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INTRODUCTION
Considerable coverage has been devoted to

terrestrial carbon sequestration in soils, forests,
and grasslands. Little attention has been given to
carbon burial in peatlands, and even less attention
has been paid to carbon burial in lakes and reser-
voirs. Lakes are generally discounted as signifi-
cant sinks for carbon, and some evidence even
suggests that they may be net sources of CO2 to
the atmosphere (e.g., Cole et al., 1994; Molot and
Dillon, 1997). Nevertheless, the sediments of
lakes and reservoirs constitute a large sink of
organic carbon when compared with carbon
burial in ocean sediments.

CARBON BURIAL IN LAKES
Moderately to highly productive (mesotrophic

to eutrophic) temperate zone lakes typically con-
tain olive-green sediments rich in organic matter
(>20% organic matter by loss on ignition at
550 °C, >10% organic carbon) called gyttja.
Many of these lakes are underlain by calcareous
glacial drift and contain waters rich in calcium-
magnesium bicarbonate. Those lakes precipitate
calcium carbonate (CaCO3), mostly as low-
magnesium calcite producing a calcareous sedi-
ment called marl. For reasons discussed below,
most of the organic matter in gyttja and marl is
autochthonous, that is, produced by phyto-
plankton and aquatic macrophytes in the lake. The
largest pool of organic carbon (OC) in a lake is
dissolved organic carbon (DOC), which is usually
about 10 times greater than particulate organic
carbon (POC; Wetzel, 1975). POC, however, is
the dominant source of OC in the sediments.

Studies of fossilized plant pigments in the sur-
face sediments of Minnesota lakes (Sanger and
Gorham, 1970; Gorham and Sanger, 1975)
showed that (1) most of the organic matter in an
average Minnesota lake is autochthonous, and
(2) only in the least productive of the lakes in
northeastern Minnesota does allochthonous

terrestrial organic matter make a significant con-
tribution to sedimentary organic matter. Autoch-
thonous organic matter is enriched in protein-
aceous, low-molecular-weight compounds high
in H and N, with low C/N ratios (typically <10;
Meyers and Ishiwatari, 1993). Allochthonous ter-
restrial organic matter has more abundant high-
molecular-weight, humic compounds rich in C,
with much higher C/N ratios, typically 20–30
(Meyers and Ishiwatari, 1993). The average OC
concentration in surface profundal sediments of
46 representative lakes throughout Minnesota is
12% (range, 3%–29%; Dean et al., 1993). The
average OC/N ratio in the sediments of those
lakes is 9.0 (range, 7.6–14). The only sediments
reported by Dean et al. (1993) with OC/N ratios
>11 are from 5 of 10 relatively unproductive
lakes in northeastern Minnesota.

Analyses of plant pigments in surface sedi-
ments from lakes in the English Lake District
demonstrated that, as in Minnesota lakes, much of
the organic matter in the more productive lakes is
autochthonous (Gorham et al., 1974). The average
OC concentration in the English lakes is 7.0%
(range 4.0%–13%) and the average OC/N ratio is
12.2 (range 9.4–14.1) with little variation between
lake productivity groups (Gorham et al., 1974).
The average OC content and OC/N ratio in
sediments of 23 Wisconsin lakes compiled by
Brunskill et al. (1971) are 20% and 11, respec-
tively. High concentrations of organic matter in the
surface sediments of 16 lakes in the Experimental
Lakes Area on the Precambrian shield of north-
western Ontario (OC = 20% ± 7%) are due to lack
of clastic and carbonate dilution rather than high
productivity, but this organic matter still has OC/N
ratios (average = 9.7) typical of organic matter in
more southerly lakes situated on glaciated sedi-
mentary strata (Brunskill et al., 1971).

Most of the organic matter in sediments in the
depositional basins of the Great Lakes is autoch-
thonous (from plankton), has OC concentrations

>1%, and C/N ratios of 7–9 (Kemp et al., 1977;
Meyers and Ishiwatari, 1993). Glacial sediments
in the Great Lakes with little organic matter have
OC/N ratios >16 (Kemp et al., 1977).

From all these considerations, we conclude
that most of the organic matter in most lakes is
autochthonous, with OC/N ratios mostly <10.
This conclusion is contrary to a common percep-
tion that the organic matter in most temperate
lakes is derived from terrestrial sources (e.g.,
Mackereth, 1966; Brunskill et al., 1971; Molot
and Dillon, 1996).

