u \ge C_0$ ;
- (f3)  $|f(t)| \le C|t|^q$  for some 1 < q < (N+2)/(N-2) if N > 2,  $1 < q < \infty$  if N = 2 and for large *t*;
- $(f4) \ \partial^2 f / \partial t^2(t) \ge 0 \text{ for } t \ne 0.$

 $f(t) = |t|^{p-2}t$  is a typical example. Under the conditions (f1) through (f3), the definition of ground-state solutions of (1.7) is similar to the minimax problem (1.3). Here, we modify the proof of Chern and Lin [4] to get the following results.

THEOREM 1.4. Let  $v \in C^2(\Theta) \cap C(\overline{\Theta})$  be a positive ground-state solutions of (1.7) in  $\Theta$ . Then, there exists a  $z_0 \in \{y = 0\} \cap \Theta$  such that  $(\partial v/\partial y)(z_0) = 0$  if and only if v is y-symmetric.

COROLLARY 1.5. If v is a positive ground-state solution of (1.1) in  $\Omega(r)$  as in Corollary 1.2 and  $z_c$  is a critical point of v, then  $z_c \notin \{y = 0\} \cap \Omega$ . In particular, either  $(\partial v/\partial y)(z) < 0$  or  $(\partial v/\partial y)(z) > 0$  for all  $z \in \{y = 0\} \cap \Omega$ .

### 2. Preliminaries

We define the *y*-symmetric domains and *y*-symmetric functions as follows.

Definition 2.1. (i)  $\Omega$  is *y*-symmetric provided that  $z = (x, y) \in \Omega$  if and only if  $(x, -y) \in \Omega$ ;

(ii) let  $\Omega$  be a *y*-symmetric domain in  $\mathbb{R}^N$ . A function  $u : \Omega \to \mathbb{R}$  is *y*-symmetric (axially symmetric) if u(x, y) = u(x, -y) for  $(x, y) \in \Omega$ .

Throughout this paper, let  $\Omega$  be a *y*-symmetric domain in  $\mathbb{R}^N$ ,  $H_s(\Omega)$  the  $H^1$ - closure of the space  $\{u \in C_0^{\infty}(\Omega) \mid u \text{ is } y\text{-symmetric}\}$  and let  $X(\Omega)$  be either the whole space  $H_0^1(\Omega)$  or the *y*-symmetric Sobolev space  $H_s(\Omega)$ . Then,  $H_s(\Omega)$  is a closed linear subspace of  $H_0^1(\Omega)$ . Let  $H_s^{-1}(\Omega)$  be the dual space of  $H_s(\Omega)$ .

We define the Palais-Smale (PS) sequences, (PS)-values and (PS)-conditions in  $X(\Omega)$  for *J* as follows.

Definition 2.2. We define the following:

- (i) for  $\beta \in \mathbb{R}$ , a sequence  $\{u_n\}$  is a  $(PS)_{\beta}$ -sequence in  $X(\Omega)$  for J if  $J(u_n) = \beta + o(1)$ and  $J'(u_n) = o(1)$  strongly in  $X^{-1}(\Omega)$  as  $n \to \infty$ ;
- (ii)  $\beta \in \mathbb{R}$  is a (PS)-value in  $X(\Omega)$  for *J* if there is a (PS)<sub> $\beta$ </sub>-sequence in  $X(\Omega)$  for *J*;
- (iii) *J* satisfies the  $(PS)_{\beta}$ -condition in  $X(\Omega)$  if every  $(PS)_{\beta}$ -sequence in  $X(\Omega)$  for *J* contains a convergent subsequence.

By Willem [14], for any  $\beta \in \mathbb{R}$ , a (PS)<sub> $\beta$ </sub>-sequence in  $X(\Omega)$  for *J* is bounded. Moreover, a (PS)-value  $\beta$  should be nonnegative.