If the OC in lakes of the glaciated regions of the
Northern Hemisphere, like that in the Minnesota
lakes, Experimental Lakes Area, English lakes,
and Great Lakes, comes from carbon that is fixed
by photosynthesis, the carbon pool buried over
the past 10000 yr must be tremendous. To esti-
mate the rates of OC burial in lakes, we shall start
with Minnesota, a region with a particularly dense
concentration of lakes, and one where we have a
great deal of information and experience.

To calculate accumulation rates of carbon we
need measurements of dry bulk density (DBD), a
good chronology, and measurements of OC.
Measured values of DBD for lake sediments are
rare. One of the few examples of a lake for which
all of these measurements have been made is Elk
Lake, in Clearwater County, Minnesota (Dean,
1993). The Holocene sediments in Elk Lake con-
sist of a continuous sequence of annual layers
(varves) providing annual time resolution. The
combination of varve-calibrated sedimentation
rate and bulk density measured every 50 yr was
used to calculate mass accumulation rates
(MARs) of bulk sediment, which, when multi-
plied by the fraction of OC and carbonate carbon
(CC), give MARs for these components (Fig. 1;
Dean, 1993). Figure 1Ashows that carbon accu-
mulation rates over the past 4000 yr have been
fairly constant but were generally higher and
much more variable during the mid-Holocene
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(8000 to 4000 yr B.P.). The average MARs for
OC, CC, and TC (total carbon) over the past
4000yr are 46, 36, and 82 g·m–2·yr–1, respec-
tively. For comparison, OC MARs for the top
10cm of eutrophic Lake Greifen, Switzerland, are
50–60 g·m–2·yr–1 and were about 10g·m–2·yr–1

prior to the 1880s (Hollander et al., 1992).
We calculated carbon MARs for cores from

two other Minnesota lakes (Fig. 1, B and C) for
which there are bulk density and carbon
measurements, but much lower age resolutions.
Williams Lake is hydrologically closed, and has
a residence time of about 4 yr (LaBaugh et al.,
1995). For the past 4000 yr, Williams Lake has
been accumulating high concentrations of OC
(30%–35%), and, although CaCO3 is precipi-
tated, it is dissolved in the CO2-charged bottom
waters (Schwalb et al., 1995). Initially, Williams
Lake did accumulate CaCO3 (up to 75% dry
weight of sediment) but that amount decreased to
zero over the first half of the Holocene as the lake
evolved into a closed lake and high concentra-
tions of OC accumulated in the sediments
(Schwalb et al., 1995). Nearby Shingobee Lake is
hydrologically open, with a residence time of
about 7 months, and has always accumulated
high concentrations of CaCO3 (60%–80%) and
relatively low concentrations of OC (2%–6%).
The average MARs for OC, CC, and TC for
Shingobee Lake over the past 4000 yr are 17,
38,and 55 g·m–2·yr–1, respectively. No CC accu-
mulated in the sediments of Williams Lake over
the past 4000 yr, but the average MARs for OC
and TC are both 21 g·m–2·yr–1. Therefore, the

carbon MARs in these two lakes are within the
same orders of magnitude as those for Elk Lake
(10–100 g·m–2·yr–1; see Fig. 1).

How typical are these above-mentioned
accumulation rates? The mean sediment accu-
mulation rate in 164 midlatitude, Holocene lake
sites in eastern North America (including
Minnesota) reported by Webb and Webb (1988)
is 81cm·10–3·yr–1 (i.e.,an average of about 8 m
of Holocene sediments). In contrast, profundal
Holocene sediments in lakes of central Europe
typically are 5–6 m thick (K.Kelts, 1997, per-
sonal commun.). The mean sediment accumula-
tion rate for the historic period (postsettlement)
in the midlatitude lake sites reported by Webb
and Webb (1988) is 298cm·10–3·yr–1 (about
3 mm·yr–1), or about four times Holocene rates.

Dry bulk densities of sediment are dependent
mainly on the OC content and vary considerably.
The DBDs of Holocene sediments in Elk,
Williams, and Shingobee Lakes decrease rapidly
with increasing OC (Fig. 2A), emphasizing the
importance of bulk density measurements. How-
ever, because DBD and OC contents are inversely
related, the content of OC per unit volume of sed-
iment is relatively constant at about 20 mg·cm–3

except for the least organic sediments (Fig. 2B).
Thus, if the sedimentation rate (cm·yr–1) is
known, the OC MAR can be estimated without
measuring the OC content or the DBD.

The average OC and CC concentrations in sur-
face sediments of 46 lakes chosen as a represen-
tative sample for Minnesota are 12% and 2%,
respectively (Dean et al., 1993). The relationship

of bulk density to OC content (Fig. 2A) indicates
that a lake sediment with 12% OC should have a
DBD of about 0.2 g·cm–3. At an average post-
settlement sedimentation rate of 3 mm·yr–1 (the
average midlatitude rate of Webb and Webb,
1988), this average sediment should have a bulk-
sediment MAR of 600 g·m–2·yr–1, and OC and
CC MARs of 72 and 12 g·m–2·yr–1, respec-
tively. The mean OC MARs for small (<100 km2)
lakes compiled by Mulholland and Elwood
(1982) are 27 g·m–2·yr–1 for oligotrophic lakes
and 94 g·m–2·yr–1 for meso-eutrophic lakes.

How much carbon sequestration is occurring
in Minnesota lakes alone? There are 15291 lakes
in Minnesota that have an area of >10 acres (4 ha
or 40 × 103 m2), and these 15291 lakes have a
total area of 3.4 × 106 acres = 1.4 × 1010 m2

(Minnesota Conservation Department, 1968).
If these lakes are accumulating OC at the aver-
age Minnesota lake rate of 72 g·m–2·yr–1, the
total OC accumulation is about 1012 g·yr–1 or
1 Tg·yr–1. This value does not include lakes with
areas <10 acres nor the extensive wetlands
throughout Minnesota.

Sediments in the depositional basins of the
lower Great Lakes (Michigan, Huron, Erie, and
Ontario) usually contain more than 2% OC of
predominantly algal origin (Kemp et al., 1977;
Meyers and Ishiwatari, 1993). Linear sedimenta-
tion rates and measured values of DBD, how-
ever, are more difficult to come by. Data for Lake
Michigan (Rea et al., 1980; Colman et al., 1990,
1994) suggest that the youngest sediments with
an average DBD of about 0.25 g·cm–3 were
deposited at an average rate of about 0.1 cm·yr–1

for a bulk-sediment MAR of 250 g·m–2·yr–1. At
2% OC, this bulk-sediment MAR yields an OC
MAR of about 5 g·m–2·yr–1 (Rea et al., 1980). If
we assume that the depositional basins of Lake
Michigan where this OC MAR applies constitute
about 75% of the area of Lake Michigan
(5.8× 104 km2), then the present OC accumula-
tion rate in Lake Michigan is about 0.22 Tg·yr–1

or about 22% of the rate for all Minnesota lakes.
Most people would agree that the continental

margins of the oceans, particularly margins
under upwelling areas, are significant sinks of
organic carbon. The continental margin off Cali-
fornia under the California Current upwelling
system covers an area of 4 × 1010 m2. The aver-
age Holocene OC MAR based on radiocarbon-
dated cores with measured bulk densities from
within this area was 0.06 Tg·yr–1(Gardner et al.,
1997). In other words, the area of the California
continental margin is almost three times the total
area of all lakes in Minnesota larger than 10
acres, but the OC burial rate along that continen-
tal margin is only about 6% of that in Minnesota
lakes. Globally, continental margins only amount
to 12% of the area of the world oceans, but they
are estimated to account for 44% of the present
burial of OC in the oceans (Emerson and
Hedges, 1988).
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Figure 1. Mass accum ulation rates of total carbon (TC), inor ganic carbon (IC), and
organic carbon (OC) in Holocene sediments of Elk Lake (A), Williams Lake (B), and
Shingobee Lake (C), Minnesota. Horizontal lines with a ges indicate the depths of
pollen-zone boundaries of Sc hwalb et al. (1995).



The point that we want to make is that lake sedi-
ments are sequestering large amounts of carbon
fixed mostly by aquatic primary productivity. This
is emphasized by the fact that the OC burial rate in
Minnesota lakes is 17 times that on the California
margins. Together, the sediments of lakes in the
glaciated regions of the northern hemisphere must
constitute an important carbon sink.

Shiklomanov (1993) estimated that freshwater
lakes in the world have a total area of about
1.5 × 1012 m2 (Table 1). Including saline inland
seas in this total would add another 1 × 1012 m2.
The 28 largest (area > 5000 km2) freshwater lakes
in the world have a total area of 1.18 × 1012m2 or
about 79% of the total area of freshwater lakes.
If the 28 large lakes bury OC, on average, at the
same rate as Lake Michigan (5 g·m–2·yr–1), then
the annual rate of OC burial in these 28 lakes is
about 6 Tg·yr–1 (Table 1). If the smaller lakes
bury OC, on average, at the same rate as an aver-
age Minnesota lake (72 g·m–2·yr–1), then the
annual rate of OC accumulation in these smaller
lakes is about 23 Tg·yr–1; Table 1). If saline
inland seas bury OC at the Lake Michigan rate,