LEMMA 2.3. Let  $\beta \in \mathbb{R}$  and  $\{u_n\}$  be a  $(PS)_\beta$ -sequence in  $X(\Omega)$  for J, then there exists a positive number  $c(\beta)$  such that  $||u_n||_{H^1} \leq c(\beta)$  for large n. Furthermore,

$$a(u_n) = b(u_n) + o(1) = \frac{2p}{p-2}\beta + o(1)$$
(2.1)

and  $\beta \ge 0$ . Moreover,  $c(\beta)$  can be chosen so that  $c(\beta) \to 0$  as  $\beta \to 0$ .

Now, we consider the Nehari minimization problem

$$\alpha_X(\Omega) = \inf_{u \in \mathbf{M}(\Omega)} J(u), \tag{2.2}$$

where  $\mathbf{M}(\Omega) = \{u \in X(\Omega) \setminus \{0\} \mid a(u) = b(u)\}$ . Note that  $\mathbf{M}(\Omega)$  contains every nonzero solution of (1.1) in  $\Omega$ ,  $\alpha_X(\Omega) > 0$  and if  $u_0 \in \mathbf{M}(\Omega)$  achieves  $\alpha_X(\Omega)$ , then  $u_0$  is a positive (or negative) solution of (1.1) in  $\Omega$  (see [13, 14]). Moreover, we have the following useful lemma, whose proof can be found in [13, Lemma 7].

LEMMA 2.4. Let  $\{u_n\}$  be in  $X(\Omega)$ . Then,  $\{u_n\}$  is a  $(PS)_{\alpha_X(\Omega)}$ -sequence in  $X(\Omega)$  for J if and only if  $J(u_n) = \alpha_X(\Omega) + o(1)$  and  $a(u_n) = b(u_n) + o(1)$ .

We denote

- (i)  $\alpha_X(\Omega)$  by  $\alpha_0(\Omega)$  for  $X(\Omega) = H_0^1(\Omega)$  and  $\alpha_X(\Omega)$  by  $\alpha_s(\Omega)$  for  $X(\Omega) = H_s(\Omega)$ ,
- (ii)  $\mathbf{M}(\Omega)$  by  $\mathbf{M}_0(\Omega)$  for  $X(\Omega) = H_0^1(\Omega)$  and  $\mathbf{M}(\Omega)$  by  $\mathbf{M}_s(\Omega)$  for  $X(\Omega) = H_s(\Omega)$ .

*Remark 2.5.* By the principle of symmetric criticality (see [11]), we have every  $(PS)_{\beta}$ -sequence in  $X(\Omega)$  for J is a  $(PS)_{\beta}$ -sequence in  $H_0^1(\Omega)$  for J.

Let  $\Omega$  be any unbounded domain and  $\xi \in C^{\infty}([0,\infty))$  such that  $0 \le \xi \le 1$  and

$$\xi(t) = \begin{cases} 0 & \text{for } t \in [0,1], \\ 1 & \text{for } t \in [2,\infty). \end{cases}$$
(2.3)

$$\xi_n(z) = \xi\left(\frac{2|z|}{n}\right). \tag{2.4}$$

Then, we have the following results whose proof can be found in [15].

PROPOSITION 2.6. Equation (1.1) in  $\Omega$  does not admit any solution  $u_0$  such that  $J(u_0) = \alpha_X(\Omega)$  if and only if for each  $(PS)_{\alpha_X(\Omega)}$ -sequence  $\{u_n\}$  in  $X(\Omega)$  for J, there exists a subsequence  $\{u_n\}$  such that  $\{\xi_n u_n\}$  is also a  $(PS)_{\alpha_X(\Omega)}$ -sequence in  $X(\Omega)$  for J.

PROPOSITION 2.7. J does not satisfy the  $(PS)_{\alpha_X(\Omega)}$ -condition in  $X(\Omega)$  for J if and only if there exists a  $(PS)_{\alpha_X(\Omega)}$ -sequence  $\{u_n\}$  in  $X(\Omega)$  for J such that  $\{\xi_n u_n\}$  is also a  $(PS)_{\alpha_X(\Omega)}$ -sequence in  $X(\Omega)$  for J.

Let  $\Omega_1 \subseteq \Omega_2$ , clearly  $\alpha_X(\Omega_1) \ge \alpha_X(\Omega_2)$ . Then, we have the following useful results.

LEMMA 2.8. Let  $\Omega_1 \subsetneq \Omega_2$  and  $J : X(\Omega_2) \to \mathbb{R}$  be the energy functional. Suppose that  $\alpha_X(\Omega_1) = \alpha_X(\Omega_2)$ . Then, the following hold:

- (i) equation (1.1) in  $\Omega_1$  does not admit any solution  $u_0 \in X(\Omega_1)$  such that  $J(u_0) = \alpha_X(\Omega_1)$ ;
- (ii) *J* does not satisfy the  $(PS)_{\alpha_X(\Omega_2)}$ -condition.

The proof is given by Wang and Wu [13, Lemma 13].

By the Rellich compact theorem, *J* satisfies the  $(PS)_{\alpha_X(\Omega)}$ -condition in  $X(\Omega)$  if  $\Omega$  is a bounded domain.

LEMMA 2.9. Let  $\Omega$  be a bounded domain in  $\mathbb{R}^N$ . Then, the  $(PS)_{\alpha_X(\Omega)}$ -condition holds in  $X(\Omega)$  for J. Furthermore, (1.1) in  $\Omega$  has a positive solution  $u_0$  such that  $J(u_0) = \alpha_X(\Omega)$ .

#### 3. Concentration behavior

We need the following results.

LEMMA 3.1. Let  $\Omega$  be an unbounded domain. Then,

$$\alpha_X(\Omega(r)) \searrow \alpha_X(\Omega) \quad as \ r \nearrow \infty. \tag{3.1}$$

*Proof.* Since  $\Omega(r)$  is a bounded domain for all r > 0, by Lemmas 2.8 and 2.9, we have  $\alpha_X(\Omega(r))$  is monotone decreasing as r is monotone increasing and  $\alpha_X(\Omega(r)) > \alpha_X(\Omega)$ . Thus, there exists a  $d_0 \ge \alpha_X(\Omega)$  such that

$$\alpha_X(\Omega(r)) \searrow d_0 \quad \text{as } r \nearrow \infty. \tag{3.2}$$

Claim that  $d_0 \le \alpha_X(\Omega)$ . Let  $\{u_n\}$  be a  $(PS)_{\alpha_X(\Omega)}$ -sequence in  $X(\Omega)$  for *J*. By Lemma 2.3, there exists a c > 0 such that

$$\int_{\Omega} |\nabla u_n|^2 + u_n^2 \le c, \qquad \int_{\Omega} |u_n|^p \le c$$
(3.3)

Let

for all  $n \in \mathbb{N}$ . Thus, for each  $n \in \mathbb{N}$ , there exists a sequence  $\{r_n\}$  such that  $r_n > 0$  with  $r_n \nearrow \infty$  as  $n \to \infty$  and

$$\int_{\Omega \cap \{|z| \ge r_n\}} |\nabla u_n|^2 + u_n^2 < \frac{1}{n}, \qquad \int_{\Omega \cap \{|z| \ge r_n\}} |u_n|^p < \frac{1}{n}.$$
(3.4)

Now, define  $\eta_{r_n}(z) = \eta(2|z|/r_n)$ , where  $\eta \in C_c^{\infty}([0,\infty))$  satisfies  $0 \le \eta \le 1$  and

$$\eta(t) = \begin{cases} 1 & \text{for } t \in [0,1], \\ 0 & \text{for } t \in [2,\infty). \end{cases}$$
(3.5)

Then,  $\eta_{r_n} u_n \in X(\Omega)$ . From (3.4), we obtain

$$a(\eta_{r_n}u_n) = a(u_n) + o(1),$$
  

$$b(\eta_{r_n}u_n) = b(u_n) + o(1).$$
(3.6)

By the routine computations, there exists a sequence  $\{s_n\} \subset \mathbb{R}^+$  such that  $a(s_n\eta_{r_n}u_n) = b(s_n\eta_{r_n}u_n)$ ,  $s_n = 1 + o(1)$  and

$$J(s_n \eta_{r_n} u_n) = J(\eta_{r_n} u_n) + o(1) = \alpha_X(\Omega) + o(1),$$
(3.7)

that is,  $s_n\eta_{r_n}u_n \in \mathbf{M}(\Omega(r_n))$  and  $J(s_n\eta_{r_n}u_n) \ge \alpha_X(\Omega(r_n)) = d_0 + o(1)$ . Taking  $n \to \infty$ , we get  $\alpha_X(\Omega) \ge d_0$ . Therefore,  $\alpha_X(\Omega) = d_0$ .