this would be an additional 5 Tg·yr–1, for a total
of 34 Tg·yr–1 for all freshwater lakes and saline
inland seas (Table 1). Mulholland and Elwood
(1982) estimated the OC burial in all lakes and
inland seas (excluding the Black Sea) to be
60 Tg·yr–1 today (Table 1), and an average of
20Tg·yr–1for the Holocene. Another approach is
to use Likens’(1975) estimate of 200 g·m–2·yr–1

for average net primary production of carbon in
world lakes. If 5%–10% of that carbon production
is buried, then the 2.5 × 1012 m2 area of world
lakes and saline inland seas are burying OC at a
rate of 25–50 Tg·yr–1 (Table 1). Thus, the global
annual OC burial rate in lakes is between 34 and
60 Tg·yr–1, with our estimate being the lowest.
We will use an average of 42 Tg·yr–1 (Table 1,
footnoted). The closeness of these estimates, cal-
culated by different methods, suggests that this
value is not in error by more than a factor of two.

CARBON BURIAL IN RESERVOIRS
Reservoirs throughout the world currently

hold about 5000 km3 of water, and more than half
of that volume is in reservoirs in the United

States, Canada, and the former Soviet Union
(Shiklomanov, 1993). The volume of water in
reservoirs increased by a factor of 10 between
1951 and 1980 and is projected to increase to
more than 7000 km3 by the year 2000 (Shiklo-
manov, 1993). The total area of reservoirs in the
world (0.4 × 1012 m2; Shiklomanov, 1993) is
smaller than that of lakes, and the average per-
centage of OC in their sediments (about 2%; Mul-
holland and Elwood, 1982; Richie, 1989) is much
less than in most lake sediments. However, be-
cause the average sedimentation rate in reservoirs
(about 2 cm·yr–1; Mulholland and Elwood, 1982)
is much higher than that in lakes, bulk-sediment
MARs are higher, and OC MARs are higher. At
an average sedimentation rate of 2cm·yr–1, an
average bulk density of 1 g·cm–3, and an average
OC content of 2%, the average OC accumulation
rate in reservoirs is 400g·m–2·yr–1, and the total
of world reservoirs is burying OC at a total
annual rate of 160 Tg·yr–1(Table 1) . This is close
to the 200 Tg·yr–1 estimated by Mulholland and
Elwood (1982) for the annual accumulation of
carbon in reservoirs.

GEOLOGY, June 1998 537

Figure 2. Plots of per cent or ganic carbon ver sus (A) dr y bulk
density and (B) or ganic carbon content of Holocene sediments of
Elk, Williams, and Shingobee Lakes, Minnesota. The cur ve
through data in A is an e xponential regression based on data f or
Williams Lake onl y.



CARBON BURIAL IN PEATLANDS
Wetlands that accumulate more than 30 cm

of highly organic peat are called peatlands
(Gorham, 1991). In Europe, they are called
mires. Peatlands are concentrated in northern
Russia, the Baltic states, Fennoscandia, Canada,
and the northern United States (particularly in
Alaska) where they make up 9.7% of the total
land surface (Gorham, 1995). We estimate the
total area of world peatlands to be 4.19 × 1012m2

(Kivinen and Pakarinen, 1981, modified by
Gorham, 1991). The estimated present average
rate of OC accumulation in boreal peatlands is
23 g·m–2·yr–1 (Gorham, 1991). Using this rate
for peatlands globally, their total OC burial
amounts to 96 Tg·yr–1 (Table 1).

CONCLUSIONS
The total annual OC MAR in lakes (42 Tg),

reservoirs (160 Tg), and boreal peatlands (96 Tg)
is 298 Tg (Table 1). Despite the total area of these
three carbon sinks being only about 2% of the
world ocean’s surface area, they bury three times
more carbon than the oceans do (Table 1; inland/
ocean quotient).

It should be noted that the drainage of peatlands
for forestry and agriculture, and use of peat as fuel,
is releasing carbon to the atmosphere. Gorham
(1991) estimated that such processes release about
35 Tg·yr–1from boreal peatlands, and more south-
erly regions may actually be releasing more
carbon from drained peatlands than is fixed in
undrained sites (Armentano and Menges, 1986).
On the other hand, cultural eutrophication may
have increased lake sedimentation of OC four- to
fivefold in small lakes (Webb and Webb, 1988), an
increase of 23–32 Tg·yr–1.
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