Let  $\Omega_t^+ = \{(x, y) \in \Omega \mid y > t\}$  and  $\Omega_t^- = \{(x, y) \in \Omega \mid y < t\}$ . Then, we have the following result.

LEMMA 3.2. Suppose that the domain  $\Omega$  satisfies  $(\Omega 1)$ ,  $(\Omega 2)$ , and  $(\Omega 3)$ . Then, for each  $\varepsilon > 0$ and  $l \ge 0$ , there exists a  $\delta(\varepsilon, l) > 0$  such that if  $u \in \mathbf{M}_0(\Omega)$  and  $J(u) < \alpha_0(\Omega) + \delta(\varepsilon, l)$ , then either  $\int_{\Omega_1^+} |u|^p < \varepsilon$  or  $\int_{\Omega_{-l}^-} |u|^p < \varepsilon$ .

*Proof.* If not, there exist c > 0,  $l_0 \ge 0$ , and  $\{u_n\} \subset \mathbf{M}_0(\Omega)$  such that  $J(u_n) = \alpha_0(\Omega) + o(1)$ ,

$$\int_{\Omega_{l_0}^+} |u_n|^p \ge c, \qquad \int_{\Omega_{-l_0}^-} |u_n|^p \ge c.$$
(3.8)

By Lemma 2.4,  $\{u_n\}$  is a  $(PS)_{\alpha_0(\Omega)}$ -sequence in  $H_0^1(\Omega)$  for *J*. Now,  $\Omega$  satisfies condition ( $\Omega$ 3). By Proposition 2.6, there exists a subsequence  $\{u_n\}$  such that  $\{\xi_n u_n\}$  is also

a (PS)<sub> $\alpha_0(\Omega)$ </sub>-sequence in  $H_0^1(\Omega)$  for *J*, where  $\xi_n$  is as in (2.4). Let  $v_n = \xi_n u_n$ . We obtain

$$J(v_n) = \alpha_0(\Omega) + o(1),$$
  

$$J'(v_n) = o(1) \quad \text{in } H^{-1}(\Omega).$$
(3.9)

Since  $\Omega$  is a *y*-symmetric domain in  $\mathbb{R}^N$  separated by a bounded domain, there exists a  $n_0 > l_0$  such that  $v_n = 0$  in  $\overline{\Omega(n_0)}$  for  $n > 2n_0$ , and  $\Omega \setminus \overline{\Omega(n_0)} = \Omega_1 \cup \Omega_2$ , where  $\Omega_1 = \Omega_{n_0}^+$  and  $\Omega_2 = \Omega_{-n_0}^-$ . Moreover,  $v_n = v_n^1 + v_n^2$ , where

$$v_n^i(z) = \begin{cases} v_n(z) & \text{for } z \in \Omega_i \\ 0 & \text{for } z \notin \Omega_i \end{cases} \quad \text{for } i = 1, 2.$$
(3.10)

Then,  $v_n^i \in H_0^1(\Omega_i)$  and  $a(v_n^i) = b(v_n^i) + o(1)$ . By (3.9), we obtain

$$J'(v_n^i) = o(1)$$
 strongly in  $H^{-1}(\Omega_i)$  for  $i = 1, 2.$  (3.11)

Assume that

$$J(v_n^i) = c_i + o(1)$$
 for  $i = 1, 2.$  (3.12)

Since  $J(v_n) = J(v_n^1) + J(v_n^2) = \alpha_0(\Omega) + o(1)$ , we have  $c_1 + c_2 = \alpha_0(\Omega)$ . Since  $c_i$  are (PS)-values in  $H_0^1(\Omega_i)$  for *J*, by Lemma 2.3,  $c_i \ge 0$  and

$$c_{1}\left(\frac{2p}{p-2}\right) = \int_{\Omega_{l_{0}}^{+}} |v_{n}^{1}|^{p} + o(1) = \int_{\Omega_{l_{0}}^{+}} |u_{n}|^{p} + o(1),$$

$$c_{2}\left(\frac{2p}{p-2}\right) = \int_{\Omega_{-l_{0}}^{-}} |v_{n}^{2}|^{p} + o(1) = \int_{\Omega_{-l_{0}}^{-}} |u_{n}|^{p} + o(1).$$
(3.13)

By (3.8), we have  $c_i > 0$  for i = 1, 2. We have that

$$\alpha_0(\Omega) = c_1 + c_2 \ge \alpha_0(\Omega_1) + \alpha_0(\Omega_2), \qquad (3.14)$$

which contradicts the fact that  $\alpha_0(\Omega) \le \alpha_0(\Omega_i)$  for i = 1, 2.

Now, we begin to show the proof of Theorem 1.1. By Lemma 3.1, for each  $\varepsilon > 0$  and  $l \ge 0$ , there exists a  $\delta(\varepsilon, l) > 0$  such that if  $u \in \mathbf{M}_0(\Omega)$  and  $J(u) < \alpha_0(\Omega) + \delta(\varepsilon, l)$ , then  $\int_{\Omega_l^+} |u|^p < \varepsilon$  or  $\int_{\Omega_{-l}^-} |u|^p < \varepsilon$ . Moreover, by Lemma 3.2, there exists an  $\tilde{r} > 0$  such that

 $\alpha_0(\Omega(r)) < \alpha_0(\Omega) + \delta(\varepsilon)$  for all  $r > \widetilde{r}$ . Thus, if v is a ground-state solution of (1.1) in  $H_0^1(\Omega(r))$  for  $r > \widetilde{r}$ , then  $v \in \mathbf{M}_0(\Omega(r)) \subset \mathbf{M}_0(\Omega)$ ,  $J(v) < \alpha_0(\Omega) + \delta(\varepsilon)$  and either  $\int_{\Omega_t^+} |v|^p < \varepsilon$  or  $\int_{\Omega_{-1}^-} |v|^p < \varepsilon$ .

Now, we begin to show the proof of Theorem 1.3.

(i) By Lemma 3.1, we have  $J(\nu_m) = \alpha_0(\Omega(m)) = \alpha_0(\Omega) + o(1)$ . Since  $\nu_m \in \mathbf{M}_0(\Omega(m)) \subset \mathbf{M}_0(\Omega)$ , from Lemma 2.4 we can conclude that  $\{\nu_m\}$  is a  $(\mathrm{PS})_{\alpha_0(\Omega)}$ -sequence in  $H_0^1(\Omega)$  for *J*.

(ii) Let  $v \in L^q(\Omega)$ , where 1/p + 1/q = 1. Then, for each  $\varepsilon > 0$  there exists an l > 0 such that

$$\int_{(\Omega(l))^c} |\nu|^q < \varepsilon^q. \tag{3.15}$$

By Theorem 1.1, there exists an  $m_0 > l$  such that

$$\int_{\Omega(l)} |\nu_m|^q < \varepsilon^p \quad \forall m > m_0.$$
(3.16)

Thus, for each  $\varepsilon > 0$  there exists an  $m_0$  such that

$$\int_{\Omega} v_{m} v = \int_{(\Omega(l))^{c}} v_{m} v + \int_{\Omega(l)} v_{m} v \leq \left( \int_{(\Omega(l))^{c}} |v_{m}|^{p} \right)^{1/p} \left( \int_{(\Omega(l))^{c}} |v|^{q} \right)^{1/q} + \left( \int_{\Omega(l)} |v_{m}|^{p} \right)^{1/p} \left( \int_{\Omega(l)} |v|^{q} \right)^{1/q} \leq (c_{1} + c_{2})\varepsilon \quad \forall m > m_{0},$$
(3.17)

where  $c_1 = ((2p/(p-2))\alpha_0(\Omega))$  and  $c_2 = ||v||_{L^q}$ . This implies that  $v_m \to 0$  weakly in  $L^p(\Omega)$  as  $m \to \infty$ . Since  $v_m$  is a solution of (1.1) in  $\Omega(m)$ , we have

$$\int_{\Omega(m)} \nabla v_m \nabla \varphi + v_m \varphi = \int_{\Omega(m)} |v_m|^{p-2} v_m \varphi \quad \forall \varphi \in H^1_0(\Omega(m)).$$
(3.18)

First, we need to show for each  $\varepsilon > 0$  and  $\varphi \in C_{\varepsilon}^{1}(\mathbf{S})$  there exists an  $m_{0}$  such that

$$\int_{\Omega(m)} \nabla v_m \nabla \varphi + v_m \varphi < \varepsilon \quad \forall \, m > m_0 \tag{3.19}$$

for  $\varphi \in C_c^1(\Omega)$ . Let  $K = \operatorname{supp} \varphi$ , then  $K \subset \Omega$  is compact and there exists an  $m_1$  such that  $K \subset \Omega(m)$  for all  $m \ge m_1$ . From Theorem 1.4, for each  $\varepsilon > 0$  there exist  $l_0 > 0$  and  $m_0$  such that  $\varphi \in H_0^1(\Omega(m))$ ,

$$\int_{(\Omega(l_0))^c} |\varphi|^p = 0, \qquad \int_{\Omega(l_0)} |v_m|^p < \varepsilon^{(p-1)/p} \quad \forall m > m_0.$$
(3.20)

We obtain

$$\int_{\Omega(m)} |v_{m}|^{p-2} v_{m} \varphi = \int_{(\Omega(l_{0}))^{c}} |v_{m}|^{p-2} v_{m} \varphi + \int_{\Omega(l_{0})} |v_{m}|^{p-2} u_{m}^{1} \varphi$$

$$\leq \left( \int_{(\Omega(l_{0}))^{c}} |v_{m}|^{p} \right)^{(p-1)/p} \left( \int_{(\Omega(l_{0}))^{c}} |\varphi|^{p} \right)^{1/p}$$

$$+ \left( \int_{\Omega(l_{0})} |v_{m}|^{p} \right)^{(p-1)/p} \left( \int_{\Omega(l_{0})} |\varphi|^{p} \right)^{1/p}$$

$$\leq c\varepsilon,$$

$$\int_{\Omega} \nabla v_{m} \nabla \varphi + \int_{\Omega} v_{m} \varphi = \int_{\Omega(m)} \nabla v_{m} \nabla \varphi + \int_{\Omega(m)} v_{m} \varphi$$

$$= \int_{\Omega(m)} |v_{m}|^{p-2} v_{m} \varphi \quad \forall m > m_{0}.$$
(3.22)

We have that

$$\int_{\Omega} \nabla v_m \nabla \varphi + \int_{\Omega} v_m \varphi \le c \varepsilon \quad \forall m > m_0.$$
(3.23)

Since  $\alpha_0(\Omega(m+1)) < \alpha_0(\Omega)$ , there exists a C > 0 such that  $\|\nu_m\|_{H^1} \leq C$ . Thus, for each  $\varepsilon > 0$  and  $\psi \in H_0^1(\Omega)$ , there exists a  $\varphi \in C_{\varepsilon}^1(\Omega)$  such that

$$\|\psi - \varphi\|_{H^1} < \frac{\varepsilon}{C}.$$
(3.24)

From (3.23) and (3.24), we can conclude that for each  $\varepsilon > 0$  and  $\psi \in H_0^1(\Omega)$  there exists an  $m_0 > 0$  such that

$$\begin{aligned} \langle \nu_m, \psi \rangle_{H^1} &= \langle \nu_m, \psi - \varphi \rangle_{H^1} + \langle \nu_m, \varphi \rangle_{H^1} \\ &\leq C \| \psi - \varphi \|_{H^1} + \langle \nu_m, \varphi \rangle_{H^1} \\ &< \varepsilon + c \varepsilon \quad \text{for } m > m_0. \end{aligned}$$
 (3.25)

This implies that  $v_m \rightarrow 0$  weakly in  $H_0^1(\Omega)$ .

#### 4. Symmetry

Now, we begin to show the proof of Theorem 1.4. Let v be a ground-state solution of (1.7) in  $\Theta$  and let  $z^* = (x, -y)$  be the reflection point of z = (x, y) with respect to the hyperplane  $T := \{y = 0\}$ . First, we claim that either

$$v(z) \ge v(z^*) \quad \forall z \in \Theta^+$$
 (4.1)

or

$$v(z) \le v(z^*) \quad \forall z \in \Theta^+,$$
(4.2)

where  $\Theta^+$  is one of half domain  $\Theta \setminus T$ . If not, then the following two sets

$$A_{+} = \{ z \in \Theta^{+} \mid v(z) > v(z^{*}) \},$$
(4.3)

$$A_{-} = \{ z \in \Theta^{+} \mid \nu(z) < \nu(z^{*}) \},$$
(4.4)

are nonempty. Let  $w(z) = v(z) - v(z^*)$  for  $z \in \Theta^+$ . Then, w satisfies

$$\Delta w - w + f_{\nu}(\zeta(z))w = 0, \quad \text{in } \Theta^+,$$
  

$$w = 0, \quad \text{in } \partial \Theta^+,$$
(4.5)

where  $\zeta(z)$  is between v(z) and  $v(z^*)$ . Let

$$A_{-}^{*} = \{ z^{*} \mid z \in A_{-} \}.$$
(4.6)

For d > 0, we define a function

$$u_d(z) = \begin{cases} w(z) & \text{if } z \in A_+, \\ dw(z^*) & \text{if } z \in A_-^*, \\ 0 & \text{otherwise.} \end{cases}$$
(4.7)

Since  $\int_{A_+} w\phi_1 > 0$  and  $\int_{A_-} w\phi_1 < 0$ , there exists a constant  $d_0 > 0$  such that

$$\int_{\Theta} u_{d_0} \phi_1 = \int_{A_+} w \phi_1 + d_0 \int_{A_-} w \phi_1 = 0, \qquad (4.8)$$

where  $\phi_1$  is the first positive eigenfunction of the following eigenvalue problem:

$$(\Delta - 1 + f_{\nu}(\zeta(z)))\phi + \lambda\phi = 0 \quad \text{in }\Theta,$$
  
 
$$\phi = 0 \quad \text{on }\partial\Theta.$$
 (4.9)

Let  $\lambda_2$  be the second eigenvalue of (4.9). Since  $\nu$  is a ground-state solution of (1.7), by the same method of the proof of Theorem 2.11 in [10], we have  $\lambda_2$  is nonnegative. Moreover, by (4.3)–(4.7), we have

$$\Delta u_d - u_d + f_v(\zeta(z))u_d > 0 \quad \text{for } z \in A_+,$$
  

$$\Delta u_d - u_d + f_v(\zeta(z))u_d < 0 \quad \text{for } z \in A_-^*,$$
  

$$\Delta u_d - u_d + f_v(\zeta(z))u_d = 0 \quad \text{otherwise.}$$
(4.10)

Therefore, from (4.8) and (4.10), we have

$$0 > \int_{\Theta} -u_d(z) [\Delta u_d(z) - u_d + f_v(\zeta(z)) u_d(z)] dz$$
  
= 
$$\int_{\Theta} [|\nabla u_d(z)|^2 + u_d^2 - f_v(\zeta(z)) u_d^2(z)] dz \qquad (4.11)$$
  
$$\ge \lambda_2 \int_{\Theta} u_d^2(z) dz \ge 0,$$

a contradiction. This proves inequalities (4.1) and (4.2). By (4.1) and (4.2), we may assume  $w(z) \ge 0$  for all  $z \in \Theta^+$ , if w(z) > 0 for some  $z \in \Theta^+$ . Since *w* satisfies (4.5), by using the strong maximum principle, we have w > 0 in  $\Theta^+$ . Similarly, if  $w(z) \le 0$  and w(z) < 0 for some  $z \in \Theta^+$ , we have w < 0 in  $\Theta^+$ . Suppose that w(z) > 0 for all  $z \in \Theta^+$ . Then, from (4.5) and applying the Hopf Lemma, we have

$$\frac{\partial w}{\partial (-y)}(z_0) = -2\frac{\partial v}{\partial y}(z_0) < 0.$$
(4.12)

Similarly, if w(z) < 0 for all  $z \in \Theta^+$ , we have  $(\partial v/\partial)y(z_0) < 0$ , this contradicts the fact that  $(\partial v/\partial)y(z_0) = 0$ . Therefore, w(z) = 0 for all  $z \in \Theta^+$  or v(x, y) = v(x, -y) for all  $(x, y) \in \Theta$ . The converse is obvious.

#### Acknowledgment

The author is partially supported by the National Science Council of Taiwan.

### References

- [1] A. Ambrosetti and P. H. Rabinowitz, *Dual variational methods in critical point theory and applications*, J. Functional Analysis **14** (1973), 349–381.
- [2] J. Byeon, Existence of large positive solutions of some nonlinear elliptic equations on singularly perturbed domains, Comm. Partial Differential Equations 22 (1997), no. 9-10, 1731–1769.
- [3] \_\_\_\_\_, Nonlinear elliptic problems on singularly perturbed domains, Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), no. 5, 1023–1037.
- [4] J.-L. Chern and C.-S. Lin, *The symmetry of least-energy solutions for semilinear elliptic equations*, J. Differential Equations 187 (2003), no. 2, 240–268.
- [5] E. N. Dancer, The effect of domain shape on the number of positive solutions of certain nonlinear equations, J. Differential Equations 74 (1988), no. 1, 120–156.
- [6] B. Gidas, W. M. Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), no. 3, 209–243.
- [7] Q. Han and F. Lin, *Elliptic Partial Differential Equations*, Courant Lecture Notes in Mathematics, vol. 1, Courant Institute of Mathematical Sciences, New York University, New York, 1997.
- [8] S. Jimbo, Singular perturbation of domains and the semilinear elliptic equation. II, J. Differential Equations 75 (1988), no. 2, 264–289.
- [9] W. C. Lien, S. Y. Tzeng, and H. C. Wang, Existence of solutions of semilinear elliptic problems on unbounded domains, Differential Integral Equations 6 (1993), no. 6, 1281–1298.
- [10] C. S. Lin and W.-M. Ni, On the diffusion coefficient of a semilinear Neumann problem, Calculus of Variations and Partial Differential Equations (Trento, 1986), Lecture Notes in Math., vol. 1340, Springer, Berlin, 1988, pp. 160–174.

- [11] R. S. Palais, The principle of symmetric criticality, Comm. Math. Phys. 69 (1979), no. 1, 19–30.
- [12] H.-C. Wang, A Palais-Smale approach to problems in Esteban-Lions domains with holes, Trans. Amer. Math. Soc. 352 (2000), no. 9, 4237–4256.
- [13] H.-C. Wang and T. F. Wu, Symmetry breaking in a bounded symmetry domain, NoDEA-Nonlinear Differential Equations Appl. (2004), no. 11, 361–377.
- [14] M. Willem, *Minimax Theorems*, Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston Inc., Massachusetts, 1996.
- [15] T.-F. Wu, Concentration and dynamic system of solutions for semilinear elliptic equations, Electron. J. Differential Equations (2003), no. 81, 1–14.

Tsung-Fang Wu: Center for General Education, Southern Taiwan University of Technology, Tainan 71005, Taiwan

*E-mail address*: tfwu@mail.stut.edu.tw



Advances in **Operations Research** 



**The Scientific** World Journal







Hindawi

Submit your manuscripts at http://www.hindawi.com



Algebra



Journal of Probability and Statistics



International Journal of Differential Equations





Complex Analysis

International Journal of

Mathematics and Mathematical Sciences





Mathematical Problems in Engineering



Abstract and Applied Analysis

Discrete Dynamics in Nature and Society





**Function Spaces** 



International Journal of Stochastic Analysis

